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Abstract

Fibroblast-like cells in the synovial lining (type B lining cells), stroma and pannus tissue are
targeted by many signals, such as the following: ligands binding to cell surface receptors;
lipid soluble, small molecular weight mediators (eg nitric oxide [NO], prostaglandins, carbon
monoxide); extracellular matrix (ECM)–cell interactions; and direct cell–cell contacts,
including gap junctional intercellular communication. Joints are subjected to cyclic
mechanical loading and shear forces. Adherence and mechanical forces affect fibroblasts via
the ECM (including the hyaluronan fluid phase matrix) and the pericellular matrix (eg
extracellular matrix metalloproteinase inducer [EMMPRIN]) matrices, thus modulating
fibroblast migration, adherence, proliferation, programmed cell death (including anoikis),
synthesis or degradation of ECM, and production of various cytokines and other mediators
[1]. Aggressive, transformed or transfected mesenchymal cells containing proto-oncogenes
can act in the absence of lymphocytes, but whether these cells represent regressed
fibroblasts, chondrocytes or bone marrow stem cells is unclear.
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COX = cyclooxygenase; ECM = extracellular matrix; EMMPRIN = extracellular matrix metalloproteinase inducer; HO = hemeoxygenase; IFN-γ =
interferon gamma; IL = interleukin; iNOS = inducible nitric oxide synthase; MMP = matrix metalloproteinase; NADPH = nicotinamide adenine dinu-
cleotide phosphate; NO = nitric oxide; NOS = nitric oxide synthase; TGF-β = transforming growth factor beta; TIMP = tissue inhibitor of metallopro-
teinase; TNF-α = tumor necrosis factor alpha.
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Soluble mediators binding to cell surface
receptors
Cytokine network and signal transduction
Cytokines bind to their receptors, activating signal trans-
duction pathways such as adenylate cyclase/cAMP, phos-
pholipase C/inositol trisphosphate, and Ca2+ and tyrosine
kinases. Cytokines can stimulate random migration
(chemokinesis), guided fibroblast migration along a con-
centration gradient (chemokinesis; Table 1) [2–15] and/or

fibroblast proliferation (Table 2) [16–25]. Regulation of
fibroblast migration and proliferation is not straightforward;
the effect may be indirect or dependent on concentration
and the cytokine network. Some cytokines act as compe-
tence rather than progression factors, some lack secretory
signals, and some must be processed and released from
the pericellular matrix or basement membranes (eg trans-
forming growth factor beta [TGF-β] binding to chondroitin
or the keratan sulfate of biglycan, decorin and fibromod-
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ulin, or basic fibroblast growth factor and platelet derived
growth factor binding to the heparin sulfate of glypican,
perlecan and syndecan).

Matrix deposition
The TGF-β family forms an important group of growth
factors, consisting of three isoforms in man, and is impor-
tant for matrix deposition because it modulates fibroblast
recruitment and proliferation. This growth factor also stim-
ulates production of collagens, proteoglycans, elastin,
fibronectin, tenascin and thrombospondin, diminishes pro-
duction of extracellularly active neutral endoproteinases
belonging to the matrix metalloproteinase (MMP) and
serine proteinase families, and stimulates production of
endogenous MMP inhibitors (tissue inhibitor of metallo-
proteinase [TIMP]) and serpins (plasminogen activator
inhibitor-1). Other profibrotic, collagen synthesis stimulat-

ing cytokines include endothelin, interleukin (IL)-1 and
mast cell tryptase. Interferons and IL-4 decrease collagen
synthesis. In addition to IL-4, ‘biologicals’ such as human-
ized anti-TGF-β antibodies and recombinant human inter-
ferons are, accordingly, being tested as a treatment for
fibrotic diseases.

