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Abstract

Introduction: More than half of systemic lupus erythematosus (SLE) patients show evidence of excess type | interferon
(IFN-1) production, a phenotype associated with renal disease and certain autoantibodies. However, detection of IFN-|
proteins in serum is unreliable, and the measurement of interferon-stimulated gene (ISG) expression is expensive and
time consuming. The aim of this study was to identify a surrogate marker for IFN-I activity in clinical samples for
monitoring disease activity and response to therapy.

Methods: Monocyte surface expression of Fcy receptors (FcyRs), chemokine receptors, and activation markers were

analyzed with flow cytometry in whole blood from patients with SLE and healthy controls. FcyR expression also was

measured in peripheral blood mononuclear cells (PBMCs) from healthy controls cultured with Toll-like receptor (TLR)
agonists, cytokines, or serum from SLE patients. Expression of ISGs was analyzed with real-time PCR.

Results: Circulating CD14* monocytes from SLE patients showed increased surface expression of FcyRI (CD64). The
mean fluorescent intensity of CD64 staining correlated highly with the ISG expression (MX1, IFI44, and Ly6E). In vitro,
IFN-I as well as TLR7 and TLR9 agonists, induced CD64 expression on monocytes from healthy controls. Exposure of
monocytes from healthy controls to SLE sera also upregulated the expression of CD64 in an IFN-I-dependent manner.

corticosteroid therapy.

for estimating IFN-I levels in SLE patients.

Decreased CD64 expression was observed concomitant with the reduction of ISG expression after high-dose

Conclusions: Expression of CD64 on circulating monocytes is IFN-I inducible and highly correlated with ISG
expression. Flow-cytometry analysis of CD64 expression on circulating monocytes is a convenient and rapid approach

Introduction

It has become increasingly clear that the autoantibody
responses characteristic of systemic lupus erythematosus
(SLE), such as anti-double-stranded (ds) DNA and anti-
Sm, as well as certain clinical manifestations, notably
lupus nephritis, are linked to the overproduction of type I
interferon (IFN-I) [1-5]. The importance of IFN-I in auto-
immunity is evident in the association between autoim-
mune manifestations and IFN-a treatment in some
patients with hepatitis C infection, malignant carcinoid
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syndrome, or chronic myelogenous leukemia [6-8]. A
positive fluorescent antinuclear antibody test can be
found in up to 22% of patients treated with I[FN-a [6], and
the onset of SLE, autoimmune (Hashimoto) thyroiditis,
autoimmune hemolytic anemia, rheumatoid arthritis,
vasculitis, and other autoimmune diseases has been
reported after IFN-a therapy [7,9,10].

More than half of SLE patients display abnormally high
expression of a group of IFN-I-stimulated genes (ISGs), a
feature associated with active disease, renal involvement,
and the production of autoantibodies against DNA-pro-
tein and RNA-protein autoantigens [1-5]. Because of the
inherent insensitivity and unreliability of measuring IFN-
I protein levels in the blood, the level of ISG transcript
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expression in peripheral blood mononuclear cells
(PBMCs) is frequently used as a measure of IFN-I activity
[1-5]. However, these assays are costly and time consum-
ing. Flow cytometry may afford a rapid and less expensive
means of evaluating IFN-I levels than RNA-based meth-
ods. The objective of this study was to identify proteins
encoded by ISGs expressed on the cell surface that can be
used clinically to evaluate IFN-I levels in SLE. We show
that CD64 (Fcy receptor I) expression on monocytes can
be used to assess IFN-I levels rapidly and reliably in clini-
cal samples and may be well suited to monitoring disease
activity and response to therapy.

Materials and methods

Patients and controls

SLE patients were selected based on fulfilling four or
more of the revised 1982 American College of Rheuma-
tology criteria [11]. One hundred eight SLE patients and
83 healthy controls were studied. Demographic data, clin-
ical manifestations, medication use, and laboratory mea-
surements are summarized in Table 1. Four patients
received high-dose methylprednisolone (1 g IV daily for 3
days) for active renal disease. This study was approved by
the University of Florida Institutional Review Board, and
all subjects provided informed consent.

