
Introduction

Type I interferons comprise a large group of structurally 

similar cytokines that includes 13 subtypes of IFNα and 

unique IFNβ, IFNε, IFNκ and IFNω in humans, which 

exert similar but not identical eff ects due to their 

diff erent binding affi  nities to a common cognate receptor 

[1,2]. Genes coding for the type I interferons are clustered 

on human chromosome 9p22 and apparently originated 

from a duplication of a single gene [3]. Both the number 

of genes and their intronless structure point to the vital 

role of interferons in host defence against viruses. During 

a viral infection, type I interferons activate innate immune 

responses and exert anti-proliferative and cytotoxic 

eff ects on cells. Type I interferons also induce survival, 

maturation and activation of diff erent subsets of dendritic 

cells, thereby enhancing their antigen-presenting abilities. 

Activated dendritic cells upregulate expression of human 

leucocyte antigen and other co-stimulatory molecules, 

such as CD40, CD80, CD83 and CD86 [4-6], and initiate 

the production of cytokines such as TNFα, IL-6, IL-10, 

IL-12, IL-15, IL-18, IL-23 [7-10], B-cell activating factor 

[11,12], and the chemokines CCL3, CCL4, CCL5, and 

CXCL10 [13-17], which in turn exert co-stimulatory 

eff ects on all other immune cells.

Type I interferons link together both innate and adap-

tive immune systems. Th eir eff ects in adaptive immunity 

are mediated through activated dendritic cells and also 

by direct binding to interferon receptors on B cells, 

T  cells, neutrophils and natural killer (NK) cells. Th ey 

promote immunoglobulin class switching and antibody 

production in B cells, promote T-cell eff ector activity and 

promote synthesis of IFNγ by T cells and NK cells, and 

they protect both B cells and T cells from apoptosis 

[18-32].

Type I interferons can also promote pathologic auto-

immunity; IFNα is able to break self-tolerance by 

activating antigen-presenting cells after uptake of self 

material [33]. Th e fi rst genetic link between type I 

interferons and autoimmune diseases was provided by 

the observation of an elevated IFNα level in the sera of 

patients with systemic lupus erythematosus (SLE), and 

the familial aggregation of this trait in healthy relatives 

[34-37]. Th is observation suggested that the alteration of 

the interferon pathway is a primary event in SLE patho-

genesis, rather than a consequence of the disease pheno-

type. Th e levels of IFNα activity in patients with SLE are 

positively correlated with both clinical and serological 
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markers of disease activity [34,35,37,38]. Increased levels 

of IFNα were also observed in patients with rheumatoid 

arthritis (RA), scleroderma and primary Sjögren’s 

syndrome (pSS) [34]. Moreover, about 20% of patients 

with long-term treatment of haematological malignancies 

and viral hepatitis infections with recombinant IFNα 

develop lupus or other autoimmune diseases, such as 

type 1 diabetes, psoriasis, infl ammatory arthritis and pSS, 

or show symptoms resembling autoimmune diseases 

[39,40]. Th ese results together further substantiate the 

involve ment of IFNα in the development of various 

autoimmune disorders.

SLE patients display another important feature of an 

active interferon-mediated signalling: an overexpression 

of genes regulated by type I interferon, termed the 

interferon signature, which is more prominent in patients 

with severe disease [41]. In agreement with the idea of a 

shared genetic basis of autoimmune diseases [42], the 

interferon signature has also been demonstrated for pSS, 

dermatomyositis, psoriasis and some RA patients [43].

In the present review we will give a brief overview of 

the type I interferon signalling, with the main focus on 

the genetic linkage between type I interferon-mediated 

pathways and autoimmune diseases. True functional 

variants for the majority of associated genes have not yet 

been found, and for that reason the biology behind them 

is largely unknown. Owing to the space constraints, we 

shall examine in detail only a few genes with either strong 

or consistent evidence of association with autoimmune 

diseases for which functional variants have been 

described or, at least, proposed. A more complete list of 

associated genes involved in interferon-related pathways 

is presented in Table 1.

Genetic linkages to the pathways inducing 

production of type I interferons

Although all nucleated cells can produce type I inter-

ferons in response to viral infections, there is a group of 

professional cells producing extremely high amounts: the 

plasmacytoid dendritic cells (pDCs) [44,45]. Th e bulk 

yield of interferons may reach 3 to 10  pg/cell, which is 

estimated to be about 1,000 times more than in cells of 

any other type. Th e ability of cells to sense infections is 

linked to the special sensors localized on the membrane 

and in the cytosol (Figure 1). Th e fi rst group consists of 

the Toll-like receptors (TLRs), of which TLR3, TLR4, 

TLR7/8 and TLR9 transmit the signal resulting in the 

induction of interferon genes after ligation with dsRNA, 

bacterial lipopolysaccharides, single-stranded RNA 

and unmethylated CpG-rich DNA, respectively [46]. 

Unlike cells of other types, pDCs express only TLR7 

and TLR9, giving these two receptors a paramount 

importance in type I inter feron production [47-51]. 

Another group of ubiquitous sensors, the RNA helicases 

retinoic acid-inducible gene 1 and melanoma diff er-

entiation-associated gene 5, reside in the cytoplasm and 

recognize dsRNA and viral replicat ing intermediates 

[52,53]. Th e presence of viral RNA in the cytoplasm may 

activate the ultimate weapons of the antiviral defence – 

dsRNA-dependent serine–threonine kinase [54] and 

2´,5´-oligoadenylate synthetase [55] – resulting in com-

plete stalling of the cellular transcription and translation 

in the infected cell and, eventually, apoptosis. It was 

shown recently that cytoplasmic dsDNA could be recog-

nized by two cytosolic dsDNA sensors: DNA-dependent 

activator of interferon regula tory factors (IRFs), and 

absent in melanoma 2 – both signal through TBK1 and 

IRF3, and induce genes for IFNβ and proinfl ammatory 

cytokines [56]. Th e binding of absent in melanoma 2 to 

dsDNA leads to activation of caspase 1 and caspase 3, 

which cleaves and releases IL-1β and IL-18 [57-61].