Matrix degradation
Fibroblasts produce proteolytic enzymes (in particular,
MMPs). MMPs now comprise a group of 18 different
enzymes in man, including the classic fibroblast collage-
nase MMP-1 (collagenase-1), the mesenchymal form of
MMP-8 (collagenase-2) and MMP-13 (collagenase-3).
MMP-8 was known as neutrophil collagenase until it was
found to be produced by tumor necrosis factor α (TNF-α)
stimulated fibroblasts, for example, although in a less
glycosylated form (50 kDa instead of 75 kDa) [26]. Co-

Table 1

Soluble mediators regulating fibroblast migration

Effect Factor Cellular or tissue source Reference

+ TNF-α Macrophage, activated monocyte, B cell, T cell, fibroblast [2]

+ IL-4 T cell, mast cell, bone marrow stromal cell [3]

+ PDGF-AA, -BB, -AB Platelet, macrophage, endothelial cell, skeletal muscle cell, fibroblast, vascular smooth [3]
muscle cell, glial cell, type I astrocyte, myoblast, kidney, epithelial cell, mesangial cell

+ TGF-β Platelet, macrophage, T cell, skeletal muscle cell, fibroblast [4]

+ bFGF Brain, retina, bone matrix, endothelial cell, macrophage [3]

+ EGF Granulocyte, ectodermal cell, kidney, duodenal gland, platelet [5]

+ Neurokinin A Nerve cell [3]

+ CGRP Nerve cell [6]

+ Endothelin-1 and -3 Endothelial cell, macrophage, fibroblast, many other cells [3]

+ β-thromboglobulin Platelet, megakaryocyte [1]

+ Platelet factor 4 Platelet, megakaryocyte [1]

+ LTB4 Myeloid cells, from transported LTA4 in many nonmyeloid and nonhematopoietic cells [3]

+ IGF-I (SmC) Fibroblast, skeletal cell, liver, endothelial cell, T cell [7]

+ IGF-II (MSA) Liver [3]

+ Matrix proteins
Collagen ECM [8]
Fibronectin ECM [9]
Elastin ECM [10]

+ Serum derived Complement (C5) [11,12]
chemotactic factor 
for fibroblasts

– Interferon T lymphocyte, NK cell (interferon-γ), all cells (interferon-α) [13]

– Retinoids [14]

– Neutrophil factor Neutrophil [15]

+, Stimulation; –, inhibition. bFGF, basic fibroblast growth factor; CGRP, calcitonin gene-related peptide; ECM, extracellular matrix; EGF,
epidermal growth factor; IGF, insulin-like growth factor; IL, interleukin; LTA, leukotriene A; LTB, leukotriene B; NK, natural killer; PDGF, platelet
derived growth factor; TGF, transforming growth factor; TNF, tumor necrosis factor.
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localization of TNF and its receptors in synovial tissue and
at the cartilage–pannus junction may play a role in the
pathogenesis of rheumatoid arthritis [27]. Fibroblasts
produce TIMPs (1–4), which were previously called
human fibroblast collagenase inhibitors. TIMP-1 is induced
by inflammatory cytokines IL-1 and TNF-α, but also by
TGF-β, progesterone and estrogen. IL-6, interestingly,
does not seem to stimulate the production of collagenase,
but is a potent inducer of TIMP-1.

Lipid soluble mediators penetrating the cell
membrane
NO is a freely diffusible radical gas, which is a product of
the catalytic conversion of L-arginine to L-citrulline by nitric
oxide synthases (NOS) (EC 1.14.13.39) via the chemical
reaction between the guanidino-nitrogen of L-arginine and
dioxygen. The activity of the inducible NO synthase
(iNOS) requires pro-inflammatory cytokines such as IL-1
and TNF-α for upregulation of mRNA and protein. The
activity of iNOS, in turn, is under strict control of nicoti-
namide adenine dinucleotide phosphate (NADPH), flavine
adenidine dinucleotide, flavin mononucleotide, heme and
5,6,7,8-tetrahydrobiopterin for activity [28]. The iNOS is
highly expressed in the rheumatoid synovium, particularly

in synovial fibroblasts [29,30]. The mRNA initiation site of
the iNOS gene is preceded by a promoter sequence box,
along with two distinct regions upstream containing con-
sensus sequences for the binding of various transcription
factors. Region 1 contains lipopolysaccharide responsive
elements such as the binding sites for nuclear factor-1,
IL-6 and NF-κB, indicating a locus for LPS induced syn-
thesis of iNOS. Region 2 contains motifs for interferon
gamma (IFN-γ)-regulated transcription factors but does
not directly regulate induction of iNOS; instead, it sub-
serves region 1. LPS therefore stimulates iNOS synthesis
directly, and IFN-γ acts in synergy with LPS to augment
iNOS synthesis and NO production. This synergy also
extends to the cytokines IL-1 and TNF-α, which, in combi-
nation with IFN-γ, augment the synthesis of iNOS and NO
[31]. Apoptosis induced by NO is associated with nuclear
p53 protein expression in cultured human fibroblasts [32].
NO can also induce the synthesis and activity of cyclo-
oxygenase (COX)-2 and hemeoxygenase (HO)-1.

