
AIA = adjuvant-induced arthritis; GM-CSF = granulocyte macrophage colony stimulating factor; IFN = interferon; IL = interleukin; IL-1Ra = IL-1
receptor antagonist; M-CSF = macrophage colony stimulating factor; MHC = major histocompatibility complex; OPG = osteoprotegerin; RA =
rheumatoid arthritis; RANK = receptor activator of nuclear factor-κB; RANKL = receptor activator of nuclear factor-κB ligand; Th = T helper; TNF =
tumor necrosis factor.
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Introduction
Bone loss is a common feature of various inflammatory
arthritides. Localized bone loss in the form of bone ero-
sions and periarticular osteopenia constitutes an important
radiographic criterion for the diagnosis of rheumatoid
arthritis (RA). In addition, generalized bone loss has been
demonstrated in RA, systemic lupus erythematosus, and
ankylosing spondylitis in several observational and some
longitudinal studies using markers of bone turnover, bone
histomorphometry, and bone densitometry [1–7]. Labora-
tory-based studies have identified novel pathways that link
inflammatory mediators with localized bone loss in these
diseases. These studies have provided an insight into the
disease pathogenesis and have created new paradigms
for treatment that now await testing in clinical trials.

Bone remodeling
Throughout life, normal skeletal maintenance occurs by a
tightly coupled process of bone remodeling. It consists of
a sequential process of bone resorption by osteoclasts
followed by deposition of new bone by osteoblasts. The
osteoclast is a polykaryocyte formed by the fusion of
mononuclear cells derived from hematopoietic bone
marrow, whereas the osteoblast and its progenitor cells
are derived from mesenchymal cells. The differentiation of
myeloid progenitor cells into committed osteoclast lineage
is characterized by the appearance of the mRNA and
protein for vitronectin receptor (αvβ3), cathepsin K, tar-
trate-resistant acid phosphatase, and calcitonin receptor
[8,9]. The appearance of this receptor is followed closely
by the acquisition of bone-resorbing capacity, and the
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number of cells positive for calcitonin receptor correlate
strongly (r = 0.96) with bone resorption in cell cultures
[10]. This process of osteoclastogenesis requires the
presence of receptor activator of nuclear factor-κB ligand
(RANKL; also known as OPGL, TRANCE, ODF, and
SOFA) and the permissive factor, macrophage colony
stimulating factor (M-CSF) secreted by the local
osteoblast/stromal cells. RANKL binds to its receptor
RANK expressed on the surface of osteoclast precursor
cells and stimulates their differentiation into mature osteo-
clasts [11]. The osteoblast/stromal cells also secrete
osteoprotegerin (OPG; also known as OCIF, TR-1,
FDCR-1, and TNFRSF-11B), a soluble decoy receptor
protein that binds to RANKL and prevents its binding to
RANK on the preosteoclast cells. The biologic effects of
OPG are, therefore, the opposite of those of RANKL, i.e.
OPG inhibits osteoclastogenesis and osteoclast function
and promotes osteoclast apoptosis [12] (see Fig. 1).

Considerable confusion and redundancy in the naming of
these three molecules led the American Society of Bone
and Mineral Research to form a special committee to
develop a standard nomenclature. The committee recom-
mended naming the membrane receptor ‘RANK’, the recep-
tor ligand ‘RANKL’, and the decoy receptor ‘OPG’ [13].

The production and activity of both RANKL and OPG are
influenced by several cytokines, inflammatory mediators,
and calcitropic hormones that ‘converge’ onto these pro-
teins (see Fig. 2). The net RANKL/OPG balance deter-
mines the differentiation, activation, and survival of
osteoclasts, which in turn determine bone loss [14].

Once activated, the osteoclast attaches itself to the bone
surface via surface integrin αvβ3 receptor and forms a
‘seal’ with actin [15]. Hydrochloric acid is secreted by the
H+ ATPase to decalcify the bone, followed by the release
of cathepsins for the degradation of bone matrix proteins.
Once a certain amount of bone is resorbed, the osteoclast
disengages, leaving a resorbed pit that is subsequently
filled by osteoblasts [16]. In young, healthy adults, bone
formation equals bone resorption, so that there is no net
bone loss. However, with aging and in different disease
states, bone resorption exceeds bone formation, resulting
in generalized osteoporosis or localized bone loss.

