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Abstract

In previous work we demonstrated that the matrix-forming
phenotype of cultured human cells from whole meniscus was
enhanced by hypoxia (5% oxygen). Because the meniscus
contains an inner region that is devoid of vasculature and an
outer vascular region, here we investigate, by gene expression
analysis, the separate responses of cells isolated from the inner
and outer meniscus to lowered oxygen, and compared it with the
response of articular chondrocytes. In aggregate culture of outer
meniscus cells, hypoxia (5% oxygen) increased the expression
of type II collagen and SOX9 (Sry-related HMG box-9), and
decreased the expression of type I collagen. In contrast, with
inner meniscus cells, there was no increase in SOX9, but type II
collagen and type I collagen increased. The articular
chondrocytes exhibited little response to 5% oxygen in
aggregate culture, with no significant differences in the
expression of these matrix genes and SOX9. In both aggregate

cultures of outer and inner meniscus cells, but not in
chondrocytes, there was increased expression of collagen prolyl
4-hydroxylase (P4H)α(I) in response to 5% oxygen, and this
hypoxia-induced expression of P4Hα(I) was blocked in
monolayer cultures of meniscus cells by the hypoxia-inducible
factor (HIF)-1α inhibitor (YC-1). In fresh tissue from the outer
and inner meniscus, the levels of expression of the HIF-1α gene
and downstream target genes (namely, those encoding P4Hα(I)
and HIF prolyl 4-hydroxylase) were significantly higher in the
inner meniscus than in the outer meniscus. Thus, this study
revealed that inner meniscus cells were less responsive to 5%
oxygen tension than were outer meniscus cells, and they were
both more sensitive than articular chondrocytes from a similar
joint. These results suggest that the vasculature and greater
oxygen tension in the outer meniscus may help to suppress
cartilage-like matrix formation.

Introduction
The meniscus serves as a critical fibrocartilaginous tissue in
the biomechanics of the knee joint, and it plays an important
role in load distribution and joint stability [1,2]. Its biomechan-
ical importance is further highlighted by the high incidence of
osteoarthritis after menisectomy [3-8]. The function of the
meniscus is reflected in its cellular and biochemical composi-
tion, which ensures that shear, tensile and compressive forces
are appropriately distributed in the knee joint [9]. The menis-

cus exhibits regional and zonal variations in its cellular compo-
sition [9-13], reparative capacity [14,15] and microstructure
[16,17]. The cells of the outer one-third are fibroblast-like, with
extensive cellular processes that may stain positively for CD34
and are within a dense connective tissue, which is composed
predominantly of type I collagen fibre bundles aligned in the
circumferential direction of the tissue, along with smaller
amounts of proteoglycans and minor collagens including types
III and V [16,18-21]. In contrast, cells from the middle and
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inner portions, accounting for the remaining two-thirds of the
tissue, are with few processes [17,22] and are negative for
CD34 [21]. These cells have been termed fibrochondrocytes
[17] and are surrounded by an extracellular matrix that is com-
posed of collagen types I and II [17-19], with a higher content
of aggrecan than in the outer region [22-24]. Based on mor-
phological differences, the cells of the tissue have been further
divided into three to four distinct populations [12].

The presence of type II collagen and aggrecan in the inner
meniscus shows that this region has some similarities with
articular cartilage [18-20,25]. However, the type II collagen in
the meniscus is organized in a close network with collagen I
fibres, which is in contrast to its diffuse fine fibre distribution in
articular cartilage [19]. Further regional differences within the
meniscus include the presence of vascular and neural compo-
nents in the outer meniscus, which are absent from the inner
region [15,26]. Perhaps as a consequence of the lack of blood
supply, the reparative and regeneration potential of the inner
meniscus is more limited than that of the outer region [14,27].

Cell-based tissue engineering strategies have been proposed
to aid repair and to generate a meniscus substitute for implan-
tation [13,28-32]. Meniscus cells may be appropriate for this
strategy. However, during monolayer expansion of human
meniscus cells there is increased expression of type I collagen
and decreased expression of type II collagen, similar to the de-
differentiation in culture of chondrocytes [13].