Interestingly, autophagy – an autonomous process of 

re-utilization of cellular organelles – has been also 

implicated in the induction of innate immune responses 

and production of type I interferons [62]. Viral RNA could 

be engulfed by a forming autophagosome and, after fusing 

it with an endosome, could be detected by TLR7. Mouse 

pDCs lacking the autophagy-related 5 (yeast) (Atg5) gene 

showed a decreased IFNα response and were unable to 

respond to vesicular stomatitis virus infection [62].

It is important to note that the activation of a particular 

pathway depends upon the cell type, the nature of the 

pathogen and the cytokines present in the milieu. All of 

these factors determine the pattern of induced genes, 

which could vary from the induction of IFNα/β genes in 

pDCs in response to certain viral infections to the 

induction of genes for other proinfl ammatory cytokines 

in another cell type.

Transcription factors at the knots of the signalling cascades

IRF5 belongs to the family of IRFs and plays an essential 

role in many aspects of cellular responses to interferons, 

including antiviral defence, cell growth regulation and 

apoptosis [63-67]. Th e IRF5 gene was associated fi rst 

with SLE [68,69], and since then its association has been 

established with many other autoimmune diseases, 

including RA [70], Sjögren’s syndrome [71], infl ammatory 

bowel disease [72], and multiple sclerosis [73]. Th e genetics 

of IRF5 is very well studied to date, and fi nds support in 

the functional analysis of the associated causative 

variants. Several functional polymorphisms are believed 

to play a major role in determining the gene function in 

the pathogenesis, including: the promoter CGGGG 

insertion/deletion, which strengthens the binding site for 

the Sp1 transcription factor and thus aff ects the expres-

sion of the gene [74]; the SNP rs2004640, which creates 

an alternative 5´-donor splice site leading to the splicing 

of the alternative 5´-UTR exon 1B; the in-frame 
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Table 1. Genetic associations involving molecules of the type I interferon pathway

  Associated  Functional eff ect
Chromosome Gene polymorphisms Disease/trait (if demonstrated) References

Genes with strong evidence of association and/or good replication studies 

1q21-24 FCGR2A rs1801274 (R131H) SLE, PAPS R131 has lower affi  nity to IgG
2
, which may aff ect the [85,105,106]

    clearance of immune complexes

2q24.3 IFIH1 (MDA-5) rs1990760 (T946A),  T1D, RA,   [183-186]

  rs3747517 (R843H) MS, GD

  rs35337543 (G>C),  T1D E627X and I923V are loss of function mutations.  [10,187]

  rs35667974 (I923V),   E627X results in deletion of the C-terminal region 

  rs35744605 (E627X),   necessary for dsRNA binding activity. I923V alters a 

  rs35732034 (G>A)  conserved residue, which might impair the signalling 

7q32 IRF5 CGGGG promoter insertion/ RA, T1D, SLE,  CGGGG and rs10954213 risk alleles enhance [68,70,72,74,

  deletion, rs2004640, exon 6  IBD, pSS expression levels of IRF5. SNP rs2004640 and exon 6 75,78,188]

  insertion/deletion rs10954213  insertion/deletion determine alternative splice isoforms 

2q32.2 STAT4 rs7574865, rs7568275,  RA, SLE, pSS,  Risk haplotype associated with high levels of expression [144,146-

  rs3821236, rs10168266 psoriasis, PAPS and greater sensitivity to IFNα 150,164,169,

     189,190]

9p13.2 TYK2 rs2304256, rs12720270,  SLE, MS rs12720270 located in a intron/exon boundary might [69,141-143,

  rs34536443  be involved in alternative splicing 149]

8p23-p22 BLK rs13277113, rs2736340 SLE, PAPS Promoter SNPs associated with reduced expression  [145,149,169]

    of BLK

4q24 BANK1 rs10516487 (R61H), rs17266594,  SLE, RA rs17266594 determines the transcription ratio [149,166,171-173]

  rs3733197 (A383T)   between the full-length and delta 2 isoforms

Good evidence    

1q21-24 FCGR3B NA1/NA2, CNV of the  SLE, mPA, WG NA1-homozygous has stronger FcγR-mediated [107]

  whole gene  phagocytic response. Increased risk for SLE with 

    <2 gene copies 

4q21-q25 SPP1 rs1126616, rs1126772,   3´-UTR polymorphisms associated with high [130,131,136,137]

  rs9138, rs7687316  amounts of ostepontin and IFNα in sera of 

    patients with SLE. Evidence of rs9138–gender 

    interaction

5q32-q33.1 TNIP1 rs10036748, rs7708392 SLE No functional polymorphism yet identifi ed. TNIP1  [86,136,191]

    is the A20-binding inhibitor of NF-κB activation and 

    together with A-20 serves as brake for interferon 

    production induced via TLR

  rs17728338 Psoriasis  

16p13.3 DNASEI  V89M, K5X, 46_72 deletion,  SLE, AITD V89M and K5X are associated with lower enzymatic [179,192-194]

  rs179982-rs1030874-rs1059857   activity. Haplotype rs179982-rs1030874-rs1059857 

  haplotype,.  defi nes isoforms of DNaseI  

3p21.31 TREX1  R114H, 158V, P212fs, G227S,  SLE, pSS R114H associated with decreased exonuclease [180,181]

 (DNASEIII) R240S, A247, P272fs, P290L,   activity. Frameshift mutations D272fs and P212fs alter