Isolation of RNA from PBMCs

Blood was collected in PAXgene tubes, and total RNA
was isolated by using the PAXgene RNA kit (Qiagen,
Valencia, CA, USA). RNA (1 to 2 ug per sample) was
treated with DNase I (Invitrogen) to remove genomic
DNA and reverse transcribed to cDNA by using Super-
script II First-Strand Synthesis System (Invitrogen) for
RT-PCR. RNA and cDNA samples were stored at -70°C
until used.

Real-time quantitative PCR

Expression levels of three IFN-I-inducible genes, myx-
oma resistant gene-1 (MX1), interferon-inducible protein
44 (IF144), and Ly6E, were determined in duplicate by
real-time PCR (SYBR Green Core Reagent Kit, Applied
Biosystems, Foster City, CA, USA). As demonstrated in
previous studies, these ISGs are robust markers of IFN-I
upregulation associated with SLE [3-5]. Gene expression
was normalized to B-actin, and expression relative to the
sample with the lowest expression was calculated by
using the 2-2ACt method [12]. Amplification conditions
were as follows: 95°C for 10 minutes, followed by 45
cycles of denaturation at 94°C for 15 seconds, annealing
at 60°C for 25 seconds, and elongation at 72°C for 25 sec-
onds. After final extension at 72°C for 10 minutes, a melt-
ing-curve analysis was performed to ensure specificity of
the products. For each ISG, a score was calculated based
on the number of standard deviations above or below the
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mean expression of the designated control group [13].
The ISG index was determined based on the average of
individual ISG scores (that is, (MX1 + Ly6E + IF144)/3)
[3,13]. Primers were as follows: B-actin forward 5-TCC
CTG GAG AAG AGC TAC GA-3'; reverse 5-AGC ACT
GTG TTG GCG TAC A-3'; MX1 forward 5-CAC GAA
GAG GCA GCG GGA TCG-3), reverse 5-CCT TGC
CTC TCC ACT TAT CTT C-3'; Ly6E forward 5-AGG
CTG CTT TGG TTT GTG AC-3), reverse 5'-AGC AGG
AGA AGC ACA TCA GC-3}; and IFI44 forward 5'-CTG
GGG CTG AGT GAG AAA GA-3', reverse 5'-AGC GAT
GGG GAA TCA ATG TA-3; CXCL9 forward 5-TGC
TGG TTC TGA TTG GAG TG3', reverse 5-TCA ATT
TTC TCG CAG GAA GG-3'; CD14 forward 5-ATT TGG
TGG CAG GAG ATC AA-3), reverse 5'-GCT TCC AGG
CTT CAC ACT TG-3'; CD16 forward 5'-ACA GGT GCC
AGA CAA ACC TC-3, reverse 5'-TTC CAG CTG TGA
CAC CTC AG-3'; CD32 forward 5'-TTC AAG GCC AAC
AAC AAT GA-3', reverse 5'-GGA GAA GGT GGG ATC
CAA AT-3'; CD64 forward 5'-GTG TCA TGC GTG GAA
GGA TA-3, reverse 5'-GCA CTG GAG CTG GAA ATA
GC-3'; CCR2 forward 5'-ATC TCC GCC TTC ACT TTC
TG-3), reverse 5-AAT GCG TCC TTG TTC AAT CC-3}
CCL2 forward 5'-CTG CTC ATA GCA GCC ACC TT-3,
reverse 5-TCC TGA ACC CAC TTC TGC TT-3}
CX3CR1, forward 5-GAC TGG CAG ATC CAG AGG
TT-3), reverse 5-ACC AAC AAA TTT CCC ACC AG-3}
CX3CL1, forward 5-GGC TCC GAT ATC TCT GTC
GT-3, reverse 5'-CTG CAC GTG ATG TTG CAT TT-3"