Several investigators have exploited low oxygen tension during
in vitro culture of chondrocytes as a strategy to restore differ-
entiated phenotype [33-37]. This stems from the fact that con-
ventional cell culture is performed in an atmosphere containing
20% oxygen tension, whereas cartilage in vivo, being avascu-
lar, has much lower oxygen tension (1% to 7%) [38-41]. We
recently showed that the matrix-forming phenotype of cultured
primary human meniscus cells was enhanced in lowered oxy-
gen (5%) [42,43], but the responses of cells isolated from the
outer and inner regions were not investigated separately.

Recent studies have distinguished cells and tissue from the
outer and inner regions of the meniscus by showing that carti-
laginous marker genes, namely type II collagen and aggrecan,
both exhibited significantly higher expression in cells or tissues
derived from the inner region relative to cells or tissues from
the outer meniscus [23,24].

The objective of the current investigation was to determine
whether hypoxia inducible factor (HIF)-1α and downstream
target genes that are involved in the adaptive response of cells
and tissues to low oxygen tension were expressed differently
in cells in the outer and inner regions of the human meniscus
[44-48]. We also wished to determine whether the cells iso-
lated from the outer and inner meniscus in culture differed in
their response to lowered oxygen tension.

Materials and methods
Human meniscus and cartilage tissue source and cell 
isolation
Human articular cartilage and meniscus was obtained, with
informed consent and local ethical approval (Ethics Commit-
tee of South Manchester Health Care Trust), during total knee
arthroplasty from seven patients (mean age 59 years, range 36
to 77 years) with osteoarthritis. The meniscus tissue was from
intact samples of medial and lateral meniscus.

The tissue was cut into small pieces within 6 hours of surgery,
before overnight digestion at 37°C with 0.2% (weight/vol) col-
lagenase II (Worthington Biochemical Corp., Reading, UK) in
Dulbecco's modified Eagles medium (DMEM) containing 10%
foetal calf serum (FCS). In addition, fresh tissue pieces from
the inner and outer regions of samples of intact lateral menis-
cus were digested with collagenase, as described above, or
preserved in RNAlater (Qiagen Ltd, Crawley, UK) for gene
expression analysis. Tissue from the inner and outer regions
represented pieces taken from about two-third and one-third
of the radial distance, respectively. Isolated meniscus cells
were seeded in a 75 cm2 tissue culture flask at 1 × 104 cells/
cm2 in a humidified atmosphere under 20% oxygen and 5%
carbon dioxide at 37°C in DMEM. Cells were cultured in
DMEM supplemented with 10% FCS, 100 units/ml penicillin
and 100 units/ml streptomycin, with added L-glutamine (2
mmol/l; all from Cambrex, Wokingham, UK). The media was
changed every 2 days, and on reaching confluence (within 2
weeks) the cells were passaged (passage one) into a 225 cm2

tissue culture flask. The cells were used in experiments at pas-
sage two or three of monolayer culture. Human chondrocytes
were isolated from articular cartilage (obtained from the same
individuals who donated menisci) by a sequential trypsin/col-
lagenase digestion and also used in experiments at passage
two or three of monolayer culture in DMEM with 10% FCS,
100 units/ml penicillin and 100 units/ml streptomycin (all from
Cambrex, Wokingham, UK).

Three-dimensional cell aggregate culture
Aggregates of second or third passage outer and inner menis-
cus cells or articular chondrocytes (5 × 105 cells per aggre-
gate) were formed by centrifugation at 1,200 rpm for 5 min in
a 15 ml conical culture tube. The cell aggregates were cul-
tured for 14 days in a humidified atmosphere under conditions
of normoxia (95% air and 5% carbon dioxide [20% oxygen])
or hypoxia (5% oxygen, 5% carbon dioxide and 90% nitrogen)
at 37°C in DMEM containing 10% FCS and chondrogenic
medium. The chondrogenic medium was composed of the fol-
lowing [49]: ITS+1, dexamethasone (10 nmol/l) and ascor-
bate-2-phosphate (25 μg/ml; all from Sigma, Poole, UK), and
transforming growth factor-β3 (10 ng/ml; R&D Systems,
Abingdon, UK).
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Meniscus cell incubation with hypoxia inducible factor-
1α inhibitor (YC-1)
Cells cultured from whole meniscus at passage two were
seeded onto a 12-well plate in DMEM with 10% FCS at 1 ×
104 cells per well. The cells were allowed to adhere overnight
under normoxia. HIF-1α inhibitor, namely 3-(5'-hydroxymethyl-
2'furyl)-1-benzyl indazole (YC-1; Calbiochem, Nottingham,
UK), in dimethylsulphoxide was added to DMEM with FCS at
a final concentration of 1 to 50 μmol/l and incubated with
meniscus cells for 5 days under normoxic and hypoxic condi-
tions. Control monolayer cultures were incubated with DMEM
containing FCS and vehicle alone (dimethylsulphoxide; 0.6%
vol/vol). The growth medium was changed every 2 days.