Prostaglandin H2 (PGH2) synthase (EC 1.14.99.1) has
two activities, COX and peroxidase, and occurs in two iso-
forms, known as COX-1 and COX-2 [33]. The inducible
COX-2 mRNA and protein are stimulated largely by the

Table 2

Soluble mediators regulating fibroblast proliferation

Effect Factors Examples of cellular and tissue source Reference

+ AMDGF Alveolar macrophage [16]

+ aFGF, bFGF Brain, retina, bone matrix, endothelial cells, macrophage [17]

+ CTAP-III Platelet

+ CTAP-V Platelet

+ CTAP-PMN PMN

+ EGF and TGF-α Granulocyte, ectodermal cells, kidney, duodenal gland, platelet [18]

– Interferon-γ T lymphocyte, NK cell [19]

+ IGF-I (SmC) Fibroblast, skeletal cell, liver, endothelial cell, T cell [20]

+ IGF-II (MSA) Liver [21]

+ IL-1α and IL-β Monocyte/macrophage, Langerhans cell, other dendritic cells, T lymphocyte, B lymphocyte,
NK cell, large granular lymphocyte, vascular endothelial cell, smooth muscle cell, fibroblast,
thymic epithelial cell, astrocyte, microglia, keratinocyte, chondrocyte

+ IL-1 inhibitor Monocyte [22]

+ PDGF-AA, PDGF-BB, Platelet, macrophage, endothelial cell, fibroblasts, vascular smooth cells, glial cell, type I astrocyte,
PDGF-AB kidney, epithelial cell, mesangial cells

+ TCDGF T cell [23]

+ TGF-β Platelets, macrophage, T cell, skeletal muscle cell, fibroblast [24]

+ TNF-β Lymphocyte [25]

+, Stimulation; –, inhibition. aFGF, acidic fibroblast growth factor; AMDGF, alveolar macrophage-derived growth factor; bFGF, basic fibroblast
growth factor; CTAP, connective tissue-activating peptide; EGF, epidermal growth factor; IGF, insulin-like growth factor; IL, interleukin; NK, natural
killer; PDGF, platelet derived growth factor; PMN, polymorphonuclear cell; TCDGF, T cell derived growth factor; TGF, transforming growth factor;
TNF, tumor necrosis factor.



same factors as iNOS, such as IL-1, TNF-α and IFN-γ [34].
The promoter region of COX-2 contains binding sites for
NF-κB, NF-IL6 and two motifs for IFN-γ activated
sequences [34]. PGE2 and PGE1 inhibit cytokine-induced
metalloproteinase expression in human synovial fibroblasts
[35]. COX inhibition conversely enhances the production of
pro-MMP-1 in human rheumatoid synovial fibroblasts [36].
PGE2 also enhances the synthesis of IL-8 and IL-6, but
inhibits granulocyte–macrophage colony-stimulating factor
production by IL-1 stimulated synovial fibroblasts [37].

Carbon monoxide is produced by two homologous micro-
somal HO (EC 1.14.93) isoenzymes: inducible HO-1
(heat shock protein-32) and constitutively expressed
HO-2. The latter is widely expressed in fibroblasts, and
HO-1 can be induced in these and other cell types by
hypoxia and free radicals [38]. HO-1 prevents cell death
by regulating intracellular iron levels. HO functions by
cleaving heme to biliverdin and carbon monoxide, in the
presence of NADPH and NADPH-cytochrome P450, with
equimolar iron released from the heme as a co-product
[39]. There is a regulatory loop between iron metabolism
and the NO pathway: intracellular ferric iron (Fe3+) levels
can significantly decrease iNOS mRNA transcription, and
iron chelating agents like desferrioxamine can increase
iNOS transcription and NO production [40]. NO itself,
conversely, can directly control intracellular iron metabo-
lism by activating the iron-regulatory protein involved in fer-
ritin translocation. Therefore, the interplay between iNOS
and HO-1 activities may have far-reaching consequences
in situations characterized by oxidative stress.