Cell-surface staining

Fluorescently tagged antibodies were from BD Bioscience
(San Diego, CA, USA), unless otherwise indicated. Hepa-
rinized whole blood (100 pl) was stained with phyco-
erythrin (PE)-conjugated anti-CD64 (clone X54-5/7.1.1),
PerCP-conjugated anti-CD14 (clone M®P9), fluorescein
isothiocyanate (FITC)-conjugated anti-CD16 (clone
3G8), allophycocyanin (APC)-conjugated anti-CD32
(clone FLI8.26), PerCP- anti-HLA-II (clone L243), APC-
conjugated anti-CD62L (clone DREG 56, eBioscience,
San Diego, CA, USA), APC-conjugated anti-CCR2 (clone
48607, R&D Systems, Minneapolis, MN, USA), PE-anti-
CX3CR1(clone 2A9-1, MBL International Corporation,
Woburn, MA, USA), for 20 minutes in the dark. After
erythrocyte lysis, cells were washed with PBS/1%BSA/
0.01% NaNj and fixed in 2% paraformaldehyde PBS. For
dendritic cell characterization, cells were stained with
Lin-FITC (a cocktail of anti-CD3, -CD14, -CD16, -CD19,
-CD20, and -CD56), anti-CD123-PE (clone 9F5), anti-
HLA-DR-PerCP, and anti-CD11c-APC. For T- and B-cell
characterization, anti-CD3-FITC (clone UCHT1, eBiosci-
ence) and -CD19-PerCP (clone SJ25C1) were used. Cells
(105) were analyzed by using a FACSCalibur flow cytome-
ter and CellQuest software (Becton Dickinson, Mountain
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Table 1: Demographics, laboratory, and clinical characteristics of subjects

Controls SLE
(n=83) (n=108)
Demographics
Female (%) 93 94
Mean age (years) 36 38
Race/ethnicity (%)
African-American 35 36
White 32 40
Others 33 24
Disease duration (years) - 121+0.7
ACR criteria (mean) - 6.2+0.2
Serum markers
C3 (mg/dL) 1234+57 954 +55
C4 (mg/dL) 257 +£35 19.7£1.5
hsCRP (mg/dL) 1.41[1.1-4.4] 5.7 [4.1-7.1]
SLE manifestationsa(%)
CNS - 18
Skin - 63
Joint - 84
Serositis - 34
Anti-dsDNA - 61
Anti-Sm - 45
Anti-phospholipid - 50
Medication use (%)
Prednisone - 51
Mean dose (mg/day) 15.5
Antimalarials - 70
Cytotoxic agentsP - 21
Statins - 18
ACE inhibitors - 48

aPresence of specific manifestations at any point during the course of disease.
bCytotoxic agents included cyclophosphamide, mofetil mycophenolate, azathioprine, and methotrexate.
ACR, American College of Rheumatology; C3, C4, complement 3 and complement 4; hs-CRP, high sensitivity C-reactive protein; SLE, systemic

lupus erythematosus.

View, CA, USA). Gates were set around monocytes based
on their forward/sideward light-scatter pattern and CD14
expression; lymphocyte gates were set based on forward/
sideward light scatter. CD16, CD32, and CD64 expression
levels were expressed as the geometric mean fluorescence
intensity (MFI). Data were analyzed by using FCS Express
2.0 (De Novo Software, Ontario, Canada). Preliminary

studies indicated that CD64 expression on monocytes is
stable for at least 24 hours after blood collection (our
unpublished observations). Intracellular protein expres-
sion of CCL2 was determined by using anti-human CCL2
(clone 5D3-F7; BD Pharmingen) as described previously
[14].
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Culture of PBMCs with cytokines or serum