Gene expression analysis
Total RNA was prepared from meniscus tissue, monolayer
cells and cell aggregate cultures using Tri-Reagent (Sigma,
Poole, UK). To minimize changes in gene expression, cultures
caps were closed before removal from the low oxygen tension
incubator, and cell aggregates were immediately (<1 min)
transferred into Tri-Reagent. Total RNA from fresh tissue was
isolated after homogenization with a Braun mikrodismem-
branator (Biotech, Melsungen, Germany). Cell aggregate cul-
tures were ground up in Tri-Reagent using Molecular Grinding
Resin (Geno Technology Inc, St Louis, MO, USA). For gene

expression analysis, cDNA was derived from 10 to 100 ng
total RNA using global amplification [50]. Samples were
diluted 1:1000 and a 1 μl aliquot was amplified by polymerase
chain reaction in a 25 μl reaction volume in an MJ Research
Opticon 2 real-time thermocycler using a SYBR Green Core
Kit (Eurogentec, Seraing, Belgium) with gene-specific primers
designed using ABI Primer Express software (Applied Biosys-
tems, Foster City, CA, USA). Relative expression levels were
normalized to β-actin mRNA expression and calculated using
the 2-ΔCt method [51]. All primer concentrations were 300
nmol/l unless stated otherwise. All primers were from Invitro-
gen (Paisley, UK) and were designed based on human
sequences as summarized in Table 1.

Results
HIF-1α, PHD2 and P4Hα(I) expression in inner and outer 
meniscus
Expression levels of a panel of genes that are involved in cel-
lular responses to low oxygen conditions were determined.
The results showed that there was significantly higher expres-
sion of HIF-1α (1.3- to 5.0-fold; P < 0.05 to P < 0.01), albeit
with donor variability (Figure 1a); higher expression of HIF pro-
lyl-hydroxylase (PHD)2 (5-fold; P < 0.01); and higher
expression of prolyl 4-hydroxylase (P4H)α(I) (6-fold; P < 0.01)
in samples from the inner region compared with the outer

Table 1

Primers used in the present study

Primer Sequence

β-actin Forward 5'-3' AAGCCACCCCACTTCT-CTCTAA

Reverse 5'-3' AATGCTATCACCTCCCCTGTGT

COL1A2 Forward 5'-3'TTGCCCAAAGTT-GTCCTCTTCT

Reverse 5'-3' AGCTTCTGTGGAACCATGGAA

COL2A1 Forward 5'-3' CTGCAAAATAAAATCTCGGTGTTCT

Reverse 5'-3' GGGCATTTGACTCACACCAGT

HIF-1α Forward 5-3' GTAGTTGTGGAAGT-TTATGCTAATATTGTGT

Reverse 5'-3' CTTGTTTACAGTCTGCTCA-AAATATCTT

P4Hα(I) Forward 5'-3' GCAGGGTGGTAATATTGGCATT

Reverse 5'-3' AAATCAATTCCCTCATCACTGAAAG,

P4Hα(II) Forward 5'-3'TTAGCTGTCTAGCGCCTAGCAA

Reverse 5'-3' TTTGGTTCACTGAAACA-TCTCACA

P4Hα(III) Forward 5'-3' CTCAACAGTCTCAGGTTCGATCA

Reverse 5'-3' TTCTTGGTCCCTGTGGTCAAG

PHD2 Forward 5'-3'TGGCC-TATATGTGTTTAATCCTGGTT

Reverse 5'-3'TGTTTTACAGCTGGTTAATGTG-TTGA

SOX9 Forward 5'-3'CTTTGGTTTGTGTTCGTGTTTTG

Reverse 5'-3'AGAGAAAGAAAAAGGGAAAGGTAAGTTT

COL1A2, collagen type I alpha 2; COL2A1, collagen type II alpha 1; HIF, hypoxia inducible factor; P4H, prolyl 4-hydroxylase; PHD, HIF prolyl 
hydroxylase; SOX, Sry-related HMG box-9.
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region of the meniscus (Figure 1b). The inner region cells thus
exhibited evidence of gene expression induced by low oxygen
tension, which was absent from the outer region.