Bone loss in inflammatory arthritis
RA is the prototype of inflammatory arthritis characterized
by T lymphocyte activation, inflammation, and joint
destruction. Adjuvant-induced arthritis (AIA) is an animal
model of T lymphocyte mediated inflammatory arthritis
characterized by destruction of bone and cartilage similar
to that in RA. In this model, activated T cells express
RANKL protein on their surface, and through binding of
RANKL to RANK on preosteoclasts, these cells promote
osteoclastogenesis and subsequent bone loss. Treatment
of these AIA animals with OPG resulted in a decrease in

Figure 1

Osteoclastogenesis. Osteoclasts are derived from bone marrow cells,
and RANKL-OPG derived from bone or synovium has a significant
effect in their differentiation, activation, and survival. CTR = calcitonin
receptor; M-CSF = macrophage colony-stimulating factor; 
OB = osteoblast; OC = osteoclast; OPG = osteoprotegerin; 
RANKL = receptor activator of nuclear factor-κB ligand; 
TRAP = tartrate-resistant acid phosphatase.

Figure 2

Various proinflammatory and anti-inflammatory cytokines converge on
RANKL-OPG, and the net balance determines bone loss in
inflammatory arthritis. 1,25(OH)2D = 1,25 dihydroxy vitamin D; 
17-βE = 17-β estrogen; bmp = bone morphogenetic protein; 
GC = glucocorticoids; OB/SC = osteoblast/stromal cell; 
OPG = osteoprotegerin; RANKL = receptor activator of nuclear factor-
κB ligand; PTH = parathyroid hormone; TGF = transforming growth
factor; TNF = tumor necrosis factor.
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osteoclast number and preservation of bone and joint
structure, whereas the control animals had an increased
number of osteoclasts and bone destruction [17]. T lym-
phocytes isolated from human joints in RA also express
RANKL and may play a similar role in the bone destruction
associated with this disease.

The osteoclast plays a pivotal role in RA-associated bone
loss. Multinucleated cells possessing an osteoclast pheno-
type have been demonstrated at the bone–pannus junction
and in areas of bone loss in the murine collagen-induced
arthritis model [18]. Similarly, histologic sections of rheuma-
toid joints obtained from patients at the time of joint replace-
ment surgery demonstrated multinucleated cells with
osteoclast phenotype along the surface of resorption
lacunae in subchondral bone [19]. The origin of these cells
is unclear. Rheumatoid synovium is rich in macrophages.
These cells share the same origin as osteoclasts and can
be induced in vitro to differentiate into mature, active osteo-
clasts fully capable of resorbing bone [20]. It is conceivable
that these multinucleated cells at the bone–pannus junction
are derived from synovial macrophages in rheumatoid joints,
but this has not yet been demonstrated.

Synovial fibroblasts in rheumatoid synovium may also con-
tribute significantly to localized bone loss. These cells
produce chemokines such as macrophage inflammatory
peptide 1, regulated-upon-activation normal T cell expressed
and secreted, IL-8, and IL-16, which promote lymphocyte
infiltration and support lymphoproliferation via secretion of
various colony-stimulating factors [21]. This results in a
large pool of RANKL-expressing lymphocytes supporting
osteoclastogenesis and local bone loss. Furthermore, syn-
ovial fibroblasts may directly contribute to local bone
destruction by expressing RANKL on their surface [22,23]
and by secreting cathepsins [21]. These cells have not
been shown to have any bone-resorbing capacity, and any
direct role of these cells in bone resorption is unknown.