  Y305C, G306A  subcellular localization of the protein 

Good evidence but more replication studies are required  

2p13-p12 REL rs13031237, rs13017599 RA  [93]

3q13.11 CBLB F328L T1D  [195]

1q21-24 FCGR3A rs396991, V176F Lupus nephritis  [105]

1q21-24 FCGR2B I232T SLE  [105]

8q13 LYN rs6983130 SLE  [85,176]

5q31.1 IRF1 rs2070721  MS, JIA  [161,196]

2q.36 IRS1 rs1801278, G972R  T1D   [197]

16q24.1 IRF8 rs17445836 MS  [90]

2q32.2 STAT1 rs2066802, rs1547550 MS  [161]

11q24.2 TIRAP rs8177374, S180L  SLE, IBD  [198,199]

Continued overleaf
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inser tion/deletion of the repetitive sequence in exon 6, 

which makes two families of the alternative IRF5 

transcripts [75] (the exon 6 insertion/deletion is located 

in the putative PEST domain of the protein, but its 

function at present remains unknown); and, fi nally, the 

SNP rs10954213, which alters the polyadenylation signal. 

Th e presence of the G allele results in a longer 3´-UTR 

with two AU-rich elements rendering the transcript for 

rapid degradation, while the A allele generates mRNA 

with a short and stable 3´-UTR [76]. It has been shown 

that only the promoter insertion/deletion and the poly(A) 

SNP alter the gene expression levels [77]. Th e level of the 

alternative transcripts caused by the T allele of rs2004640 

is very low, and it encodes for essentially the same protein 

isoforms as the transcripts with the major exon 1A.

A high-risk IRF5 haplotype has been defi ned and is 

predicted to give rise to transcripts expressing exon 1B 

isoforms (rs2004640-T), to carry the exon 6 insertion, 

and to be overexpressed because of the poly(A) variant 

(rs10954213-A) [78]. Th e fourth variant is rs20710197(C), 

or its proxy rs10488631, and is an excellent predictor or 

tag of the risk haplotype in Caucasians and Hispanics 

[68,77-80]. Niewold and colleagues demonstrated that 

this well-defi ned SLE risk haplotype is associated with 

higher serum IFNα activity in patients with SLE [79]. 

Moreover, the diff erential eff ect of the IRF5 genotype on 

serum IFNα activity is more pronounced in SLE patients 

positive for either anti-RNA-binding proteins (anti-RNP) 

or anti-dsDNA autoantibodies [79]. Th is eff ect suggests 

the possibility of a tight link between autoantibodies and 

IRF5; that is, autoantibodies containing residual nucleic 

acids may enhance TLR-mediated signalling in indivi-

duals with a given risk genotype, and hence high expres-

sion of IRF5, and may predispose them to a greater pro-

duction of IFNα.

Th e strong genetic link of IRF5 with various autoimmune 

diseases across many populations may be due to the place 

IRF5 has in the signalling cascades. It lies downstream in 

the signalling path of many diff erent receptors (TLR4, 

TLR7/8, TLR9), and thus can respond to diverse pathogens 

[81-83]. Furthermore, the gene is expressed in pDCs, 

monocytes and B cells, and its enhanced function may 

cause overexpression of IFNα/β and the proinfl ammatory 

cytokines TNFα, IL-6 and IL-12 in these cells [83]. Many 

other genes, including the transcription factors signal 

transducer and activator of transcription (STAT) 1 and 

STAT3, which mediate the interferon-signal ling pathway, 

are also regulated by IRF5. Over expression of IRF5 may 

lead to accelerated apop tosis, contributing to the increased 

burden on the immune clearance system [65,75]. Th e 

enhanced function of the IRF5 gene caused by the high-

risk allelic variants may therefore lead to systemic eff ects 

of the immune system.

In this regard it is interesting to mention that the 

frequency of the IRF5 risk haplotype among healthy 

Mexicans is higher compared with that among Europeans 

(20% vs. 9%) and is even higher in Mazateco Mexican 

Indians (31%) [80]. As for the lupus patients, the diff er-

ence is even more striking – with 20% of the homozygous 

haplotype in Mexican SLE patients as compared with 

3.3% in European SLE patients. It is tempting to speculate 

that this phenomenon originated from the positive 

Table 1. Continued

  Associated  Functional eff ect
Chromosome Gene polymorphisms Disease/trait (if demonstrated) References

Good evidence but more replication studies are required  

6q21 ATG5 rs6568431 SLE  [85]

Xq28 IRAK1 rs2239673-rs763737- SLE  [200]

  rs5945174-rs7061789 GGGG 

  haplotype

Inconsistent replication    

9q32-q33 TLR4 rs4986790 (G299D)  RA, GCA  [201,202]

9p22 IFNA gene cluster  SLE, MS  [203,204]

21q22.11 IFNAR cluster IFNAR1:18417, IFNAR2: 11876 MS  [205]

4q24 NFKB1 –94 ATTG insertion/deletion,  T1D, UC, GD  [99,101]

  CA microsatellite

3p21.3 TLR9 +1174 A>G SLE  [206]

17q21 STAT3 rs744166, rs12948909 CD  [162]

19q13.3-q13.4 IRF3 rs2304204, rs2304206 SLE  [88]