Human PBMCs were isolated from healthy donor cells by
Ficoll density-gradient centrifugation. PBMC were plated
on 24-well plates (106 cells per well) in DMEM supple-
mented with 10% fetal bovine serum, 20 mmol/L L-glu-
tamine, 100 IU/ml penicillin, and 100 pg/ml
streptomycin. Cytokines were from BD Bioscience, unless
otherwise indicated. Cells were incubated for 19 hours at
37°C in medium containing 25% serum from either SLE
patients (n = 65) or healthy controls (n = 44), or in the
presence of recombinant human IFN-«a (4 ng/ml; PBL
Biomedical, Piscataway, NJ, USA), TLR4 agonist (ultra-
pure E. coli lipopolysaccharide (LPS), 1 pg/ml, Sigma-
Aldrich), TLR7 agonist (R848, 1 pg/ml; Invivogen, San
Diego, CA, USA), or TLR9 agonist (CpG-A ODN2216, 10
ng/ml; Invivogen). The concentration of TLR ligands
used in these experiments was determined based on our
preliminary studies using PBMCs from healthy controls.
For each TLR ligand, the lowest concentration that
induced maximal CD64 expression on control monocytes
after 19 hours was selected (data not shown). In some
experiments, the soluble viral IFN-I antagonist B18R
(from vaccinia virus Western Reserve strain, 0.1 pg/ml;
eBioscience, San Diego, CA, USA), anti-human IFN-y (2
pg/ml), anti-human IL-12 (2 pg/ml), or isotype control
mouse IgG1 (Biolegend, San Diego, CA, USA) was added
1 hour before stimulation with TLR agonists. Flow
cytometry was performed immediately after incubation.
For the analysis of serum-induced CD64 expression,
AMEFI was calculated by subtracting baseline CD64 MFI
from the MFI of CD64 expression after incubation with
serum from healthy controls (n = 44) or SLE patients (n =
65). A positive AMFI indicates an upregulation of CD64
expression compared with the baseline levels. All serum
samples were stored at -80°C before these experiments.
For real-time quantitative PCR studies, PBMCs (10° cells/
well) were treated with PBS or recombinant IFN-« (4 ng/
ml), and RNA isolation was performed after 6 hours.
Average fold-differences in mRNA expression in PBMCs
treated with PBS or IFN-a (n = 4 per group) were deter-
mined with real-time PCR, whereas changes in protein
levels on monocytes were measured with flow cytometry.
Positive values denote increased expression after IFN-«
treatment compared with PBS treatment.

Statistical analysis

Differences between disease groups and normal controls
were evaluated by using Student's two-tailed ¢ test unless
the data were not normally distributed, in which case the
Mann-Whitney U test was used. Changes in CD64 and
ISG expression levels after high-dose corticosteroid ther-
apy were assessed by using the paired Student ¢ test. Cor-
relation coefficients were calculated by using Spearman's
rank correlation. Data are presented as mean + SEM.
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Analyses were performed by using Prism software, ver-
sion 4.0 (GraphPad Software, San Diego, CA, USA). A P
value of < 0.05 was considered significant.