In order to determine whether these differences in expression
in vivo were reflected in different responses inherent in the
cells present in inner and outer meniscus, we isolated the cells

from the outer and inner regions and expanded them in mon-
olayer for two to three passages. At this stage the cells were
fibroblastic in morphology, and the expression of type I colla-
gen had increased and that of type II collagen had fallen very
low (data not shown). To determine the effects of lowered oxy-
gen on their matrix-forming ability, the cells from inner and
outer meniscus were cultured separately in three-dimensional
cell aggregates in chondrogenic medium in the presence of
5% or 20% oxygen for 14 days, and gene expression changes
in type I collagen (COL1A2 [collagen type I alpha 2]), type II
collagen (COL2A1 [collagen type II alpha 1]) and SOX9 (Sry-
related HMG box-9) were determined. Similar parallel experi-
ments were performed with articular chondrocytes, so that the
response of the three cell types to low oxygen tension culture
could be compared.

After 14 days in 5% oxygen, cells isolated from the outer
meniscus exhibited a decrease in the expression of type I col-
lagen by 18-fold (P < 0.01) as compared with 20% oxygen
(Figure 2a), whereas in cells from the inner meniscus type I
collagen increased 2-fold (P < 0.05; Figure 2b). In a parallel
experiment with articular chondrocytes, the expression of type
I collagen was unchanged in 5% oxygen (Figure 3a).

Cells from the outer meniscus expressed type II collagen at a
very low level in monolayer culture (data not shown), and when
they were transferred to aggregate culture in 5% oxygen they
exhibited a very large increase (15,300-fold; P < 0.01) in its
expression (Figure 2c). In contrast, the expression of type II
collagen was higher in inner meniscus cells in monolayer than
in outer meniscus cells (data not shown), but it increased only
7-fold (P < 0.05; Figure 2d) in aggregate cultures in 5% oxy-
gen. The type II collagen response to lowered oxygen was thus
greater in the cells cultured from the outer meniscus. The cells
from the outer meniscus also exhibited a greater increase in
SOX9 expression (7-fold; P < 0.05) in aggregate culture,
whereas there was no increase in SOX9 in cells from the inner
meniscus (Figure 2e,f). Under similar conditions in aggregate
culture of articular chondrocytes in 5% oxygen, the expression
of type II collagen and SOX9 was unchanged (Figure 3b,c).

Induction of collagen prolyl 4-hydroxylases
Cellular adaptation to low oxygen tension in many cells is reg-
ulated by HIF-1, a heterodimer of HIF-1α and HIF-1β, which
induces the transcription of a variety of hypoxia inducible
genes. We therefore investigated the expression of a known
HIF-1 target gene, namely that encoding collagen P4Hα
(types I, II and III), which is essential in collagen post-transla-
tional processing and fibril formation. The cells from the outer
meniscus again exhibited a greater response to 5% oxygen
than did the cells from the inner meniscus. The expression of
P4Hα(I) isoenzyme was significantly increased (10.6-fold; P <
0.01) in outer meniscus cells (Figure 4a) as compared with the
2.2-fold (P < 0.05) increase in inner meniscus cells (Figure
4b). The expression of the other two isoenzymes of P4Hα

Figure 1

Gene expression of HIF-1α and target genes in the outer and inner meniscusGene expression of HIF-1α and target genes in the outer and inner 
meniscus. (a) Hypoxia inducible factor (HIF)-1α gene expression in the 
outer (O; white bars) and inner (I; black bars) region of meniscus tissue 
from three donors (n = 3). (b) Prolyl 4-hydroxylase (P4H)α(I) and HIF 
prolyl-hydroxylase (PHD)2 gene expression in the outer (O; white bars) 
and inner (I; black bars) region of meniscus tissue (n = 3). Values are 
expressed as mean ± standard deviation. *P < 0.05, **P < 0.01 (by 
Student's unpaired t-test) in inner versus outer region of the meniscus 
matched against the same donor.
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were unaffected in 5% oxygen (data not shown), and the
expression of P4Hα(I) (and that of P4Hα(II) and P4Hα(III)),
under similar conditions, was unaltered in articular chondro-
cytes (Figure 5).