Inflammatory cytokines play an important role in various
inflammatory arthritides and associated bone damage. Ele-
vated levels of tumor necrosis factor (TNF)-α have been
demonstrated by immunoassays in several inflammatory
arthritides [24]. TNF-α promotes expression of adhesion
molecules, activation of leukocytes, recruitment of leuko-
cytes, and production of proinflammatory cytokines (e.g.
IL-1, IL-6, and IL-8) in RA. It promotes osteoclastogenesis
by stimulating the osteoblasts/stromal cells and possibly T
lymphocytes to produce RANKL and M-CSF. In addition,
recent in vitro studies have shown that TNF-α, in the pres-
ence of M-CSF, directly induces the formation of multinu-
cleated cells containing tartrate-resistant acid
phosphatase that are fully capable of resorbing bone
[25,26]. This effect is independent of RANKL/RANK inter-
action and is potentiated by IL-1. The osteoclast
progenitor cells have been shown to express both p55

and p75 TNF receptors, and TNF-α-induced osteoclast
differentiation is completely blocked by anti-p55 TNF
receptor antibodies [25]. In murine models, TNF-α plays a
central role in periodontal osteolysis and aseptic pros-
thetic loosening. Bone loss in both of these processes
results from TNF-α induced osteoclast activation and can
be prevented by deletion of the gene for p55 TNF recep-
tor [27,28]. In clinical studies of RA, TNF-α inhibition
using soluble p75 TNF receptor (etanercept) or chimeric
anti-TNF antibodies (infliximab), thus preventing TNF acti-
vation of osteoclasts and inflammatory cells, resulted in a
significant decrease in the progression of joint erosions
and substantial clinical improvement in synovitis [29,30].

IL-1 is a potent stimulus for bone resorption. Studies both
in vitro and in vivo have shown that IL-1 can cause bone
loss in RA [31–34]. IL-1 can directly support the survival,
multinucleation, and activation of osteoclast-like cells
[35–37]. IL-1 receptor mRNA has been demonstrated in
murine metaphyseal and alveolar bone osteoclasts using,
respectively, immunocytochemistry and in situ hybridiza-
tion [38,39]. In addition, the osteoclast activation by IL-1
can be mediated via RANKL upregulation by
osteoblast/stromal cells [40]. In human trials, the use of
IL-1 receptor antagonist (IL-1Ra) in a multicenter, double-
blind, randomized, controlled study of RA demonstrated a
significant slowing of radiologic progression of erosions in
comparison with placebo [41].

IL-6 also supports osteoclast differentiation both in vitro
and in vivo [42–44]. Bone loss in RA and multiple
myeloma is associated with high levels of circulating IL-6
[45,46]. This positive effect of IL-6 on osteoclastogenesis
and bone loss appears to be independent of RANKL
expression and is probably a result of a direct stimulatory
effect on osteoclast precursors [40,47]. In a clinical study
of patients with active RA, blocking of IL-6 using a human-
ized monoclonal anti-IL-6 receptor antibody caused a sig-
nificant improvement in clinical symptoms and
acute-phase reactants [48]. However, the overall results
with anti-IL-6 therapy have been less than dramatic in
comparison with the results seen with IL-1 and TNF-α
blockade in clinical trials. Moreover, there are no pub-
lished randomized, controlled trials that have evaluated
any positive effect of anti IL-6 therapy on the progression
of joint erosions and bone loss.

IL-18 mRNA and protein has been detected in significantly
higher levels in rheumatoid synovium than in osteoarthritis
controls [49]. IL-18 is produced by osteoblast/stromal
cells and sustains Th1 response by upregulating the
expression of IFN-γ, IL-2, and granulocyte macrophage
colony stimulating factor (GM-CSF) that is characteristic
of RA [50]. It can act directly to induce the production of
TNF-α and nitric oxide by synovial macrophages and of
IL-6 and stromelysin by chondrocytes in vitro [49,51]. The
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coadministration of IL-18 with collagen in murine collagen-
induced arthritis facilitated the development of erosive
inflammatory arthritis [49]. However, IL-18 also has a
potentially beneficial role, as it may inhibit osteoclasto-
genesis via GM-CSF production in vitro [52]. An IL-18-
binding protein has been isolated and purified and may act
as an inhibitor of IL-18 signaling [53].

In summary, inflammatory cytokines contribute significantly
to bone loss in RA. Their effect is mostly mediated by
osteoclast activation via the RANKL/OPG pathway,
although there is a strong case for a direct role of these
cytokines in osteoclast formation.

Finally, while RA is associated with increased bone
resorption, there is evidence that inadequate bone forma-
tion also contributes to the periarticular osteopenia and
subchondral bone damage. In vitro examination of
osteoblast cells removed from periarticular bone of
patients with RA revealed both a higher percentage of
senescent cells and a higher rate of senescence than in
age-matched controls [54]. Therefore, localized bone loss
in the inflammatory arthritides may result from both an
enhanced bone resorption by activated osteoclasts and
accompanying inadequate bone formation.