Extracellular matrix, and integrin and
nonintegrin receptors
The ECM–cell interactions are coupled to cytoskeletal ele-
ments, such as α-actinin, talin and tensin, and affect
various tyrosine kinases, for example focal adhesion
kinases, Src (the protein product of the src gene of the
Rous sarcoma virus) family kinases and Crk (the protein
product of the crk gene from chicken retroviruses CT10
and ASV-1). Focal adhesion kinases provide a potent
anoikis resistance factor [41], anoikis referring to apopto-
sis caused by loss of ECM–cell adhesion. ECM–fibroblast
interactions are important because the synovial lining cells
and the pannus are subjected to shear stress. Synovial
cells are also subjected to cyclic mechanical loading
during the movement of the joint.

The synovial ECM provides hydraulic resistance, prevent-
ing rapid seepage of synovial fluid out of the joint cavity,
and modifies the traffic of macromolecules. It may trap
antigens, which contribute to inflammation. The three main
classes of synovial structural polymers are collagen (scaf-
folding), extrafibrillar glycosaminoglycans/proteoglycans
and structural glycoproteins. Under normal circumstances,
collagen is hidden in a matrix created by the latter two

classes. Fibronectin guides fibroblast migration as an
immobilized substrate and attractant in the leading edge
of the pannus (haptotaxis) [42]. The extra domain-A
fibronectin isoform is associated with the activated, trans-
formed state of type B lining cells [43]. The interaction
between connecting sequence-1 fibronectin (or vascular
cell adhesion molecule-1) and α4β1 (very late activation
antigen-4) may play a role in the proliferation of synovial
lining and lymphocyte migration [44]. EMMPRIN
(Mr ≈ 58 000) is an integral plasma membrane glycoprotein
of the pericellular matrix belonging to the immunoglobulin
superfamily, previously referred to as tumor-cell derived
collagenase stimulatory factor. It is identical to the M6
leukocyte activation antigen, and highly homologous to rat
OX-47 or CE9, mouse basigin or gp42, and chicken HT-7
or neurothelin molecules. Reciprocal immunoprecipitation,
cell surface crosslinking and immunofluorescence co-
localization experiments demonstrated that EMMPRIN can
form a complex with integrins α3β1 and α6β1, which may
play a role in the synovial membrane [45]. Many other
ECM–fibroblast interactions are of potential relevance in
the synovial membrane (Table 3) [46–61].

The most important receptor family binding and respond-
ing to ECM is formed by integrins, which are het-
erodimeric molecules comprising, to date, 16 alpha and 8
beta subunits. The β1 integrins bind collagens, laminins,
entactin/nidogen, fibronectin, tenascin and vascular cell
adhesion molecule-1, whereas β2 integrins are mainly
expressed in blood leukocytes and perform a role in both
immune inflammation, and in heterotypic interactions of
fibroblasts with other cells. The αV integrins mediate adhe-
sion to provisional matrix molecules, such as fibrinogen,
fibronectin, vitronectin, thrombospondin and osteopontin.
In addition to these three major subclasses, α6β4 integrin,
as a component of hemidesmosomes, forms a receptor for
laminin-5 and laminin-10. The αIIbβ3 and α4β7 integrins, as
well as αEβ7 integrin, perform roles in platelet function and
vascular adhesion, respectively [41]. Integrin subunits α3,
α4, α5, α6, αV and β1 are overexpressed in synovitis [48].
Nonintegrin receptors, such as CD44, binding hyaluronan,
and also other ligands (such as collagens I and VI), are of
importance in this respect. CD44–hyaluronan interaction
modulates the migration of inflammatory leukocytes into
the extravascular compartment of the synovial membrane.

Cell–cell interactions
Direct cell–cell interactions are typical for epithelial cells,
but direct cell–cell contacts have been considered rare in
connective tissue. Connective tissue cells such as fibro-
blasts were thought to be regulated not only by soluble
factors, but also by effects resulting from ECM–fibroblast
interactions. However, time-lapse cinephotomicrography
and light and electron microscopy have been used to
show close physical apposition and adhesion between
fibroblasts and other cells. This adhesion is not only a
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passive event, but can affect one or both of the interacting
cells. Such events have been proven to be dependent on
cell–cell contact by the lack of effect of cell culture super-
natant (ie in the physical absence of one of the interacting
cells). Similar conclusions have been drawn based on the
inhibition of the observed effect upon use of physical barri-
ers between the interacting cells (eg their separation by
membranes). This abolishes cellular events dependent on
cell–cell interaction. Many of these heterotypic interac-
tions are dependent on the β2 (CD18) integrins, shown by
the use of blocking antibodies. Adherens junctions have