Alleles associated with increased risk to develop the disease are underlined (alleles over-represented in patients). SLE, systemic lupus erythematosus; PAPS, primary 
anti-phospholipid syndrome; T1D, type 1 diabetes; RA, rheumatoid arthritis; MS, multiple sclerosis; GD, Graves’ disease; IBD, infl ammatory bowel disease; pSS, primary 
Sjögren’s syndrome; mPA, microscopic polyangiitis; WG, Wegener’s granulomatosis; AITD, autoimmune thyroid diseases; JIA, juvenile idiopathic arthritis; GCA, giant-
cell arteritis; UC, ulcerative colitis; CD, Crohn’s disease.
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Figure 1. Pathways leading to the type I interferon production. Among the family of Toll-like receptors (TLRs), TLR3, TLR4, TLR7/8 and TLR9 are 

known to induce production of type I interferons in various cells. Surface TLR4 recognizes lipopolysaccharides (LPS) from bacterial cell walls and 

trasmit the signal downstream via MyD88-dependent or MyD88-independent pathways resulting in phosphorylation, dimerization and nuclear 

translocation of IRF5 and IRF3, and activation of NF-κB and mitogen-activated protein kinase (MAPK) pathways. Intracellular TLR3, TLR7/8 and TLR9 

residing in the endosomes are activated by viral double-stranded (ds)RNA, single-stranded RNA and unmethylated dsDNA, respectively. TLR3 

signals via adaptor TRIF and activates IRF3, NF-κB and MAPK pathways. TLR7/8 and TLR9 transmit the signal via the adaptor molecule MyD88. The 

intracellular form of osteopontin 1 (SPP1) binds to MyD88 upon ligation of TLR9 with unmethylated CpG oligonucleotides and promotes induction 

of IFNα genes in mouse plasmacytoid dendritic cells (pDCs). TLR7 and TLR9 are the only receptors expressed in pDCs, while other cells contain 

other TLRs as well. Detection of nucleic acids by TLRs in intracellular endosomes prevents immune responses to the host self-DNA. Normally, nucleic 

acids released by dying necrotic or apoptotic cells undergoing rapid degradation by nucleases, DNaseI and DNaseIII (TREX1), while bacterial or viral 

nucleic acids are protected by the cell wall or viral capsid and could be detected by TLRs only after penetrating the cell. Breach of tolerance to self-

DNA and activation of pDCs could happen if self-DNA remains undegraded due to defective function of the nucleases and meet endosomal TLR9. 

Cationic antimicrobial peptide LL37 and high-mobility group box 1 protein (HMGB1) released by damaged or infected cells, mainly keratinocytes 

and neutrophils, bind DNA making it resistant to degradation and facilitate endocytosis of DNA through the lipid rafts and receptor for advanced 

glycation end-products (RAGE), delivering it to TLR9. DNA/DNA-protein aggregates could be recognized by anti-DNA/anti-RNA-binding proteins 

(anti-RNP) antibodies produced by the autoreactive B cells. Binding of these immune complexes to the low-affi  nity Fcγ receptors II leads to their 

internalization and translocation to the endosomes containing TLR9. Viral DNAs residing in the cytoplasm could be detected by two cytoplasmic 

DNA sensors, DNA-dependent activator of interferon regulatory factors (DAI) and absent in melanoma 2 (AIM2), which trigger induction of type I 

interferon genes through TBK1-mediated and IRF3-mediated signalling. AIM2 also activates caspases 1 and 3 by recruiting adaptor ASC (apoptosis-

associated speck-like protein containing a CARD) and forming an infl ammasome that promotes release of IL-1β and IL-18. Two RNA helicases, 

retinoic acid-inducible gene 1 (RIG-1) and melanoma diff erentiation-associated gene 5 (MDA-5), detect viral RNAs in the cytoplasm. Activated RIG-1 

and MDA-5 interact with adaptor protein MAVS anchored by its C-terminal domain to a mitochondrion. This interaction triggers signalling through 

TRAF3 and TRAF6 adaptors and results in activation of IRF3, IRF7 and NF-κB pathway. Autophagosomes can engulf the replicating viral RNAs and, 

after fusion with endosomes, present it to the TLR7/8. Viral RNAs can induce a common antiviral defence mechanism aimed at blocking viral 

replication through total inhibition of cellular transcription and translation. Thus, dsRNAs activate 2´,5´-oligoadenylate synthase (OAS) producing 

2´,5´-oligoadenylates, which in turn activate the latent nuclease RNase L, resulting in the degradation of all cytoplasmic RNAs. Another pathway 

targets protein synthesis machinery by protein kinase dsRNA-dependent serine–threonine kinase (PKR), which inactivates the alpha subunit of 

initiation factor eIF2, resulting in rapid inhibition of protein translation. The latter two pathways may induce apoptosis of the infected cell. Yellow 

stars, genes with strong evidence for association with autoimmune diseases; black stars, genes with inconsistent association. ISG, interferon 

stimulated genes; PI3K, phosphoinositide 3-kinase.
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selective pressure on Mexican Indians carrying risk 

alleles, and hence high expression of IRF5 and inter-

ferons, which gave them survival advantages against 

certain viral infections brought from the Old World. At 

the same time, the side eff ect of this survival might be 

leading to a more severe SLE in Mexican patients, 

characterized by the earlier onset and frequent renal and 

other organ damage [84].

Remarkably, neither IRF3 nor IRF7 seem to be reliably 

associated with autoimmunity. Although a SNP (rs4963128) 

in PHRF1 (previously known as KIAA1542) has been 

convincingly associated with SLE [85,86], and this 

association is believed to be due to linkage disequilibrium 

(LD) with IRF7, no study has yet directly tested IRF7. Th e 

PHRF1 and IRF7 genes are localized on chromosome 

11p15 in a tail-to-tail mode. Th e haplotype structure of 

the HapMap-CEU population (data Release 27) [87] 

shows that both loci are located within the same haplo-

type block together with the mucin-like protocadherin 

MUPCDH. Th e associated PHRF1 variant is 23 kb down-

stream of IRF7 and is in rather moderate LD with two 

SNPs in IRF7: rs12805435 (r2 = 0.475) and rs10902178 

(r2 = 0.475). Th us, even though IRF7 is the most plausible 

candidate in this region given its function in IFNα 

production, its role as a susceptibility gene for SLE 

remains to be verifi ed.