Results

CD64 expression on monocytes is upregulated in SLE
patients

To identify potential biomarkers associated with SLE, we
first analyzed a panel of monocyte surface markers,
including CD14, Fc receptors (CD16/FcyRIIl, CD32/
FcyRII, CD64/FcyRI), activation markers (class II MHC,
CD62L/L-selectin), and chemokine receptors (CCR2,
CX3CR1). Comparing circulating SLE with healthy con-
trol monocytes, the greatest difference was found in the
surface expression of CD64 (MFI 480.9 + 12.0 versus
285.6 + 13.9; P < 0.0001; Student's ¢ test, Figure la).
Expression of CD16 and CD62L was elevated less dra-
matically (MFI 12.8 + 0.3 versus 10.2 + 0.6, P < 0.0001;
371.7 £ 30.4 versus 291.1 + 38.4, P < 0.001, respectively,
Student's t test, Figure 1a). Surface expression of CCR2, a
marker of the "inflammatory" monocyte subset, was
slightly reduced in lupus patients, and no difference was
found in the expression of CX3CR1, a chemokine recep-
tor preferentially expressed by "residential” monocytes
[15]. In both healthy controls and SLE patients, CD64 was
expressed constitutively on circulating CD14+ monocytes
and CD11c* myeloid dendritic cells (MDCs) (Figure 1b)
In contrast, CD64 was expressed at low levels on periph-
eral blood CD16* neutrophils, and no expression was
found on CD3+* T cells or CD19+ B cells (Figure 1b). CD64
expression on monocytes correlated with disease activity,
as measured by SLEDAI (Figure 1c). Elevated CD64
expression also was associated photosensitivity, skin
manifestations, renal involvement, pericarditis, and
hematologic abnormalities. In addition, the presence of
anti-dsDNA and anti-Sm autoantibodies, but not anti-
phospholipid antibodies, was linked to increased CD64
expression (Table 2). Consistent with our previous obser-
vations [14], the use of conventional lupus medications,
including oral corticosteroids, antimalarials, and cyto-
toxic agents, did not affect CD64 expression (Table 2).
Demographic data, including age, gender, race, and the
number of years since diagnosis, also were not associated
with the levels of CD64 expression (data not shown).

CD64 expression is IFN inducible and correlates with the
interferon signature

Because previous microarray studies using RNA from
PBMC:s identified CD64 as an ISG [2,16], we examined
whether exogenous IFN-I can induce CD64 expression
on monocytes. Among the monocyte surface markers
tested, CD64 was consistently upregulated at the mRNA
and protein levels after stimulation with IFN-a (Figure
2a). In line with the observations of others [1,2,17], IFN-«a
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Figure 1 CD64 expression on monocytes is increased in SLE. (a) Flow-cytometry analysis of monocyte markers in SLE patients (n = 108) and
healthy controls (n = 83). Bars represent the average mean fluorescent intensity on CD14+ monocytes, and error bars denote standard error. *P < 0.05;
**P < 0.01; **P < 0.001. (b) Representative flow cytometry of CD64 expression on peripheral blood cells from a lupus patient, including CD3+T cells,
CD19*B cells, CD14+ monocytes, CD16* neutrophils, and CD11c*dendritic cells (primarily myeloid dendritic cells). Lymphocytes, monocytes, and neu-
trophils were gated based on their forward/sideward scatter characteristics. Dendritic cells were first gated on Lin-, HLA-DR* cells, and then further
identified as myeloid dendritic cells (CD123-, CD11c*) with flow cytometry. (c) Bivariate analysis of CD64 expression on monocytes (MFI, determined
with flow cytometry) and SLEDAI (n = 108). Correlation coefficient was calculated by using Spearman's rank correlation (P=0.0017; r= 0.301).

CD16 CD11c

also increased the expression of the chemokine CCL2
(also known as monocyte chemoattractant protein-1;
MCP-1), but not its receptor CCR2. CD14 expression,
conversely, was reduced after IFN-a treatment (Figure
2a), possibly because of initiation of DC differentiation
from monocytes in vitro [18].

Detailed analysis of CD64 with flow cytometry showed
that the addition of IFN-a to monocytes from healthy
donors stimulated its surface expression in a dose-depen-
dent manner. This effect was blocked completely by pre-
treatment with the soluble vaccinia virus IFN-I
antagonist B18R (Figure 2b). In contrast, surface expres-
sion of other FcyRs (CD16 and CD32) was unaffected by
IFN-a treatment (Figure 2c and 2d).