Treatment strategies
The treatment of inflammatory bone loss can be aimed at
attempts to suppress bone resorption and to increase
bone formation. The evidence to support the proposed
treatment strategies is sparse. However, having stated this
new paradigm for inflammatory bone loss, we can propose
the following treatment strategies.

Suppressing cellular immune response
As discussed above regarding the AIA model of inflamma-
tory bone loss, T lymphocytes contribute to local bone
loss by promoting osteoclastogenesis via RANKL–RANK
interaction in the inflamed joint and surrounding bone
marrow. In addition, synovial macrophages promote joint
damage in RA by secreting cytokines and supporting
osteoclast function. The local infiltration of these cells and
subsequent joint damage could be suppressed by block-
ing adhesion molecules and chemokines using mono-
clonal antibodies. A placebo-controlled pilot study
targeting the intercellular adhesion molecule ICAM-1,
using an antisense oligodeoxynucleotide in patients with
active RA, showed a modest improvement in clinical
disease in the treatment group in comparison with the
placebo group. [55]. More studies are needed.

It has been proposed that synovial macrophages derived
from circulating monocytes are stimulated by T cell derived
cytokines and other inflammatory mediators and may differ-
entiate into osteoclasts. Therefore, depletion of synovial
macrophages may be an effective intervention to prevent

localized bone loss in RA. A single intra-articular adminis-
tration of clodronate liposomes into the knee joints of
patients with long-standing RA has successfully depleted
synovial macrophages and decreased the expression of
adhesion molecules ICAM-1 and VCAM-1 [56].

Suppression of T cells is a viable and promising therapeu-
tic intervention. Previous studies aimed at depleting T cells
using monoclonal antibodies were minimally successful
[57]. However, current therapeutic studies targeting T cell
function without reducing the number of T cells are
promising. Several disease-modifying anti-rheumatic drugs
(such as cyclosporin A and leflunomide) commonly used
to treat inflammatory arthritides are inhibitory to T cells and
retard the development of erosions and joint damage
[58,59]. New therapies focusing on inducing T cell toler-
ance at the level of MHC interaction appear promising.

Anticytokine therapy
As discussed above, inflammatory cytokines (TNF-α, IL-1,
IL-6, etc) promote bone loss by activating osteoclasts.
TNF-α and IL-1 stimulate osteoblastic cells to express
RANKL, which in turn facilitates the conversion of
macrophages to osteoclasts [40,60]. In addition, these
cytokines may directly stimulate osteoclast precursor cells.
Inhibitors of TNF-α and IL-1 are effective in retarding joint
erosions and localized bone loss in RA.

Several anti-inflammatory cytokines such as IL-10, IL-11,
IL-13, and IL-1Ra act by suppressing the production of
inflammatory cytokines or by neutralizing them. Although
trials with IL-10 and IL-11 have not shown any significant
benefit, monoclonal antibodies against IL-1Ra and IL-6
appear promising in reducing joint inflammation and local
bone damage. Given the proinflammatory role of IL-18 in
RA, IL-18-binding protein is being studied as an anti-
inflammatory therapy for RA. However, caution is war-
ranted with the use of IL-18-binding protein because it
may lower the production of GM-CSF and IFN-γ, thereby
promoting osteoclastogenesis and exacerbating infection
with intracellular pathogens, respectively.

Improving the RANKL/OPG ratio
The pivotal role of RANKL/OPG in osteoclastogenesis,
osteoclast activation, and osteoclast survival has been dis-
cussed in detail. A recent preliminary study of 52 post-
menopausal women treated with up to 3 mg/kg OPG
infusion as a single dose resulted in a decrease in the
urinary N-telopeptide/creatinine ratio by 80% within
5 days [61]. These levels remained suppressed a month
after the treatment was discontinued. Moreover, combined
use of OPG and parathyroid hormone in ovariectomized
rats has shown an additive effect in preventing bone loss,
suggesting a potential therapeutic use of intermittent
OPG and parathyroid hormone to reverse both general-
ized and localized bone loss [62].

