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Abstract

Many of the chronic inflammatory and degenerative disorders that
present to clinical rheumatologists have a complex genetic
aetiology. Over the past decade a dramatic improvement in
technology and methodology has accelerated the pace of gene
discovery in complex disorders in an exponential fashion. In this
review, we focus on rheumatoid arthritis, systemic lupus erythema-
tosus and ankylosing spondylitis and describe some of the recently
described genes that underlie these conditions and the extent to
which they overlap. The next decade will witness a full account of
the main disease susceptibility genes in these diseases and
progress in establishing the molecular basis by which genetic
variation contributes to pathogenesis.

Genetics of rheumatic disease

The spectrum of rheumatic disease is wide and includes
conditions with diverse pathology, although most have in
common a heritable risk with a complex genetic basis. There
has therefore been intense effort to understand the contri-
bution of genotype to the expression of disease in terms of
both basic pathogenesis and clinical characteristics. Recent
technical advances in genotyping and statistical analysis and
international collaborations assembling large cohorts of
patients have led to a wealth of new data. In this review we
describe insights gained into the pathogenesis of auto-
immune rheumatic disease by the techniques of modern
genetics, in particular evidence from genome-wide associa-
tion (GWA) studies, which provide support for the existence
of a common genetic risk basis to several diseases. To reflect
the new data from GWA studies, our discussion will be
confined to rheumatoid arthritis (RA), systemic lupus erythe-
matosus (SLE), and ankylosing spondylitis (AS), which in
some cases share a common autoimmune pathogenesis.
Osteoarthritis and osteoporosis are also complex genetic
traits but limitations of space are such that these two
conditions will not be considered in this review.
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The concept of a systematic, GWA study became practical
with the cataloguing of libraries of common polymorphisms.
Currently, over 20 million single nucleotide polymorphisms
(SNPs) have been identified [1] and platforms are available to
type up to 1 million of these in a single reaction. Although not
all SNPs are currently genotyped, as the human genome is
arranged into haplotype blocks in linkage disequilibrium, it is
only necessary to type so-called tag SNPs, which identify
these areas of limited variability [2], to achieve good
representation of the total amount of genetic variation. Most
typed SNPs are relatively common (minor allele frequency of
>59%) and if associated with disease are likely, therefore, to
have only modest pathogenic effects (odds ratios (ORs)
usually between 1.2 and 2), as otherwise they would become
depleted in a population due to natural selection. It is
necessary, therefore, to invoke the ‘common-disease common-
variant’ (CD-CV) model [3], which assumes an accumulation
of risk caused by the carriage of multiple deleterious alleles,
to explain current experimental findings.

One of the revolutionary advantages of the GWA study is the
freedom from a required gene-centric hypothesis, which
provides an unprecedentedly effective technique for risk gene
discovery. Many disease-associated genes identified by
GWA studies were completely unsuspected to be relevant -
for example, the autophagy system in Crohn's disease [4].
However, because in essence up to 1 million independent
hypotheses are being tested in each genotyping reaction,
sample sizes powered to detect even the stronger
associations must be large, and criteria for significance
stringent. The general consensus is that significance can be
defined as a P-value smaller than 5 x 10”7 which in a cohort
such as the Wellcome Trust Case Control Consortium
(WTCCC) of 2,000 cases, for example, approximates to a
power of 43% rising to 80% to detect alleles with ORs of 1.3

AS = ankylosing spondylitis; BCR = B cell receptor; CNV = copy number variation; GWA = genome-wide association; HLA = human leukocyte
antigen; IFN = interferon; IL = interleukin; IRF = interferon regulatory factor; MHC = major histocompatibility complex; NF = nuclear factor; OR =
odds ratio; RA = rheumatoid arthritis; SLE = systemic lupus erythematosus; SNP = single nucleotide polymorphism; STAT = signal transducer and
activation of transcription factor; TLR = toll-like receptor; TNF = tumour necrosis factor; TNFAIP = TNFo-induced protein-3; TRAF = TNF receptor