A promoter polymorphism in the IRF3 gene conferring 

higher expression of IRF3 was associated with SLE in one 

Japanese study [88]; however, the association was not 

corroborated on a larger set of Spanish patients [89]. Of 

note, IRF3 is constitutively expressed at high levels in all 

cells, while low levels of IRF7 are present in cells of lym-

phoid origin. Th is contrasts to an even more restricted 

pattern of expression of the IRF5 gene, as mentioned 

above.

Th e SNP rs17445836 located 61 kb downstream of the 

IRF8 gene has been recently associated with multiple 

sclerosis [90]. Although the authors concluded that the 

most likely susceptibility gene was IRF8, the block where 

the SNP is located is separated from IRF8 by three 

recombination hot spots [90]. Interestingly, the presence 

of the risk allele G of rs17445836 was positively correlated 

with expression levels of the IRF7 and IFIH1 genes, but 

not with IRF8 itself or interferon genes.

Th e transcription factor NF-κB is a central regulator of 

immune responses and infl ammation, and is present 

virtually in all cell types. It is composed of homodimers 

or heterodimers formed by the members of the NF-κB 

family, which include RelA (p65), RelB, c-Rel, NF-κB1 

(p50) and NF-κB2 (p52) [91]. Single and double knockout 

mouse models for these genes display survival and 

phenotypic diff erences, suggesting that, despite some 

overlapping functions, they all have unique roles in the 

immune system (reviewed in [92]). Recently, the gene 

coding for c-Rel (REL) was identifi ed as a susceptibility 

locus for RA [93]. c-Rel expression is restricted to 

haemato poietic cells and lymphocytes, and mainly to T 

cells and B cells. In contrast, RelA, NF-κB1 and NF-κB2 

are widely expressed in various cell types and constitute 

the major classic NF-κB factor, residing in its inactive 

form in the cytoplasm. Stimulation of cells activates 

NF-κB, which translocates into the nucleus and induces 

the expression of a great number of genes. Interestingly, 

constitutively active nuclear heterodimer p50/c-Rel is 

found in mature B cells also co-expressing the cyto-

plasmic heterodimer p50/p65, suggesting a specifi c func-

tion for c-Rel in B-cell stimulation [94]. Mice defi cient for 

c-Rel develop normally and display only unresponsiveness 

of B cells and T cells to certain mitogenic stimuli [95]. B 

cells lacking c-Rel show increased sensitivity to B-cell 

receptor-mediated apoptotic signals [96]. c-Rel is 

indispensable for expression of IL-12 and IL-23 subunits 

in mouse dendritic cells [97,98].

With exception for one more member of the family, 

NF-κB
1
 – which has been inconsistently associated with 

genetic susceptibility to some of the autoimmune 

diseases [99-101] – no other factors were found to be 

linked with autoimmunity. Remarkably, NF-κB
1
 knockout 

mice – unlike knockout mice for RelA, RelB, or NF-κB
2
 – 

have only minor defects in lymphocyte activation, and 

particularly in B-cell responses [102].

Genes involved in clearance of immune complexes – 

Fc gamma receptors

SLE patients display an increased rate of apoptosis of 

peripheral mononuclear cells and decreased clearance of 

the circulating immune complexes (ICs), which together 

may lead to the accumulation of high titres of ICs and 

cause organ damage [103,104]. Th e Fc gamma receptors 

(FcγR) are low-affi  nity receptors for the Fc portion of IgG 

and play a critical role in the clearance of ICs. Several 

polymorphisms for FcγRIIa, FcγRIIb, FcγRIIIa and 

FcγRIIIb genes located in a tight cluster on chromosome 

1q23 have been associated with SLE, lupus nephritis and 

primary anti-phospholipid syndrome [85,105-107]. Th e 

most consistent association, replicated in various popu-

lations of diverse ethnic groups, is the missense variation 

of FCGR2A (Arg131His) located in the ligand binding 

domain of the receptor [106]. Arginine coded by the 

susceptibility allele signifi cantly reduces the affi  nity of 

binding to circulating IgG
2
. Th is, in turn, results in 

impaired FcγR-mediated phagocytosis and poor clearance 

of ICs.

Receptor ligation leads to the activation and maturation 

of dendritic cells and enhances their ability to stimulate 

T  cells via cross-presentation of antigens and enhanced 

secretion of infl ammatory cytokines. Interestingly, pDCs 

express FcγRIIa containing the activation ITAM domain, 
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but not FcγRIIb with the inhibitory ITIM domain [108]. 

It was shown also that ligation of FcγRIIa triggers IFNα 

production by pDCs [108]. In this regard, it is unclear 

how to reconcile the stimulatory function of the receptor 

on the interferon genes and the association with the risk 

allele that impairs this function. It might be that the 

primary eff ect is cell-type specifi c and unrelated to 

interferon production, and is rather the result of impaired 

internalization of immune complexes. Since FcγRIIa is 

present also on the surface of neutrophils, monocytes, 

macrophages, and platelets, its dysfunction on these cells 

could yield to the greater amount of circulating ICs. It 

has also been suggested that FcγRIIa might have dual 

ability to deliver both activating and inhibiting signals 

depending on the cell type and the milieu [108]. Another 

as yet unproven hypothesis suggests that variations in 

FcγRIIa, FcγRIIb and FcγRIIIa aff ect risk in a compound 

heterozygote fashion, and cause disbalance in stimulatory 

and inhibitory signals [109].

