Skip to main content

Association of acid phosphatase locus 1*Callele with the risk of cardiovascular events in rheumatoid arthritis patients

Abstract

Introduction

Acid phosphatase locus 1 (ACP1) encodes a low molecular weight phosphotyrosine phosphatase implicated in a number of different biological functions in the cell. The aim of this study was to determine the contribution of ACP1 polymorphisms to susceptibility to rheumatoid arthritis (RA), as well as the potential contribution of these polymorphisms to the increased risk of cardiovascular disease (CV) observed in RA patients.

Methods

A set of 1,603 Spanish RA patients and 1,877 healthy controls were included in the study. Information related to the presence/absence of CV events was obtained from 1,284 of these participants. All individuals were genotyped for four ACP1 single-nucleotide polymorphisms (SNPs), rs10167992, rs11553742, rs7576247, and rs3828329, using a predesigned TaqMan SNP genotyping assay. Classical ACP1 alleles (*A, *B and *C) were imputed with SNP data.

Results

No association between ACP1 gene polymorphisms and susceptibility to RA was observed. However, when RA patients were stratified according to the presence or absence of CV events, an association between rs11553742*T and CV events was found (P = 0.012, odds ratio (OR) = 2.62 (1.24 to 5.53)). Likewise, the ACP1*C allele showed evidence of association with CV events in patients with RA (P = 0.024, OR = 2.43).

Conclusions

Our data show that the ACP1*C allele influences the risk of CV events in patients with RA.

Introduction

Rheumatoid arthritis (RA) is a complex polygenic autoimmune inflammatory disease characterized by persistent synovitis and joint damage. Several genetic polymorphisms, such as HLA-DRB1, PTPN22, STAT4, TRAF1/C5 and TNFAIP3, have been implicated in the susceptibility to RA [1]. On the other hand, increased cardiovascular (CV) mortality is observed in patients with RA. This is the result of accelerated atherogenesis [24].

Acid phosphatase locus 1 (ACP1) is a gene located on chromosome 2p25 that encodes a low molecular weight phosphotyrosine phosphatase (LMW-PTP), which presents two main enzymatic activities: phosphoprotein tyrosine phosphatase and flavin mononucleotide phosphatase [5]. Two different isoenzymes of LMW-PTP have been described: 'fast' (also noted as ACP1-F(fast), isoform 1, IF1, HCPTP-A) and 'slow' (also noted as ACP1-S(slow), isoform 2, IF2, HCPTP-B), that arise through alternative splicing mechanisms, in which either exon 3 or exon 4 is excised and the other retained respectively [5, 6]. These two LMW-PTP isoenzymes have different molecular and catalytic properties, suggesting that they may be implicated in different biological functions in the cell [5, 7]. In Caucasian populations there are three common codominant alleles of ACP1, ACP1*A, ACP1*B, ACP1*C. ACP1 alleles differ on single-nucleotide polymorphisms (SNPs), which affect both the total enzymatic activity and the ratio between isoforms F/S, being the ratio F/S 2:1 in ACP1*A, 4:1 in ACP1*B and 1:4 in ACP1*C [5, 7, 8].

LMW-PTP is considered to play a key role as regulator of signaling pathways in receptor-stimulated immune cells [9]. LMW-PTP has also been involved in the regulation of many growth factors such as platelet-derived growth factor receptor (PDGFR) [10], fibroblast growth factor receptor (FGFR) [11], insulin receptor (IR) [12, 13] and EphA2 receptor, a ligand that binds to the Ephrin family of signaling molecules [14]. LMW-PTP has also been implicated in the regulation of ZAP70 Kinase (ζ-chain- associated protein kinase of 70 kDa) [15] playing a role in T-cell development and lymphocyte activation, enhancing signaling from the T cell antigen receptor [15]. Additionally, LMW-PTP has been found to be a key mediator in the integrin signaling during cellular adhesion [9].

Allelic polymorphisms of the ACP1 gene have been associated with susceptibility to several human diseases, including inflammatory and autoimmune diseases [5, 16]. Interestingly, the ACP1 gene was also associated with susceptibility to coronary atherosclerotic artery disease (CAD) [17].

Taking into account the possible influence that ACP1 may have in the susceptibility to immune-mediated disorders and in the pathogenesis of the CV disease, in the present study we aimed to investigate the possible association of ACP1 alleles with the susceptibility to RA as well as whether ACP1 gene polymorphism may contribute to the increased risk of CV complications observed in patients with RA.