associated factor; WTCCC = Wellcome Trust Case Control Consortium.
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and 1.5, respectively [5]. However, the genome is subject to
variation at more than the SNP level, and individuals also
differ in the copy number of sections of DNA of greater than
several kilobases in size, so called copy number variation
(CNV), which in fact accounts for more total nucleotide
difference between individuals than SNPs [6,7]. CNV can
affect gene expression levels [8] and has been linked to
autoimmune disease [9,10], including SLE [11]. Whilst the
latest genotyping platforms include assessment of CNV,
earlier products actively excluded SNPs within regions of the
most variation as they were more likely to fail quality control
steps. Association studies based on CNV are, therefore, in
their relative infancy. Finally, the genome is subject to
modification without a change in DNA sequence; epigenetic
mechanisms can have profound effects on gene expression.
These include DNA methylation and changes in chromatin
structure [12].

It has become apparent that SLE, RA, and AS, which have
divergent clinical features, may share a common genetic risk
framework, and we aim in our review to illustrate this.

The MHC region and antigen processing

The major histocompatibility complex (MHC) region on
chromosome 6 contributes to the risk of almost all
autoimmune diseases, and its role in immunity in mice was
recognized over 60 years ago. In humans, the MHC locus is
also known as the HLA (human leukocyte antigen) region,
reflecting the initial identification of MHC gene products on
the surface of white blood cells. The classical MHC extends
over around 4 megabases, and comprises three clusters:
class |, Il, and lll. Class | and Il regions include genes that
encode the o- and B-chains of the MHC | and Il complexes,
and flank the class Ill region, which contains an assortment of
immunologically relevant genes. Despite extensive study, the
mechanisms that link the MHC to disease are largely
unknown, although it is supposed that variation in the MHC
peptide binding cleft facilitates presentation of self-antigen to
autoreactive lymphocytes.

These difficulties in understanding the MHC are not without
reason; it contains some of the most polymorphic loci
described in the genome, and has a highly complicated
genetic architecture, with some regions exhibiting extended
linkage disequilibrium [13].

In RA, the MHC accounts for around a third of the genetic
liability [14]. Alleles at HLA-DRB1 contribute much of this
risk - for example, DRB1*0401 carries an OR of 3. GWA
studies confirm the strong association with MHC variants;
risk alleles confer an OR of around 2 to 3 in homozygotes
[15], with very high statistical significance (P<10100),
Additional loci contributing to the risk of RA identified by
high-density genotyping include HLA-DP in patients with anti-
cyclic citrullinated peptide antibodies [16]. SLE not only has
strongly associated alleles in the class Il region, HLA-DR2
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(DRB1*1501) and DR3 (DRB1*0301) [14], with ORs of 2
[17], but also risk variants in the class Il cluster, which
encodes genes such as TNF and the complement compo-
nents C2, C4A and C4B. C4 is crucial in the classical and
mannose-binding lectin pathways of complement activation,
and complete deficiency of C4 or indeed other components
of the classical pathway are rare, but strong, risk factors for
SLE [18]. The C4 gene is subject to CNV and is of two
isotypes, C4A and C4B. It is an attractive hypothesis that
CNV at C4 affects expression and contributes to SLE risk.
However, it remains to be established whether haplotypes
carrying partial C4 deficiency exert their risk via an influence
on complement or through other genetic variants that are in
linkage disequilibrium. Other loci in the class Ill region have
been implicated in SLE, including the SKIV2L gene, SNPs in
which carry an OR of 2 in a family-based analysis [19].
SKIV2L encodes superkiller viralicidic activity 2-like, the
human homologue of which is a DEAD box protein that may
have nucleic acid processing activity. The second MHC IlI
signal for SLE we will consider was identified in the Inter-
national Consortium on the Genetics of Systemic Lupus
Erythematosus (SLEGEN) GWA study [17,20]. The SNP
rs3131379 in mutS homologue 5 (MSH5) has an OR of
1.82. There is evidence that MSH5 has a role in immuno-
globulin class switch variation [21]. Again, further work is
required to definitively implicate this gene rather than variants
in linkage disequilibrium, which include HLA-DRB1*0301 and
C4A deletions.