Recent studies suggest that activation of Toll-like recep-
tor (TLR) 7 and TLR9 may be upstream of the aberrant
production of IFN-I in SLE [19-23]. Similar to direct
stimulation with IFN-qa, treatment with the TLR7 ligand
R848 or the TLRY ligand ODN2216 both induced mono-
cyte surface expression of CD64, an effect that was abol-

ished by pretreatment with B18R (Figure 2e). In contrast,
the low level of CD64 upregulation in response to the
TLR4 ligand LPS was unaffected by IFN-I blockade.
These observations demonstrated that CD64 expression
on monocytes is inducible by direct IFN-I stimulation or
by TLR7/9 agonists, which elicit IFN-I production.

Next we asked whether surface CD64 expression is
related to IFN-I levels in vivo. Because ISG expression
reflects serum IFN-I levels, we compared surface CD64
levels on monocytes with the transcript levels of three
ISGs (MX1, IFI44, and Ly6E) in PBMCs from lupus
patients (n = 108). The MFI of CD64 staining on mono-
cytes correlated with the expression of each of these ISGs
(Figure 3a; P < 0.01 for all comparisons, Spearman's rank
correlation) as well as with the composite IFN index
derived from the three ISGs (Figure 3b; P = 0.005).

IFN-y is also a potent inducer of CD64 expression
[24,25]. To address the potential involvement of IFN-y,
we compared CD64 expression with the transcript levels
of CXCL9, a chemokine strongly induced by IFN-y but
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Table 2: Comparisons of CD64 expression (mean fluorescence intensity) with disease manifestations and medication use

Yes No Pvalue
Disease manifestations

Skin 495.2+£15.9 4555 +14.1 0.0423
Photosensitivity 502.3+16.0 4469 + 144 0.0103
Joint 4793 +£13.2 4564 +£17.2 0.3481
Renal 499.2 £ 14.4 448.7 £15.4 0.0172
CNS 463.3 +24.8 4751 +£11.6 0.7092
Serositis 4889 +18.9 462.6 +12.5 0.2294
Pleurisy 499.0 £23.3 463.1+11.9 0.1328
Pericarditis 558.8 +26.8 450.7 £10.9 < 0.0001
Hematologic 495.0+15.3 446.2 + 14.2 0.0226
abnormalities

Anti-dsDNA 507.0+13.8 4395+17.9 0.0030
Anti-Sm 489.9+12.0 399.7 £23.7 0.0022
Anti-phospholipid 476.0 + 15.7 476.2+ 154 0.9946

Medications

Corticosteroids 528.5+204 512.9+249 0.6409
Antimalarials 5104 +18.1 556.0+31.9 0.1967
Cytotoxic agents 503.9+16.7 557.9+226 0.1080
Statins 517.1+37.9 4839+ 16.7 0.4460

Differences between groups were analyzed by using Student's t test. A P value < 0.05 is considered statistically significant. Hematologic
abnormalities include autoimmune hemolytic anemia, WBC <4,000/pL, absolute lymphocyte count <1,500/pL, and platelets <100,000/puL.

only weakly by IFN-I [4]. No correlation was found
between CD64 staining and CXCL9 expression (Figure
3c). Taken together, these data suggest that surface CD64
expression on monocytes from SLE patients reflects pri-
marily IFN-I exposure.

SLE serum induces surface expression of CD64 on
monocytes

Recently it was reported that IFN-I levels can be esti-
mated by culturing an IFN-responsive cell line in the
presence of SLE sera, by using the induction of ISG
expression in the responder cells as a readout [26]. To
examine whether IFN-I in SLE serum also induces mono-
cyte CD64 expression, we cultured PBMCs from healthy
donors overnight with serum samples from SLE patients
(n = 65) or healthy controls (n = 44). As shown in Figure
4a, CD64 expression on monocytes increased signifi-
cantly in the presence of SLE sera compared with sera
from healthy controls (AMFI 319.7 + 54.3 versus 104.3 +
26.2; P < 0.001, Student's ¢ test). It is noteworthy that sera
from healthy controls also induced a mild upregulation of
CD64 expression, although the difference was not statis-
tically significant compared with effects of autologous
sera from the monocyte donors (data not shown).