HIF-1α inhibitor, YC-1, blocks hypoxia induced 
expression of P4Hα(I) in human meniscus cells
It has previously been established that the expression of
P4Hα(I) is susceptible to transcriptional control by HIF-1α in
low oxygen tension [52]. We therefore investigated the link
between HIF-1α and P4Hα(I) by using the HIF-1α inhibitor
YC-1 [53,54]. In monolayer cultures of a mixed population of
human meniscus cells in the presence and absence of 5%
oxygen tension, YC-1 inhibited the induction of P4Hα(I) in a
dose-dependent manner down to the level of P4Hα(I) expres-
sion at 20% oxygen tension (Figure 6). This represents evi-
dence that the meniscus cells upregulated HIF-1α
transcriptional activity in response to 5% oxygen tension, and
that this induced an increase in P4Hα(I) expression.

Discussion
The lack of vasculature in the inner meniscus suggests that the
resident cells exist in a hypoxic environment relative to menis-
cus cells in the outer meniscus. The results of the gene expres-
sion analysis provide new data on region-specific differences
in mRNA expression in a panel of genes that are susceptible
to transcriptional regulation by HIF-1α in human meniscus.
Furthermore, it supports the use of gene expression to distin-
guish tissues and cells from different regions of the meniscus.
In addition, the study provides, for the first time, data on the
response of cells isolated from the inner and outer meniscus
regions to low oxygen tension in culture. It was interesting that
cells isolated from the outer meniscus were relatively more
responsive to 5% oxygen tension than were inner meniscus
cells, based on the large modulation in gene expression of col-
lagen types I and II, SOX9 and P4Hα(I). Furthermore, it was
particularly interesting that in contrast to the response of outer
meniscus cell aggregates, increased SOX9 expression did
not accompany the upregulated expression of type II collagen

Figure 2

Collagen types I and II, and SOX9 gene expression in human meniscus cellsCollagen types I and II, and SOX9 gene expression in human meniscus cells. (a, b) Collagen type I alpha 2 (COL1A2) gene expression levels of cell 
aggregate cultures of (panel a) outer and (panel b) inner meniscus cells (n = 6) in 5% oxygen versus 20% oxygen. (c, d) Collagen type II alpha 1 
(COL2A1) gene expression in aggregate cultures of (panel c) outer and (panel d) inner meniscus cells (n = 6) in 5% oxygen versus 20% oxygen. (e, 
f) SOX9 (Sry-related HMG box-9) gene expression levels of aggregate cultures of (panel e) outer and (panel f) inner meniscus cells (n = 6) in 5% 
oxygen versus 20% oxygen. *P < 0.05, **P < 0.01 (by Student's unpaired t-test).
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in aggregate culture of inner meniscus cells in 5% oxygen
tension.

The level of type II collagen expression in aggregate culture of
inner meniscus cells at 20% oxygen tension is consistent with
previous reports [19,23,24], which found that the inner menis-
cus exhibits a more chondrocytic phenotype than does the
outer meniscus. The differential induction of SOX9 seen here
in response to low oxygen tension suggested that SOX9 is a
necessary transcription factor of type II collagen synthesis, but
that it acts in conjunction with other factors, such as SOX5

and SOX6, which are known enhancers of SOX9 [55,56]. It
also suggests that increased SOX9 expression does not
always correlate with type II collagen expression, and this is
consistent with the findings of a previous report in articular
chondrocytes [57]. Nevertheless, there were unquestionable
differences between the responses of aggregate cultures of
articular chondrocytes and meniscus cells (regardless of the
region of cell isolation) to 5% oxygen tension. The expression
of the genes studied here was clearly not modulated in aggre-
gate cultures of articular chondrocytes by 5% oxygen tension.
This may therefore reflect a greater sensitivity of meniscus
cells to oxygen tension. Naturally, articular chondrocytes exist
in a completely avascular microenvironment, and an oxygen