Clearly, HLA-B27 is the overwhelming association in AS,
with an OR of 200 to 300. In the MHC, other genetic risk
variants have been identified, including HLA-B60 (OR 3.6)
[22] and various HLA-DR genes with relatively minor
contributions [23]. The pathogenic mechanism for these risk
alleles is unknown. Outside of the MHC, two significant
genes have so far been identified in AS: ARTS7 and /L-23R
[24], the latter of which will be discussed below and has
been associated with several different autoimmune diseases.
ARTS1 has two identified functions. Its first is in the process-
ing of peptide for presentation via MHC . It is localised in the
endoplasmic reticulum, and is upregulated by IFNY. It acts as
an amino-terminal aminopeptidase and in mice is essential for
the display of the normal peptide repertoire. In its absence,
many unstable and highly immunogenic MHC-peptide
complexes are presented [25]. A hypothetical connection
with HLA-B27 can thus be drawn. lts other function is to
downregulate signalling by IL-1, IL-6, and TNFa through
surface receptor cleavage [26-28]. The most associated SNP
rs30187 risk allele has an OR of 1.4, and is of unknown
functional significance.

Innate-adaptive interface

Interferon signalling: IRF5

It is clear that type 1 interferons (IFNo and IFNP) are of great
importance in the pathogenesis of SLE. Patients with active
disease have high levels of IFNo, which has multiple immuno-



modulatory actions [29], including the induction of dendritic
cell differentiation, the upregulation of innate immune
receptors such as toll-like receptors (TLRs), the polarization
of T cells towards a T1 phenotype, and the activation of B
cells. Type | interferons are produced by all cells in response
to viral infection, but particularly by plasmacytoid dendritic
cells in response to unmethylated CpG oligonucleotides
binding to TLR-9, or RNA to TLR-7. Using a candidate gene
approach targeting the IFN signalling pathway, the SNP
rs2004640 in IRF5 (interferon regulatory factor 5) was found
to be significantly associated with SLE (OR 1.6) [30], a risk
gene confirmed in several other studies [17,31-35]. The
functional consequences for IRF5 of the identified mutations
are variable, but include the creation of a 5’ donor splice site
in an alternative exon 1, allowing the expression of several
isoforms [35], a 30 base-pair in-frame insertion/deletion
variant of exon 6, a change in the 3’ untranslated region, and
a CGGGG insertion-deletion (indel) polymorphism, the latter
two affecting mRNA stability [32,36]. Interestingly, these
mutations may occur together in a haplotype, with varying
degrees of associated risk. The exact role of IRF5 in IFN
signalling has not been fully elucidated, but it is also critical
for the gene induction programme activated by TLRs [37],
providing further biological plausibility for its importance in
the pathogenesis of SLE. Haplotypes of IRF5 are also
implicated in RA, and may confer either protection (OR 0.76)
or predisposition (OR 1.8) [38]. The same CGGGG indel
allele described above also carries risk for multiple sclerosis
and inflammatory bowel disease [36].

TNF-associated signalling pathway: TNFAIP3 and
TRAF1-C5

TNF-associated signalling pathway genes play a prominent
role in the risk for both SLE and RA, and associations with
variants in TNFAIP3, and the TRAF1-C5 locus have been
identified [39,40]. TNFa-induced protein-3 (TNFAIP3; also
known as A20) is a ubiquitin editing enzyme that acts as a
negative regulator of NFkB. A20 can disassemble Lys63-
linked polyubiquitin chains from targets such as TRAF6 and
RIP1. A second region of A20 catalyses Lys48-linked
ubiquitination that targets the molecule for degradation by the
proteasome [41]. A20 modifies key mediators in the down-
stream signalling of TLRs that use MyD88, TNF receptors,
the IL-1 receptor family, and nucleotide-oligomerization
domain protein 2 (NOD2) [42]. Tnfaip3 knockout mice
develop severe multi-organ inflammatory disease, and the
phenotype is lethal [43]. The SNP rs10499194 in TNFAIP3
carries an OR of 1.33 for RA, and rs5029939 an OR of 2.29
for SLE [44], the latter also conferring an increased risk of
haematologic or renal complications [45].