These data strongly suggest that one or more serum
mediator(s) were responsible for the upregulation of
CD64 expression on monocytes from SLE patients. Sup-
porting this view, the ability of individual SLE sera to
induce CD64 expression correlated with CD64 expres-
sion on monocytes from the serum donor (r = 0.36; P <
0.05, Spearman's rank correlation; Figure 4b). The effects
of SLE sera were inhibited by the addition of B18R, but
not neutralizing antibodies to IL-12 or IFN-y, indicating
that IFN-I was the major factor responsible for CD64
upregulation (Figure 4c and 4d). In contrast, the addition
of SLE sera slightly decreased the expression of CD32 and
had little effect on the expression of CD16 (Figure 4e).
Taken together, these findings support the utility of CD64
as a biomarker of IFN-I dysregulation in SLE.

Changes in CD64 expression after therapy

Interferon dysregulation in SLE patients generally is unaf-
fected by conventional medications, such as low-dose
corticosteroids, antimalarials, and cytotoxic agents [5].
Only treatment with high-dose (pulse) corticosteroids
seems to be effective in eliminating the interferon signa-
ture [1]. Consistent with this observation, we previously
reported that CD64 expression on monocytes is largely
unaltered by a daily corticosteroid dosage <40 mg [14].
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We therefore examined whether CD64 expression can be
used to monitor changes in IFN-I levels associated with
high-dose corticosteroid therapy. In four SLE patients
pulsed with high-dose methylprednisolone (1 g IV daily
for 3 days), expression of the ISG MX1 was reduced sig-
nificantly in PBMCs after treatment (P < 0.05; paired ¢
test; Figure 5a). Supporting the utilization of CD64 as a
biomarker of IFN-I levels, a concomitant reduction of

CD64 expression on monocytes, but little effect on CD16
or CD32 expression was observed in all four patients (P <
0.006; paired t test; Figure 5b).

Discussion

Elevated serum IFN-a was first noted in SLE patients
about two decades ago [27]. More recently, high levels of
ISG expression in lupus PBMCs have been widely
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reported [1-5]. This "interferon signature” can be identi-
fied by using microarrays or real-time PCR. These
approaches have limitations, including the time and labor
required to prepare and handle mRNA from clinical sam-
ples and their expense. Here, we evaluated the utility of
CD64 as a marker for rapidly assessing IFN-I overproduc-
tion. Initial suggestions that CD64 is an ISG arose from
microarray studies [2,16], although it remained unknown
whether the increased gene expression was associated
with changes at the protein level. Our data show for the
first time that CD64 surface-staining intensity on mono-
cytes correlates with ISG expression and disease manifes-
tations in lupus patients and illustrate the potential utility
of CD64 measurements for quantifying IFN-I levels in
serum or other biologic fluids. We also show that CD64
may be used to monitor the effect of therapy on IFN-I
levels.

Compared with real-time PCR and microarrays, CD64
expression on circulating monocytes provides a quick
and relatively inexpensive means of assessing a patient's
interferon status. One-step staining of whole-blood sam-
ples and analysis by using a standard four-color flow
cytometer can be completed within 30 to 45 minutes,
allowing results to be generated during a patient's clinic

visit. Moreover, because MFI from flow cytometry stain-
ing is an absolute value, this assay avoids the need to nor-
malize the data to actin or other housekeeping genes, as
in real-time PCR assays.