Figure 3

Collagen types I and II, and SOX9 gene expression in human articular chondrocytesCollagen types I and II, and SOX9 gene expression in human articular 
chondrocytes. (a) Collagen type I alpha 2 (COL1A2) gene expression 
levels of aggregate cultures of articular chondrocytes (n = 3) in 5% 
oxygen versus 20% oxygen. (b) Collagen type II alpha 1 (COL2A1) 
gene expression in aggregate cultures of articular chondrocytes (n = 3) 
in 5% oxygen versus 20% oxygen. (c) SOX9 (Sry-related HMG box-9) 
gene expression levels of cell aggregate cultures of articular chondro-
cytes (n = 3) in 5% oxygen versus 20% oxygen. Student's unpaired t-
test. Data are expressed as mean ± standard deviation (n = 3).

Figure 4

Collagen P4Hα(I) gene expression in meniscus cell aggregatesCollagen P4Hα(I) gene expression in meniscus cell aggregates. Prolyl 
4-hydroxylase (P4H)α(I) gene expression in (a) outer meniscus cell 
aggregates (n = 4) and (b) inner meniscus cell aggregates (n = 4) in 
5% oxygen versus 20% oxygen. Data are expressed as mean ± stand-
ard deviation (n = 3). **P < 0.01 (by Student's unpaired t-test).
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tension lower than 5% may be required to elicit an hypoxic
response in these cells.

This study shows that P4Hα(I) was induced by 5% oxygen
tension in aggregate culture of meniscus cells, regardless of
the region of origin. In contrast, aggregate cultures of articular
chondrocytes exhibited no comparable induction of P4Hα.
Furthermore, the upregulation of P4Hα(I) suggested that the
response of meniscus cells to low oxygen tension is mediated
by HIF-1α [52], and this was confirmed by its inhibition by the
HIF-1α inhibitor YC-1 [53,54]. Previous studies have demon-
strated YC-1 to block the expression of HIF-1α and HIF-1α
regulated genes in the presence of soluble guanylyl cyclase
inhibitors [54]. This strongly suggests that soluble guanylyl
cyclase/cGMP signal transduction does not mediate the HIF-
1α induction of P4Hα(I).

To determine whether the in vitro response of meniscus cells
to hypoxia was relevant to their behaviour in vivo, we analyzed
intact meniscus tissue and found higher expression of HIF-1α,
P4Hα(I) and PHD2 in the inner region of the meniscus tissue
as compared with the outer region. The pattern of expression
correlated with the reported lower vascularity of the inner
meniscus and a potentially more hypoxic microenvironment.
The differential level of the constitutive expression of HIF-1α
and its target genes between the meniscus regions may thus
reflect a mechanism that regulates the matrix-forming pheno-
type of the inner meniscus. The differential expression of HIF-
1α seen here is of particular interest, because the action of
HIF-1α is modulated at the post-translational level. Further-
more, HIF-1α has been shown to bind to CREB (cAMP-
response element-binding protein)-binding protein/p300,
which SOX9 utilizes to exert its cartilage-specific type II colla-
gen gene promoter activity [58,59]. These results suggest that

the combination of the upregulation of SOX9, which activates
type II collagen transcription in chondrogenic cells, and low
oxygen induced upregulation of P4Hα(I) may enhance the
expression of type II collagen in human meniscus cells.

Conclusion
We demonstrate for the first time that cells isolated from the
outer and inner regions of the meniscus respond differentially
to lowered oxygen tension (5% oxygen). Based on the large
modulation in gene expression of the panel of genes (collagen
types I and II, SOX9 and P4Hα(1)) investigated in this study,
it appears that cells from the outer meniscus are relatively
more responsive to lowered oxygen tension than are their inner
counterparts. Furthermore, the results show gene expression
analysis to be a powerful tool in distinguishing tissue or cells
from the outer and inner meniscus, and further extend the rep-
ertoire of genes that are constitutively and differentially
expressed within specific regions of the meniscus. Most
importantly, our findings revealed that HIF1α and downstream
target genes PHD2 and P4Hα were upregulated in the inner
meniscus relative to the outer meniscus, and that the response
of meniscus cells (regardless of the region of cell isolation) to
5% oxygen tension was mediated by HIF-1α. Collectively, our
data suggest that hypoxia driven expression of HIF-1α may be
important in determining the phenotype of the inner meniscus.
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