On chromosome 9, the region containing TRAF1 (TNF
receptor associated factor 1) and C5 (complement compo-
nent 5) genes is associated with significant risk for RA (risk
SNP OR of approximately 1.3) in most [15,40,46-48], but not
all [5], studies. Due to linkage disequilibrium, the functional
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variant remains elusive. TRAF1 is principally expressed in
lymphocytes, and inhibits NFxB signalling by TNF. This
pathway is blocked in TRAF1 overexpression [49] whilst,
conversely, Traf1-/- mice are sensitized to TNF and have
exaggerated TNF-induced skin necrosis [50].

The complement system has long been known to be involved
in the pathogenesis of RA. In the collagen-induced arthritis
model of RA, C5 deficiency prevents disease de novo and
ameliorates existing symptoms and signs [51,52]. Interest-
ingly, GG homozygotes at the TRAF1-C5 SNP rs3761847
with RA have a significantly increased risk of death (hazard
ratio 3.96, 95% confidence interval 1.24 to 12.6, P = 0.02)
from malignancy or sepsis, potentially allowing identification
of patients for appropriate screening [53].

Immunomodulatory adhesion molecule: ITGAM
Integrin-o-M (ITGAM), variants of which are strongly asso-
ciated with SLE, forms a heterodimer with integrin-B-2 to
produce oy,By-integrin (also known as CD11b, Mac-1, or
complement receptor-3), which mediates the adhesion of
myeloid cells to the endothelium via ICAM-1 (Intercellular
adhesion molecule-1) and recognizes the complement
component iC3b. It not only has a role in cell trafficking and
phagocytosis [564], but also has other immunomodulatory
functions. Antigen-presenting cells produce tolerogenic IL-10
and transforming growth factor-f on iC3b binding to CD11b
[55], and mice deficient in this receptor upregulate expres-
sion of IL-6, favouring a pro-inflammatory T,17 response
[56]. Despite its implication in defective immune complex
clearance in SLE, experimental evidence for a role was
lacking. GWA studies, however, demonstrate a strong and
significant association [17,33,44], with an OR of 1.83
(P=7x10%9 in meta-analysis [57]. The implicated SNP
rs1143679 is non-synonymous, causing the substitution of
histidine for arginine at amino acid 77, although this change
does not affect the iC3b binding site [58]. Furthermore,
although this SNP is disease associated in European and
Hispanic patients, it is monomorphic in Japanese and Korean
populations [69]; an explanation of its effect is therefore
outstanding. It has been mentioned that CNV is important in
C4 expression; the same is true for the Fcy receptor lllb
(FCGR3B) [60], which relies on CD11b for function. Fcy
receptor lllb is principally present on neutrophils and is
important in the binding and clearance of immune complexes,
therefore marking itself as a potential SLE risk gene. There is
a significant association between low FCGR3B copy number
and SLE. Patients with two or fewer copies of FCGR3B have
an OR of 2.43 for SLE with nephritis, and 2.21 for SLE
without nephritis [61].