been reported between fibroblasts. Another relatively new
and unexpected finding is that gap junctions are present in
fibroblasts. Built up from transmembrane proteins, connex-
ons, gap junctions allow the spread of small molecular
second messagers like Ca2+ and cAMP from one cell to
another. Transfection of fibroblasts with the ‘receptor for
hyaluronic acid-mediated motility’ regulates gap junctional
intercellular communication and connexin-43 expression,
affecting focal adhesion and cytoskeleton organization,
with various secondary effects on motility, growth and
transformation (Table 4) [62–73].
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Table 3

Interactions between extracellular matrix (ECM) proteins and fibroblast-like synoviocytes (FLS)

ECM Effect Reference

Laminin (Ln) Ln is synthesized in rat and human FLS, and is involved in FLS adhesion [46]

FLS adhesion to Ln shows enhanced proliferative ability in response to PDGF [47]

RA-FLS bind to Ln more strongly than normal FLS, with monoclonal antibodies to integrin α3, α6, [48]
β1 subunits partly blocking this adhesion

Fibronectin (Fn) FLS plated on the substrate containing Fn show extensive focus formation, and enhanced adhesion [49]
and proliferation

CS-1 Fn correlates with FLS proliferation [50]

ED-A Fn is associated with activation of FLS [44]

FLS adhering to Fn show higher proliferative ability in response to PDGF [43]

Adhesion to Fn through integrin α5β1 downregulates the collagenase expression in human FLS [47]

RA-FLS bind more strongly to Fn than normal FLS; anti-α5, or β1 monoclonal antibodies block the [48]
adhesion

Rabbit FLS cultured on the substrate containing Fn fragment show upregulated expression of [51]
procollagenase and prostromelysin

Vitronectin (Vn) FLS adhering to Vn shows higher proliferative ability in response to PDGF. Adhesion to Vn through [47]
integrin αv downregulates collagenase expression in human FLS

Tenascin (Tn) FLS synthesize Tn [52]

RA-FLS bind more strongly to Tn than normal FLS; monoclonal antibodies to integrin β1 block adhesion [48]

Rabbit FLS cultured on Tn/Fn mixed substrate show increased expression of collagenase, stromelysin, [53]
the 92 kDa gelatinase, and c-fos

Hyaluronan (HA) Synthesized by FLS, degraded by macrophage-like lining cells [54]

HA inhibits proliferation of FLS [55]

Decorin Modulates MMP-1 gene expression of rabbit FLS when present on the substrate with Vn or Fn fragment [56]

Perlecan Involved in adhesion and growth of FLS [57]

Collagen type I FLS adhering to collagen type I show higher proliferative ability in response to PDGF. Adhesion to [47]
collagen type I through integrin β1 downregulates the collagenase expression in human FLS

Collagen type IV Synthesized by FLS [58]

RA-FLS bind more strongly to collagen type IV than normal FLS [48]

monoclonal antibodies to integrin β1 block adhesion [59]

Degraded by MMP-2, MT-MMP [60]

Degraded by matrilysin [61]

CS-1, connecting sequence 1; ED-A, extra domain-A; MMP, matrix metalloproteinase; MT, membrane type; PDGF, platelet derived growth factor; 
RA, rheumatoid arthritis.



Conclusion
It has been claimed that the rheumatoid arthritis synovial
fibroblasts differ from their nonrheumatoid counterparts in
terms of growth rate, life span, glycolytic metabolism, syn-
thesis of hyaluronan and sulfated glycosaminoglycans,
acid hydrolase activities, and metabolic and structural
mitochondrial proteins [1]. The rheumatoid fibroblasts
show a sustained and distinct morphology and pattern of
gene activation [74,75], and might represent nonrheuma-
toid fibroblasts, but might also be phenotypically altered
chondrocytes or bone marrow derived stem cells. These
differences between the normal and the inflammatory syn-
ovium may be due to a selection pressure in the synovial
mileau, where water- and lipid-soluble stimuli, cyclic
loading, shear stress, ECM contacts and direct cell–cell
contacts more or less permanently modulate the pheno-
type and function of fibroblast-like cells in the synovial
lining, stroma and pannus.
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