Materials and methods

Material

A set of 1,603 RA Spanish patients and 1,877 healthy individuals were included in the present study. Blood samples were obtained from RA patients recruited from the Hospital Xeral-Calde (Lugo), Hospital Universitario Marqués de Valdecilla (Santander), Hospital Universitario Bellvitge (Barcelona), and Hospital La Paz, Hospital de La Princesa and Hospital Clínico San Carlos (Madrid). All the patients fulfilled the 1987 American College of Rheumatology (ACR) criteria for the classification of RA [18].

Information related to the presence or absence of CV events was obtained in 1,284 RA patients (80.1%, 1284/1,603). Among them, 229 experienced CV events (17.8%, 229/1,284). Information on traditional CV risk factors was also collected.

Clinical features of the whole series of 1,603 RA patients are shown in Table 1.

Table 1 Demographic characteristics of the patients with rheumatoid arthritis included in the study

A CV event was considered to be present if the patient had ischemic heart disease, heart failure, a cerebrovascular accident or peripheral artheriopathy. Clinical definitions for CV events and classic CV risk factors were established as previously described [4, 19]. The study was approved by local ethics committees from all the participating centers and all subjects provided informed consent according to the Declaration of Helsinki.

SNPs selection and genotyping

DNA from patients and controls was obtained using standard methods. We selected four ACP1 SNPs for the present study. rs11553742 and rs7576247 were selected because of their ability to tag classical ACP1 alleles (that is, ACP1*A, ACP1*B, ACP1*C) [5]. rs11553742 is a synonymous polymorphism located in the codon 44 (exon 3) and rs7576247 encodes an aminoacid change in the codon 105 (exon 6) from arginine, present in ACP1*A allele, to glutamine in ACP1*B and *C alleles. Hence, ACP1*A allele differs from ACP1*C allele in two base substitutions in those positions, so the CG allele combination is responsible for the ACP1*A allele and TA for the ACP1*C allele. In addition, ACP1*B allele is defined as not *A, not *C, that is, for the allelic combination CA. Another two polymorphisms, rs10167992 and rs3828329, were also selected because they showed association with quantitative traits related to type 2 diabetes mellitus [17]. All SNPs were genotyped with TaqMan SNP genotyping assays in a 7900 HT Real-Time polymerase chain reaction (PCR) system, according to the conditions recommended by the manufacturer (Applied Biosystems, Foster City, CA, USA). All samples were genotyped at the same center.

Statistical analysis

Controls were tested for significant differences in their genotype distribution and Hardy-Weinberg equilibrium (HWE) theoretical distribution by means of a χ2 test. The case-control association study was performed by 2 × 2 contingency tables with χ2 to obtain P-values, odds ratios (OR) and 95% confidence intervals (CI), according to Woolf's methods. The same procedure was applied in the subgroups stratified according to the presence or absence of anti-cyclic citrullinated peptide antibodies (ACPA). Association analysis for CV events in RA patients was performed via multiple logistic regression; estimates were adjusted for age at the time of disease diagnosis, gender, rheumatoid shared epitope status and traditional CV risk factors (hypertension, diabetes mellitus, dyslipidemia, obesity and smoking habit) as potential confounders.

All P-values < 0.05 were considered as statistically significant. All statistical analyses were carried out with Plink [20] and haplotype analysis with Haploview [21].

The estimation of the statistical power of the study to detect an effect of a polymorphism in disease susceptibility was performed using the CaTS Power Calculator software (Center for Statistical Genetics, University of Michigan, Michigan, USA) [22]. The study had between 98 and 100% power to detect the relative risk, with an OR of 1.50 at the 5% significance level, assuming a RA Spanish prevalence of this disease of 0.5% and considering a minor allele frequency (MAF) between 0.05 and 0.25 respectively. Under the same conditions described above, our study of the risk of CV events in RA patients had a statistical power from 95% when the disease allele frequency was 0.25 to 42% for an allele frequency of 0.05.

Results

ACP1polymorphisms in RA patients and controls

All genetic variants analyzed did not deviate significantly from the HWE, and the genotyping success call rate was 90%. After comparing RA patients and healthy individuals, no significant differences in the ACP1 allele and genotype frequencies were found (Additional file 1). We also assessed the possible influence of these ACP1 polymorphisms in the presence and absence of ACPA; however, no evidence of association was observed. In addition, we performed the analysis of allelic combinations to investigate the possible association of each of these three codominant ACP1 alleles (*A, *B and *C) with RA but no significant association was found. Again, no association was observed for ACP1 alleles when RA patients were stratified according to ACPA (Additional file 2).