Other genes required for type I interferon production

A new function in the TLR9-mediated induction of IFNα 

genes in pDCs has been recently described for the intra-

cellular form of murine osteopontin 1 (early T-lympho-

cyte activation protein 1, Eta-1, or SPP1) [110,111]. Th e 

majority of osteopontin 1 is secreted from activated 

T cells, NK cells and dendritic cells, and plays a key role 

in bone morphogenesis [112,113]. Its immune functions 

include activation of T cells, T-helper type 1 cell diff er-

entiation, and activation of B cells and macrophages 

[114-116]. TLR9 activation by CpG-rich DNA causes 

rapid association of intracellular osteopontin with the 

adaptor MyD88 and leads to the induction of interferon 

genes in an IRF7-dependent manner [111]. Although 

these data have been obtained from mouse dendritic 

cells, several lines of evidence suggest the existence of a 

similar pathway in humans. First, elevated levels of serum 

osteopontin were detected before and during relapses of 

diff erent auto immune diseases, including multiple 

sclerosis, SLE, RA and inflammatory bowel disease, in 

humans and their relevant mouse models [117-128]. 

Second, polymor phisms associated with autoimmunity 

and high levels of osteopontin were found in both species 

[119,129-133]. In mice IRF7 plays a major role in 

induction of IFNα/β genes in pDCs, while in humans 

IRF5 is more important than IRF7 – although both 

factors are able to induce type I interferons [65,82,83, 

134,135]. Whether or not human osteopontin 1 is also 

able to activate IRF5 in human pDCs is unknown at 

present.

Interestingly, polymorphisms located in the 3´-UTR 

region (rs1126616T and rs9138C) of the human SPP1 

gene show much stronger association with SLE in men 

than in women [136,137]. Th e haplotype 

rs1126616T-rs1126772A-rs9138C, however, is also 

associated with SLE in general [136]. Moreover, rs9138C 

is associated with high amounts of serum osteopontin 

and IFNα in men and young women [137]. Of note, 

gender-related diff erences in SPP1 expression were 

observed also in rats [138,139]. Bioinformatic analysis of 

the associated SNPs located in the 3´-UTR suggested 

that they might disrupt micro-RNA target sites, and thus 

aff ect the gene expression [136]. More detailed analysis is 

required, however, to verify this hypothesis. SNPs located 

in the 5´ region of the gene (rs11730582 and rs28357094) 

were associated with anti-RNP antibodies in African-

Ameri cans, while in European-Americans and Hispanic-

Americans only a nonsignifi cant trend toward association 

was observed [137]. Th e study was suggested to be 

under powered because of the much lower frequency of 

individuals carrying anti-RNP antibodies in these two 

populations.

Genetic linkages to the signalling pathways 

induced by type I interferons

Type I interferons bind to a common ubiquitous receptor 

composed of the two chains IFNA-R1 and IFNA-R2, 

coded by two distinct genes located on chromosome 

21q22 [140]. Th e IFNA-R2 subunit is believed to have 

generally higher affi  nity to interferons, although it has 

been reported that various types and subtypes of type I 

interferon have diff erent affi  nities and kinetics of binding 

to the receptor subunits, which may lead to diff erential 

downstream signalling [2]. Th e antiviral activity of 

interferons correlates with their binding affi  nities to 

IFNA-R2, while anti-proliferative activity depends rather 

on the affi  nity to IFNA-R1 [2]. Ligand binding causes 

receptor dimerization and phosphorylation of two asso-

ciated protein tyrosine kinases, Tyk2 and Jak1, followed 

by direct activation of multiple redundant signalling 

pathways. Th e biological activities of interferons are 

context specifi c and depend upon the interferon subtype, 

the cell type (pDCs, T cells, B cells, NK cells, cytotoxic 

lymphocytes, other tissue-specifi c cells), concomitant 

signals such as cytokines present in the surrounding 

environment, and activation of other co-receptors (B-cell 

receptor/T-cell receptor, and so forth). Alternative 

splicing of IFNA-R2 produces two transmembrane 

isoforms diff ering in the cytoplasmic domains, and one 

soluble isoform may contribute to the diff erential 

signalling as well. Th ree major pathways transmit the 

signal from IFNA-R: the Jak/STAT, mitogen-activated 

protein kinase and phosphoinositide 3-kinase pathways 

(summarized in Figure  2). All of the pathways may 

overlap to some extent. Downstream signalling results in 

the induction of hundreds of genes necessary for antiviral 

defence, which together establish the specifi c pattern of 

genes – termed the interferon signature.
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Associations with molecules providing direct downstream 

signalling from the interferon receptor

Th e TYK2 gene was reported as associated with SLE in 

the same study that revealed the association for IRF5 

[69]. Unlike IRF5, the fi rst replication attempts where 

contro versial [141], but to date many more studies have 

confi rmed TYK2 as a susceptibility locus for SLE and it 

has also been incriminated in multiple sclerosis 

suscep tibility [86,142,143]. Furthermore, a recent study 

in Finnish patients with SLE found signifi cant evidence 

for interaction between rs2304256 in TYK2 and 

rs10954213 in IRF5 [142]. No functional polymorphism 

in TYK2, how ever, has yet been described.