Lymphocyte differentiation

T cell receptor signalling: PTPN22

Outside the HLA region, the first reproducible genetic
association for RA came with the implication of PTPN22 from
a candidate gene approach [62] based on linkage analysis

Page 3 of 9

(page number not for citation purposes)



Arthritis Research & Therapy Vol 11 No 5 Clarke and Vyse

identification of a susceptibility locus at 1p13 [63]. It has
remained the strongest and most consistent association
mapped by GWA studies in RA. A role in SLE has also been
identified [17]. The OR for the risk allele is around 1.75 in RA,
and 1.5 in SLE. However, it should be noted that this allele
(encoding the R620W mutation) is monomorphic or not
disease associated in Korean or Japanese patients [64,65].
PTPN22 encodes lymphoid tyrosine phosphatase (LYP), a
protein tyrosine phosphatase that inhibits T cell receptor
signalling, decreasing IL-2 production. The disease associa-
ted SNP is responsible for a change from arginine to
tryptophan at position 620, which inhibits binding to the SH3
domain of carboxy-terminal Src kinase. This in turn appears to
enhance dephosphorylation of tyrosine residues in the Src
family kinases Lck, FynT, and ZAP-70 [66,67]. The overall
effect of the mutation is a reduction in T cell receptor
signalling. The pathogenic effect of this is unclear, but may
relate to impaired negative selection in the thymus, or lead to
a reduction in regulatory T cells [68]. Conversely, the R623Q
variant of PTPN22, which is a loss-of-function mutation
affecting the phosphatase activity of LYP, is protective
against SLE [69]. PTPN22 does not appear to be a risk gene
for AS [70].

Polarization towards T,;1 and T, 17 phenotypes: STAT4
and IL23R

STAT4 encodes signal transducer and activation of trans-
cription factor-4, responsible for signalling by IL-12, IL-23,
and type 1 IFNs [71]. STAT4 polarizes T cells towards Ty1
and T17 phenotypes, which has the potential to promote
autoimmunity [72]. In RA the OR for the risk allele of SNP
rs7574865 is 1.32 in one case-control study [73], with a less
strong disease association at rs11893432 in a meta-analysis
of GWA studies (OR 1.14) [15]. There is convincing evidence
that STAT4 is a risk locus for SLE in multiple racial groups
[33,74], and it may be theorized that interference in type | IFN
signalling may be the underlying pathogenic mechanism in
this case. Distinctive disease pathways could, therefore,
emerge from mutations in a single gene. The WTCCC AS
study identified /L23R as a risk gene in AS [24]. IL-23 is
instrumental in the development of T cells with the pro-inflam-
matory T,;17 phenotype [75], and /L23R has been linked to
psoriasis, ulcerative colitis, and Crohn's disease in GWA
studies [5,76,77]. An interesting connection between these
conditions, all of which may share common clinical features,
is thus made. In AS the risk SNP rs11209032 confers an OR
of 1.3.

B cell activation

B cells are a population long suspected to be important in
autoimmune rheumatic disease, and the benefits of their
depletion in RA and SLE has resurrected interest in their
pathogenic role. The risk genes identified so far are involved
in signalling from the B cell receptor (BCR). BLK encodes a
Src family tyrosine kinase restricted to the B cell lineage and
is poorly understood. Risk alleles in the region upstream of
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the transcription initiation site are associated with SLE (OR
1.39, P=1 %1019 and reduce levels of BLK mRNA [33].
BANK1 (B cell scaffold protein with ankyrin repeats-1)
undergoes tyrosine phosphorylation upon B cell activation by
the BCR, leading to an increase in intracellular calcium
through the inositol trisphosphate mechanism [78]. The non-
synonymous SNP rs10516487 in BANKT, which substitutes
histidine for arginine at amino acid 61, also has disease
association (OR 1.38) [79]. The functional consequence of
this may be higher affinity for the inositol trisphosphate
receptor, as the substitution is located in the binding site.

Lyn, another Src tyrosine kinase, is important in determining
signalling thresholds for myeloid and B cells. On BCR
ligation, it phosphorylates tyrosine residues of Syk, an
activating tyrosine kinase, CD19, and the immunoreceptor
tyrosine-based activation motifs (ITAMs) of the Igo/IgP
subunits of the BCR. However, it also has a critical regulatory
role, mediated by phosphorylation of the inhibitory motifs of
CD22 and FcyRIIB, which in turn activate SH2-domain
containing phosphatases, leading to dephosphorylation and
deactivation of a number of signalling intermediaries [80].
Lyn-/- mice develop severe autoimmunity associated with
glomerulonephritis [81]. An association between SNPs in
LYN and SLE, identified initially in the SLEGEN GWA study
[17], has been recently confirmed in a case-control study
[82]. The most associated SNP, rs6983130, is near the
primary transcription initiation site.