ACP1polymorphisms and CV risk in RA patients

We further investigated the possible influence of ACP1 polymorphisms in the risk of CV events in RA patients. Of the 1,284 RA patients for whom information on presence or absence of CV disease was available, 229 had CV events (17.8%). Table 2 describes the distribution of ACP1 polymorphisms in RA patients with and without CV events. After adjusting for classical CV risk factors, evidence of association of rs11553742*T with the risk of CV events was observed (P-adj = 0.012, OR = 2.62 (1.24 to 5.53)).

Table 2 Differences between RA patients with and without CV events according to ACP1 polymorphisms

The potential influence of ACP1*A, *B and *C alleles in the CV risk of RA patients was also analyzed (Table 3). We found that the ACP1*C allele was significantly associated with CV risk in RA patients after correction for classic CV risk factors (P-adj = 0.024, OR = 2.43). As expected, ACP1*C allele (TA) included the minor rs11553742*T allele, which was also found to be a risk factor for the CV events in RA patients (see Table 2).

Table 3 Distribution of ACP1 alleles in RA patients with and without CV events

In contrast, ACP1*A allele (CG), which was the opposite allelic combination of ACP*C, showed a trend for protection against the development of CV events in RA patients, although no statistically significant association was achieved (P-adj = 0.217, OR = 0.76).

Discussion

Since the association of ACP1 gene with autoimmunity has previously been described [5], in the present study we sought to investigate the possible association of ACP1 polymorphisms with RA. Furthermore, taking into account that this gene has been involved in the susceptibility to CAD [17], we also assessed whether ACP1 variations could be involved in the risk of CV events in patients with RA. Our result revealed that ACP1 polymorphisms do not influence the susceptibility to RA. However, these polymorphisms seem to influence the risk of CV events in these patients. In this regard, both rs11553742*T and ACP1*C alleles increased the risk of CV complications in patients with RA. Interestingly, rs11553742*T has been observed to decrease the F/S ratio of the LMW-PTP isoenzymes [5]; in this regard the ACP1*C allele, carrier of the minor allele of rs11553742, was found to produce a major amount of S isoforms and is also associated with the highest total LMW-PTP activity [8, 23].

Our results are in accordance with the findings by Banci et al. [17], who observed that high S isoform genotypes were associated with increased risk to develop CAD. Moreover, patients with hypertrophic cardiomyopathy, an autosomal dominant disease, were found to have the highest frequencies for ACP1*C allele and showed a linear relationship between maximum wall thickness and the amount of total LMW-PTP activity [16].

The effect of the ACP1*C allele in the development of CV events could be explained by its possible role in the regulation of the energy metabolism and oxidative stress through its flavin mononucleotide phosphatase activity [8]. With respect to this, a negative interaction between LMW-PTP and the enzyme glutathione reducatase (GSR), which affects the cellular concentration of their cofactor flavin adenosine dinucleotide (FAD), has been described [8]. GSR is a flavoenzyme involved in the cellular antioxidant mechanism that reduces oxidized glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH) that is an important cellular antioxidant. Low LMW-PTP activity increases the levels of cofactor flavin adenine dinucleotide (FAD) in the cytosol leading to increased activity of GSR; while higher LMW-PTP activity yields low GSR activity. Accordingly, low activity of GSR has also been found to be significantly associated with hypertension [24], and it has also been considered to be a risk factor for CV by influencing cholesterol levels [25]. Furthermore, Bottini et al. [26] reported that the ACP1*A allele, the opposite allelic combination of ACP*C, is a protective factor for hypertriglyceridemia and hypercholesterolemia in obese women.

RA is a complex polygenic disease and, besides the association of HLA-DRB1*04 shared epitope alleles with CV disease [4, 27], recent reports have also emphasized the potential implication of other gene polymorphisms in the increased risk of CV events observed in patients with RA. In this regard, interactions between NOS gene polymorphisms and HLA-DRB1*04 shared epitope alleles seem to confer an increased risk of developing CV events in these patients [28]. Also, the A1298C polymorphism in the MTHFR gene was found to predispose to CV risk in RA [29]. More recently, an association of the TNFA rs1800629 gene polymorphism with predisposition to CV complications in RA patients carrying the rheumatoid shared epitope was also described [30].