Among the STAT genes, only STAT4 is reported to be 

associated with several autoimmune disorders in 

Caucasian populations [144-150], Hispanic populations 

Figure 2. Pathways activated by type I interferons. Engagement of interferons by interferon receptors activates Jak-signal transducer and 

activator of transcription (STAT), mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signalling pathways. Jak1-Tyk2-

mediated phosphorylation preferentially activates STAT1 and STAT2, which make either homodimers that induce genes with IFNγ-activated site 

(GAS)-dependent promoters, or heterodimers that bind IRF9 and regulate expression of the genes with interferon-stimulated response elements 

(ISRE). Other STAT molecules have a more restricted pattern of expression and could be activated by interferons in a cell-specifi c manner. p38 

MAPK is activated in a series of signalling events initiated by IFNα/β and is necessary for induction of genes with both ISRE and GAS-dependent 

promoters. Type I interferons induce phosphorylation of a number of adaptor proteins, including members of the insulin receptor substrates (IRS1, 

IRS2, IRS3, and IRS4), growth-factor-receptor-bound protein 2 (GRB2)-associated binding protein 1 and 2 (GAB1 and GAB2) and members of the 

CRK family (CRKL, and CRK I and CRK II). Phosphorylated CRKL binds through its SH2 domain with STAT5 and activates GAS-dependent genes. Other 

tyrosine kinase substrates, such as Casitas B-lineage lymphoma (CBL), CBL-b, p130cas and paxillin, also bind to CRKL through the SH2 domain. The 

guanine-exchange factor C3G interacts with the SH3 domain of CRKL and activates small GTPase RAP 1, which participates in the regulation of 

cell growth, proliferation and diff erentiation. Activated IRS adaptors provide binding sites for the p85 regulatory subunit of PI3K, which results in 

the activation of the catalytic function of the p110 subunit. PI3K is known to activate a number of downstream signalling molecules aff ecting all 

aspects of cell biology. Thus, tissue-specifi c isoforms of protein kinase C (PKC) family, PKCδ, PKCε, PKCθ and PKCη, phosphorylate serine residues in 

the STAT factors and p38 MAPK. Pharmacological inhibitors that block the activity of distinct PKCs aff ect the expression of the interferon-responsive 

genes. The PI3K-AKT signalling cascade mediates survival signals in a cell-type-restricted manner, inducing both anti-apoptopic and pro-apoptotic 

pathways, and translation of cap-dependent transcripts. Type I interferons activate two members of Src family of kinases, Fyn in T cells and Lyn in 

B cells. Lyn kinase in its turn phosphorylates B-cell-specifi c adaptor protein BANK1, facilitating formation of a complex between BANK1, BLK kinase 

and IP3 receptor 2 (IP3R2). Yellow stars, genes with strong evidence for association with autoimmune diseases; black stars, genes with inconsistent 

association. ISG, interferon stimulated genes; OAS, 2´,5´-oligoadenylate synthase; PKR, protein kinase dsRNA-dependent serine–threonine kinase.
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[146,151] and Asian populations [152-155]. STAT4 is 

expressed mainly in T cells, NK cells, activated mono-

cytes and dendritic cells [156], where it resides in the 

cytoplasm in its inactive form. Upon cell activation with 

IL-12, IL-23 or IFNα/β, STAT4 becomes phosphorylated 

by tyrosine kinases, forms homodimers and translocates 

into the nucleus, where it induces expression of IFNγ 

[157]. STAT4 is essential for diff erentiation of naïve CD4+ 

T cells into T-helper type 1 cells [158-160]. STAT4 maps 

to human chromosome 2q32.2 next to STAT1 in a head-

to-tail mode with moderate LD between them, which 

could account for the weak association signal for STAT1 

detected in multiple sclerosis [161] and SLE [144]. STAT3 

was recently reported to be associated with Crohn’s 

disease [162].

Currently, the strongest and more replicated associa-

tion signal within STAT4 is located in the third intron of 

the gene [144,147,148,152]. We reported an independent 

association with a haplotype covering the region from 

exons 6 to 16, which represents the strongest eff ect 

within STAT4 for Argentineans and Spanish patients 

with SLE, while the intron 3 variants have the strongest 

eff ect in Italians and Germans [144]. Th is population-

specifi c haplotype eff ect was independently confi rmed by 

a study in SLE patients of Hispanic and African-

American origin. Th is study revealed diff erences in the 

haplotype structure of STAT4 between populations: the 

LD between the two associated haplotype blocks (the 

intron 3 haplotype and the exon 6 to 16 haplotype) is 

lower in non-European populations compared with 

European-derived populations [146]. Th e frequency of 

this haplotype is much higher in Hispanics compared 

with Europeans [144,146]. It has been demonstrated that 

the intron 3 association is particularly stronger in 

patients with anti-dsDNA autoantibodies, nephritis and 

early disease onset [148,152,163]. Th e reported allelic 

heterogeneity of STAT4 might thus either be refl ecting 

true population diff erences or these two haplotypes could 

be important in diff erent clinical and/or serological 

subsets of patients.

Th e STAT4 haplotype risk correlates with higher levels 

of STAT4 expression, which seems to be cell specifi c 

[144,148]. Besides, the tissue-specifi c alternative promo-

ters identifi ed for STAT4 suggest a more complex regula-

tion of the gene, which poses an additional obstacle in 

the search for the causative variants and their eff ects. 

One recent study reported a striking correlation between 

the risk allele of SNP rs7574865 and increased expression 

of interferon-induced genes in the absence of high 

amounts of interferon [164]. Th is increased expression 

may lead to a lower threshold for disease initiation. 

Moreover, the disease-associated alleles for IRF5 and 

STAT4 variants have an additive eff ect on the risk for SLE 

[144,148]. Interestingly, STAT4 expression – unlike any 

other STAT genes – is restricted mainly to T cells and 

NK cells, and in this respect it is reminiscent of the very 

limited expression pattern for IRF5 [165]. Further 

re-sequencing of STAT4 might be necessary in order to 

identify the true functional variants.