The specificity of CD64 fluorescence intensity for IFN-I
levels is suggested by several lines of evidence. CD64
expression was enhanced in a dose-dependent manner by
IEN-a and was blocked by the viral IFN-I inhibitor BI8R
(Figure 2a). Similarly, TLR7 and TLR9 ligands enhanced
monocyte surface CD64 expression in an IFN-I-depen-
dent manner (Figure 2d). The ability of SLE sera to induce
CD64 expression also depended on the presence of IFN-1.
CD64 seems unique among the Fc receptors in its regula-
tion by IFN-I. Although IFN-y can also induce CD64
expression [25], its contribution to the interferon signa-
ture in SLE may be limited, as genes specifically induced
by IEN-y (that is, CXCL9) are not known to be upregu-
lated in lupus patients [26]. In contrast to the lack of a
correlation between CD64 fluorescence intensity and
CXCL9 expression, surface CD64 expression correlated
with the transcript levels of several ISGs (MX1, IFI44,
and Ly6E) (Figure 3). In addition, upregulation of mono-
cyte CD64 in the presence of lupus serum was inhibited
by the poxviral B18R protein (Figure 4), strongly suggest-
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ing that IFN-I in SLE sera upregulates CD64 expression.
This effect was not seen with blockade of IFN-y or IL-12
with neutralizing antibodies, despite of the ability of
these cytokines to induce CD64 expression [14].
Dysregulated CD64 expression may have functional
consequences, as this activating FcyR plays important
roles in phagocytosis, cytolysis, and induction of inflam-
matory cytokines [28]. The balance of activating (CD16,
CD32a, CD64) and inhibitory (CD32b) FcyRs on antigen-
presenting cells, such as monocytes, determines the
response to immune complexes, which are produced
abundantly in SLE. In addition, CD64 also is involved in
the inflammatory response induced by C-reactive protein
[29]. Elevated expression of CD64 in SLE, therefore, may
fuel the chronic inflammation associated with the auto-
immune disease. This view is supported by animal stud-
ies, as the deletion of Fc receptor y-chain, a critical
signaling component of the activating FcyRs, is sufficient
to inhibit the development of glomerulonephritis lupus-
prone mice [30]. The presence of Fc receptor y-chain on
monocytes/macrophages is required for this effect [31].
Besides monocytes, neutrophils, certain dendritic cell
subsets (especially myeloid dendritic cells), and eosino-
phils also express surface CD64 [32]. In particular, the
fluorescence intensity of CD64 on myeloid dendritic cells
from lupus patients was increased and correlated highly
with that on monocytes (data not shown). However,

because of the paucity of circulating DCs in most SLE
patients [5], they are technically difficult to analyze.

Some limitations to the clinical application of CD64
expression merit consideration, notably in patients with
infections. Neutrophil CD64 has been used as a marker
for sepsis [32-35] and to distinguish between infections
with dsDNA and ssRNA viruses [35,36]. It has been sug-
gested that neutrophil CD64 expression can be used to
aid in the diagnosis of infections in patients with rheuma-
toid arthritis [37]. Conversely, in the setting of sepsis, the
existence of preexisting autoimmune disease, especially
lupus, is a potential confounder. In addition, although
CD64 appears to be a surrogate marker of IFN-I activity
based on our cross-sectional analysis, longitudinal stud-
ies are needed to assess the utility of this marker in moni-
toring changes in serum IFN-I levels over time.

Recently it was reported that Siglec-1 (CD169) expres-
sion on monocytes can be used as a biomarker for IFN-I
responses in systemic sclerosis and SLE [16,38,39]. Com-
pared with the two-step flow-cytometry assay for CD169,
measuring CD64 on circulating monocytes is simpler,
requiring only a single step. Whether CD169 is suitable
for bioassays using serum samples has also not been
tested. However, similar to the desirability of measuring
the expression of more than one ISG with real-time PCR,
the use of both CD64 and CD169 staining may be war-
ranted to optimize the reliability of the assay.
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Conclusions

Our results indicate that the fluorescence intensity of
CD64 on circulating monocytes can be used to evaluate
IFEN-I levels. This flow-cytometry assay is faster and less
labor intensive than the measurement of ISG gene
expression. As novel agents targeting IFN-I are already in
clinical trials [40], flow-cytometry analysis of CD64
expression may be a convenient and rapid approach for
estimating IFN-I levels in SLE patients.
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