Conclusions

Our data show for first time the association of the ACP1*C allele with increased susceptibility to CV events in patients with RA. This effect may be based on the major production of the S isoform of LMW-PTP by this allele, which may influence the regulation of energy metabolism and the response to oxidative stress.

Abbreviations

ACP1:

acid phosphatase locus 1

ACPA:

anti-cyclic citrullinated peptide antibodies

ACR:

American College of Rheumatology

CAD:

coronary atherosclerotic artery disease

CI:

confidence intervals

CV:

cardiovascular

FAD:

flavin adenosine dinucleotide

FGFR:

fibroblast growth factor receptor

GSH:

glutathione

GSR:

glutathione reducatase

GSSR:

glutathione disulfide

HWE:

Hardy-Weinberg equilibrium

IR:

insulin receptor

LMW-PTP:

low molecular weight phosphotyrosine phosphatase

MAF:

minor allele frequency

OR:

Odds ratio

PCR:

polymerase chain reaction

PDGFR:

platelet-derived growth factor receptor

RA:

rheumatoid arthritis

SNP:

single-nucleotide polymorphism.

References

  1. Gregersen PK: Susceptibility genes for rheumatoid arthritis-a rapidly expanding harvest. Bull NYU Hosp Jt Dis. 2010, 68: 179-182.

    PubMed  Google Scholar 

  2. Gonzalez-Gay MA, Gonzalez-Juanatey C, Martin J: Rheumatoid arthritis: a disease associated with accelerated atherogenesis. Semin Arthritis Rheum. 2005, 35: 8-17. 10.1016/j.semarthrit.2005.03.004.

    Article  PubMed  Google Scholar 

  3. Full LE, Ruisanchez C, Monaco C: The inextricable link between atherosclerosis and prototypical inflammatory diseases rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 2009, 11: 217-10.1186/ar2631.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Gonzalez-Gay MA, Gonzalez-Juanatey C, Lopez-Diaz MJ, Pineiro A, Garcia-Porrua C, Miranda-Filloy JA, Ollier WE, Martin J, Llorca J: HLA-DRB1 and persistent chronic inflammation contribute to cardiovascular events and cardiovascular mortality in patients with rheumatoid arthritis. Arthritis Rheum. 2007, 57: 125-132. 10.1002/art.22482.

    Article  CAS  PubMed  Google Scholar 

  5. Bottini N, Bottini E, Gloria-Bottini F, Mustelin T: Low-molecular-weight protein tyrosine phosphatase and human disease: in search of biochemical mechanisms. Arch Immunol Ther Exp (Warsz). 2002, 50: 95-104.

    CAS  Google Scholar 

  6. Lazaruk KD, Dissing J, Sensabaugh GF: Exon structure at the human ACP1 locus supports alternative splicing model for f and s isozyme generation. Biochem Biophys Res Commun. 1993, 196: 440-446. 10.1006/bbrc.1993.2269.

    Article  CAS  PubMed  Google Scholar 

  7. Dissing J: Immunochemical characterization of human red cell acid phosphatase isozymes. Biochem Genet. 1987, 25: 901-918. 10.1007/BF00502609.

    Article  CAS  PubMed  Google Scholar 

  8. Apelt N, da Silva AP, Ferreira J, Alho I, Monteiro C, Marinho C, Teixeira P, Sardinha L, Laires MJ, Mascarenhas MR, Bicho MP: ACP1 genotype, glutathione reductase activity, and riboflavin uptake affect cardiovascular risk in the obese. Metabolism. 2009, 58: 1415-1423. 10.1016/j.metabol.2009.05.007.

    Article  CAS  PubMed  Google Scholar 

  9. Souza AC, Azoubel S, Queiroz KC, Peppelenbosch MP, Ferreira CV: From immune response to cancer: a spot on the low molecular weight protein tyrosine phosphatase. Cell Mol Life Sci. 2009, 66: 1140-1153. 10.1007/s00018-008-8501-8.

    Article  CAS  PubMed  Google Scholar 

  10. Chiarugi P, Cirri P, Raugei G, Manao G, Taddei L, Ramponi G: Low M(r) phosphotyrosine protein phosphatase interacts with the PDGF receptor directly via its catalytic site. Biochem Biophys Res Commun. 1996, 219: 21-25. 10.1006/bbrc.1996.0174.