Associations with genes modulated by type I interferons

Although some genes and their products may not directly 

participate in the signalling from the interferon type I 

receptors, they still may be regulated by interferons and 

comprise a large group of genes included in the interferon 

signature pattern. We will focus on two genes/proteins 

modulated by type I interferon, Src-family tyrosine kinase 

BLK and adaptor protein BANK1, because they are 

confi rmed SLE susceptibility loci as identifi ed by 

genome-wide association studies, both are specifi c for B 

cells and their expression in B cells is modulated by type I 

interferons [145,166]. To date, the association of BLK 

with SLE has been replicated in European [149], Japanese 

[167] and Chinese [155] popu lations, and it has also been 

implicated in RA [168] and primary anti-phospholipid 

syndrome [169]. Th e risk allele of the SNP rs13277113, 

located in the promoter region of BLK, is negatively 

correlated with the levels of BLK. It has also been shown 

that treatment with IFNα rapidly downregulates 

expression of BLK and, moreover, its expression is 

negatively regulated by infection with Epstein–Barr virus, 

which has been suggested as one of the environmental 

triggers for autoimmune diseases [170]. Low levels of 

BLK, determined by the risk allele, exposure to high 

amounts of interferon, and infection with Epstein–Barr 

virus altogether might therefore exert a cumulative eff ect 

on risk through negative regulation of BLK in B cells.

BANK1 association was identifi ed in Scandinavian 

patients with SLE [166] and further replicated in Euro pean 

Americans [86,149,171] and Chinese popu lations [172]. It 

has also been incriminated in RA, although with a less 

strong eff ect size [173]. Th ree disease-associated variants 

have been described: rs10516487 (R61H) located in exon 

2; rs17266594, which is in strong LD with rs10516487 (r2 = 

0.90) and is located in intron 2, where it alters the branch-

point site; and an independent signal in exon 7 coding for 

an ankyrin domain (rs3733197, A383T) [166]. Th e 

variation at the branch-point site alters the effi  ciency of 

splicing of exon 2. Th e risk allele of rs17266594 correlates 

with high levels of the full-length isoform and low levels of 

the alternative isoform lacking the entire exon 2, which 

codes for a putative binding domain for inositol 

1,4,5-triphosphate receptor type 2 (IP3R2), known to 

associate with BANK1 upon B-cell activation [174].

We have observed that polymorphisms of BANK1, BLK 

and ITPR2 genes display statistical genetic interaction, 

increasing substantially the risk to develop SLE 

(Castillejo-Lopez C, Delgado-Vega AM, Wojcik J, et al., 
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submitted data) [175]. Interestingly, LYN – another 

B-cell-specifi c tyrosine kinase recently associated with 

SLE [85,176] – may activate BANK1 through 

phosphorylation, leading to further stimulation of its 

interaction with IP3R2. Reduced levels of LYN were also 

detected in B cells of lupus patients [177]. Of note, 

expression of BANK1 in B cells is upregulated by type I 

interferons and, together with decreased levels of either 

of the kinases LYN or BLK, may signifi cantly distort the 

signalling and lead to increased production of 

autoantibodies – although the precise role for the adaptor 

protein BANK1 in B cells is awaiting elucidation.

Conclusion

Autoimmune diseases are caused by the breakdown of 

self-tolerance and are characterized by persistent activa-

tion of immune cells, leading to histopathological damage 

in the absence of an ongoing infection or other 

discernible cause [178]. Th ese diseases have complex 

genetic heritability with many genes giving modest 

contri butions to the disease initiation and perpetuation. 

Given the role of type I interferons in autoimmunity, the 

associated genetic variants that have been reviewed in 

the present article are believed to lead either to the 

excessive production of interferons and further amplifi -

cation of the deleterious interferon-mediated signalling, 

or to impaired negative regulation of the interferon 

pathways, or to abnormal response to interferons caused 

by the increased sensitivity of cells. Remarkably, the most 

strongly asso ciated genes, such as IRF5 and STAT4, are 

not only replicated in many populations, but also 

predispose to various autoimmune diseases. On the other 

hand, genes with weaker signals are rather associated 

with specifi c clinical manifestations; that is, they aff ect 

only specifi c subsets of patients with particular disease, 

and as such may be considered disease modifi ers rather 

than true susceptibility genes.

Based on the two most studied examples – IRF5 and 

STAT4 – it is tempting to speculate that common shared 

genes are located in the major knots of the signalling 

cascades. Th e current lack of data on association of a 

particular gene, already found to be associated with a 

specifi c disease, with other autoimmune diseases, 

however, does not mean a lack of association per se. 

Given the generally low prevalence of autoimmune 

diseases, it is often a challenging task to collect a large 

enough number of patients with another autoimmune 

disease from the same population. It is possible also that 

complex epistatic interactions hinder genetic associa-

tions, and thus will require more detailed analysis of an 

individual’s genotypes for various genes.

Another complication was recently highlighted by the 

fi nding that rare mutations or copy number variations 

may lead to the development of autoimmune diseases. 

Rare nonsense mutations have been detected in the 

DNASE1 gene in two Japanese SLE patients [179]. A 

number of rare mutations associated with SLE and 

Sjogren’s syndrome were identifi ed recently for another 

nuclease, TREX1 [180,181]. Likewise, protection against 

type 1 diabetes was associated with four rare variants in 

the IFIH1 gene [10]. Th is highlights the challenge of gene 

re-sequencing and the importance of projects like the 1000 

genomes [182] in order to fi nd noncommon variants with 

highly penetrant eff ects in autoimmune diseases.

Despite the fact that interferons are linked to many 

diseases, the exact role of diff erent types of interferons in 

various autoimmune diseases may be diff erent, or even 

opposite. While treatment with recombinant interferons is 

known to ameliorate multiple sclerosis, it triggers the 

development of SLE, type 1 diabetes, psoriasis, infl am-

matory arthritis and pSS [39,40]. Th e genes and alleles 

associated with distinct diseases in connection with 

interferon-mediated pathways could therefore obviously 

be diff erent.
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