OX40L, a member of the TNF super-family encoded by
TNFSF4 (TNF superfamily 4), is associated with SLE. The
cross-talk between B lymphocytes and dendritic cells
expressing OX40L, and T cells that express its receptor,
OX40, serves to enhance the adaptive immune response
[83]. An upstream TNFSF4 haplotype, associated with SLE,
enhances gene expression in vitro [84,85], although the
mechanism responsible for the deleterious effects observed
remains to be established.

Despite the importance of B cells in the pathogenesis of RA,
none of the gene effects described above have been identi-
fied in the current generation of GWA studies. However,
variants at CD40 in European patients do carry risk [15].
CD40 expressed on B cells, via interaction with its ligand
CD154 on CD4*+ T cells, promotes immunoglobulin class
switching, and germinal centre formation. B cells, however,
also have a regulatory role, likely to be mediated by IL-10, and
disruption of this function may be another route to auto-
immune disease [86].

Post-translational modification: PADI4

Peptidyl arginine deiminase-4 (PADI4) is a member of the
enzyme family responsible for the post-translational citrulli-
nation of arginine residues in RA synovium, subsequently
recognized by anti-cyclic citrullinated protein antibodies. In
Japanese [87] and Korean patients [88], case-control asso-



ciation studies have identified functional haplotypes of PAD/4
conferring risk of RA. However, in Caucasian populations this
association is inconsistent [89-91].

Conclusion

Even with the proliferation of new genetic associations
discovered in the past few years by GWA studies, only
around 10 to 15% of the inherited risk for SLE and RA can
be currently explained. This may be accounted for, in part, by
a number of factors, some related to limitations of recent
study design. As mentioned above, even the largest current
GWA cohorts have limited power to detect associations with
ORs <1.3, potentially losing multiple risk genes. By definition,
most genotyped SNPs are common, and so rare but causal
variants have a tendency to be missed. These rarer SNPs
may be either those with a low minor allele frequency (<5%),
or occur de novo, of which 200 to 500 non-synonymous
SNPs are expected per individual [92]. In many cases, it is far
from certain if the associated SNP is functional, or in linkage
disequilibrium with the true cause. Finally, the great majority
of GWA studies have been conducted on European
populations, thereby excluding carriers of many potential risk
variants from analysis. However, it is unfortunately the case
that current genotyping platforms often have poor coverage
of tagging SNPs within populations that exhibit low levels of
genomic linkage disequilibrium, such as those of African
ancestry [93]. For example, the latest high-density genotyping
chips from Affymetrix (6.0) and lllumina (1M) may capture
fewer than half the SNPs identified through re-sequencing in
Yoruban Nigerians [94]. Given that clear differences exist in
the risk of autoimmune disease according to ethnicity, and
that not all disease risk alleles are in common, it is imperative
that full account of this variation is made. Structural genetic
differences have only recently begun to be assessed by
modern genotyping platforms, and the contribution of, for
example, CNV to inherited disease risk is largely unquantified.
Even more difficult to appreciate is the influence of heritable
epigenetic factors, and the exact relationship between
genotype and phenotype. Nevertheless, although it will
probably not be possible to explain all the observed genetic
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risk in the near future, we are rapidly moving towards the
ability to quickly and cheaply fully sequence individual genomes
[95], with all the advantages that brings [96]. In the mean-
time, understanding the functional basis of the disease risk
variants so far identified presents an outstanding challenge.
Integration of genotypic with RNA and protein expression
data in a systems biologic approach represents one poten-
tially valuable methodology [97]. Exploring and therapeutically
utilizing the genetic differences between individuals is
axiomatic to personalized medicine, and will undoubtedly lead
to better outcomes in the management of autoimmune disease.
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