Arthritis Research    Vol 3 No 4 Rehman and Lane



RANKL, also known as TNF-related, activation-induced
cytokine (TRANCE), is expressed on T cells and supports
the activation and survival of antigen-presenting dendritic
cells that activate immune responses [17,63]. The postre-
ceptor intracellular signaling cascade in cell cultures of
dendritic cells and osteoclasts is similar with activation of
NF-κB, extracellular response kinase, c-Src, phosphatidyli-
nositide 3′-kinase, and Akt/protein kinase B that induces
survival and activation of the cell [64]. In addition, RANKL
induces the production of proinflammatory cytokines, such
as IL-1 and IL-6, and of cytokines that stimulate and
induce differentiation of T cells, such as IL-12 and IL-15,
by the antigen-presenting dendritic cells [65,66]. Although
the (auto)antigens that lead to the chronic stimulation of T
cells and/or macrophages in RA remain unknown, there is
significant evidence to suggest an important role of inter-
action between antigen-presenting cells and T cells in this
disease [67,68]. Therefore, inhibition of RANKL may have
a significant effect on the immunopathogenesis of RA.

Blocking osteoclast–bone interaction
As mentioned previously, αvβ3 integrin receptor is essen-
tial for the attachment of the osteoclast to the bone. The
osteoclasts obtained from αvβ3 knockout mice (β3–/–)
show marked morphologic and physiologic abnormalities,
including an inability to form resorption lacunae [69]. In
addition, in vitro experiments using monoclonal antibody
against αvβ3 (LM 609) have shown a dramatic reduction
in osteoclast-mediated bone resorption [15]. Therefore,
inhibition of osteoclastic bone attachment by blocking
integrin receptor is a potential therapeutic alternative that
needs further studying.

Inhibiting osteoclast function
Currently, the agents available to prevent and treat bone
loss are referred to as ‘anti-resorptives’ and act by inhibit-
ing osteoclast function. These agents, including estrogen,
bisphosphonates, and calcitonin, rely on differing mecha-
nisms to reduce the ability of osteoclasts to resorb bone.
Since osteoclast-mediated bone resorption contributes to
bone erosions and osteopenia, inhibition of osteoclasts
with antiresorptives, i.e. bisphosphonates, may be effec-
tive in preventing bone loss in inflammatory arthritis. Clo-
dronate, a halogen-containing bisphosphonate, can inhibit
the production of IL-6, TNF-α, and nitric oxide from a
macrophage cell line in vitro and has anti-inflammatory
properties in RA [70,71]. Moreover, it can also inhibit col-
lagenase (MMP-8) production and reduce joint destruc-
tion in established AIA in rats [72,73]. Other
bisphosphonates have been shown to prevent focal bone
resorption in animal models of inflammatory arthritis
[74,75]. However, in clinical trials of RA, antiresorptive
therapies alone have been unable to prevent focal bone
loss despite a reduction in systemic bone loss [76-78]. In
the future, larger trials using higher doses or more potent
antiresorptives, earlier intervention, or a combination

therapy with anabolic agents may prove effective in retard-
ing local bone loss in inflammatory arthritis.

Activating osteoblast function
In inflammatory bone loss, there is evidence of reduced
activity and possibly reduced life span of osteoblasts.
Recently, animal and clinical trials utilizing daily injections of
fragments of parathyroid hormone found increased
osteoblast activity and life span in both postmenopausal
and glucocorticoid-induced osteoporosis [79–81]. There-
fore, injections of this hormone fragment may be able to
override the suppressive effects of inflammation and/or glu-
cocorticoids on osteoblast function and reverse bone loss.

Conclusion
Localized bone loss in RA results from the activation of an
inflammatory immune response, which increases both the
number and the activity of osteoclasts. Therapy to prevent
or reverse this bone loss should be directed at the sup-
pression of inflammation, direct inhibition of osteoclast-
mediated bone resorption, or stimulation of osteoblastic
bone formation. All these therapeutic interventions are now
or soon will be available for use in the clinic. The challenge
now is to determine if altering this inflammatory induced
bone loss in RA will translate into reduced functional dis-
ability. The future is promising in this scientific arena.
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