    Article  CAS  PubMed  Google Scholar 

  11. Rigacci S, Rovida E, Bagnoli S, Dello Sbarba P, Berti A: Low M(r) phosphotyrosine protein phosphatase activity on fibroblast growth factor receptor is not associated with enzyme translocation. FEBS Lett. 1999, 459: 191-194. 10.1016/S0014-5793(99)01234-X.

    Article  CAS  PubMed  Google Scholar 

  12. Taddei ML, Chiarugi P, Cirri P, Talini D, Camici G, Manao G, Raugei G, Ramponi G: LMW-PTP exerts a differential regulation on PDGF- and insulin-mediated signaling. Biochem Biophys Res Commun. 2000, 270: 564-569. 10.1006/bbrc.2000.2456.

    Article  CAS  PubMed  Google Scholar 

  13. Pandey SK, Yu XX, Watts LM, Michael MD, Sloop KW, Rivard AR, Leedom TA, Manchem VP, Samadzadeh L, McKay RA, Monia BP, Bhanot S: Reduction of low molecular weight protein-tyrosine phosphatase expression improves hyperglycemia and insulin sensitivity in obese mice. J Biol Chem. 2007, 282: 14291-14299. 10.1074/jbc.M609626200.

    Article  CAS  PubMed  Google Scholar 

  14. Kikawa KD, Vidale DR, Van Etten RL, Kinch MS: Regulation of the EphA2 kinase by the low molecular weight tyrosine phosphatase induces transformation. J Biol Chem. 2002, 277: 39274-39279. 10.1074/jbc.M207127200.

    Article  CAS  PubMed  Google Scholar 

  15. Bottini N, Stefanini L, Williams S, Alonso A, Jascur T, Abraham RT, Couture C, Mustelin T: Activation of ZAP-70 through specific dephosphorylation at the inhibitory Tyr-292 by the low molecular weight phosphotyrosine phosphatase (LMPTP). J Biol Chem. 2002, 277: 24220-24224. 10.1074/jbc.M202885200.

    Article  CAS  PubMed  Google Scholar 

  16. Bottini E, Gloria-Bottini F, Borgiani P: ACP1 and human adaptability. 1. Association with common diseases: a case-control study. Hum Genet. 1995, 96: 629-637. 10.1007/BF00210290.

    Article  CAS  PubMed  Google Scholar 

  17. Banci M, Saccucci P, D'Annibale F, Dofcaci A, Trionfera G, Magrini A, Bottini N, Bottini E, Gloria-Bottini F: ACP1 genetic polymorphism and coronary artery disease: an association study. Cardiology. 2009, 113: 236-242. 10.1159/000203405.

    Article  CAS  PubMed  Google Scholar 

  18. Arnett FC, Edworthy SM, Bloch DA, McShane DJ, Fries JF, Cooper NS, Healey LA, Kaplan SR, Liang MH, Luthra HS, et al: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988, 31: 315-324. 10.1002/art.1780310302.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez-Juanatey C, Llorca J, Martin J, Gonzalez-Gay MA: Carotid intima-media thickness predicts the development of cardiovascular events in patients with rheumatoid arthritis. Semin Arthritis Rheum. 2009, 38: 366-371. 10.1016/j.semarthrit.2008.01.012.

    Article  PubMed  Google Scholar 

  20. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007, 81: 559-575. 10.1086/519795.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005, 21: 263-265. 10.1093/bioinformatics/bth457.

    Article  CAS  PubMed  Google Scholar 

  22. Skol AD, Scott LJ, Abecasis GR, Boehnke M: Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet. 2006, 38: 209-213. 10.1038/ng1706.

    Article  CAS  PubMed  Google Scholar 

  23. Spencer N, Hopkinson DA, Harris H: Quantitative differences and gene dosage in the human red cell acid phosphatase polymorphism. Nature. 1964, 201: 299-300. 10.1038/201299a0.

    Article  CAS  PubMed  Google Scholar 

  24. Chaves FJ, Mansego ML, Blesa S, Gonzalez-Albert V, Jimenez J, Tormos MC, Espinosa O, Giner V, Iradi A, Saez G, Redon J: Inadequate cytoplasmic antioxidant enzymes response contributes to the oxidative stress in human hypertension. Am J Hypertens. 2007, 20: 62-69. 10.1016/j.amjhyper.2006.06.006.

    Article  CAS  PubMed  Google Scholar 

  25. Serdar Z, Aslan K, Dirican M, Sarandol E, Yesilbursa D, Serdar A: Lipid and protein oxidation and antioxidant status in patients with angiographically proven coronary artery disease. Clin Biochem. 2006, 39: 794-803. 10.1016/j.clinbiochem.2006.02.004.

    Article  CAS  PubMed  Google Scholar 

  26. Bottini N, MacMurray J, Peters W, Rostamkhani M, Comings DE: Association of the acid phosphatase (ACP1) gene with triglyceride levels in obese women. Mol Genet Metab. 2002, 77: 226-229. 10.1016/S1096-7192(02)00120-8.

    Article  CAS  PubMed  Google Scholar 

  27. Farragher TM, Goodson NJ, Naseem H, Silman AJ, Thomson W, Symmons D, Barton A: Association of the HLA-DRB1 gene with premature death, particularly from cardiovascular disease, in patients with rheumatoid arthritis and inflammatory polyarthritis. Arthritis Rheum. 2008, 58: 359-69. 10.1002/art.23149.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gonzalez-Gay MA, Llorca J, Palomino-Morales R, Gomez-Acebo I, Gonzalez-Juanatey C, Martin J: Influence of nitric oxide synthase gene polymorphisms on the risk of cardiovascular events in rheumatoid arthritis. Clin Exp Rheumatol. 2009, 27: 116-119.

    CAS  PubMed  Google Scholar 

  29. Palomino-Morales R, Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Rodriguez L, Miranda-Filloy JA, Fernandez-Gutierrez B, Llorca J, Martin J, Gonzalez-Gay MA: A1298C polymorphism in the MTHFR gene predisposes to cardiovascular risk in rheumatoid arthritis. Arthritis Res Ther. 2010, 12: R71-

    Article  PubMed Central  PubMed  Google Scholar 

  30. Rodríguez-Rodríguez L, González-Juanatey C, Palomino-Morales R, Vázquez-Rodríguez TR, Miranda-Filloy JA, Fernández-Gutiérrez B, Llorca J, Martin J, González-Gay MA: TNFA -308 (rs1800629) polymorphism is associated with a higher risk of cardiovascular disease in patients with rheumatoid arthritis. Atherosclerosis. 2011, 216: 125-30. 10.1016/j.atherosclerosis.2010.10.052.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sofía Vargas, Sonia Rodríguez and Rodrigo Ochoa for their excellent technical assistance, and Mercedes García Bermudez for her comments in the analysis of CV events. We thank Banco Nacional de ADN (University of Salamanca, Spain), which supplied part of the control DNA samples, and we thank all patients and donors for their collaboration.

This work was supported by two grants from Fondo de Investigaciones Sanitarias PI06-0024 and PS09/00748 (Spain) and by the RETICS Program, RD08/0075 (RIER) from the Instituto de Salud Carlos III (ISCIII), within the VI PN de I+D+i 2008-2011 (FEDER). MT was supported by the Spanish Ministry of Science through the program Juan de la Cierva (JCI-2010-08227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Teruel.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

MT, JEM, NB and JM made substantial contributions to the conception and design of the study, and the interpretation of data. MT carried out genotyping, analysis of data and drafted the manuscript. JEM carried out genotyping. CGJ, RLM, JAMF, RB, AB, DPS, LRR, BFG, AMO, IGA and CGV were involved in the acquisition of cardiovascular data in the different Spanish hospitals included in this study. JL carried out the analysis and interpretation of the data. JM and MAGG were involved in revising the manuscript and gave final approval of the version to be published.

Miguel A González-Gay and Javier Martin contributed equally to this work.

Electronic supplementary material

13075_2011_3153_MOESM1_ESM.DOC

Additional file 1: Genotype and allele distribution of ACP1 polymorphisms in Spanish RA patients and healthy subjects. Supplementary table S1 shows the genotype and allele frequencies of ACP1 polymorphisms in Spanish RA patients and healthy controls. That table also shows the lack of association among cases and controls. (DOC 51 KB)

13075_2011_3153_MOESM2_ESM.DOC

Additional file 2: Distribution of ACP1 alleles in Spanish RA patients and healthy controls. Supplementary table S2 shows the frequencies of ACP1 alleles in Spanish RA patients and individuals controls. No association was observed. (DOC 44 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teruel, M., Martin, JE., González-Juanatey, C. et al. Association of acid phosphatase locus 1*Callele with the risk of cardiovascular events in rheumatoid arthritis patients. Arthritis Res Ther 13, R116 (2011). https://doi.org/10.1186/ar3401

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/ar3401

Keywords