
Introduction

Sjögren’s syndrome (SS) is an autoimmune disorder 

aff ecting the lachrymal and salivary glands and leads to 

dry eyes and dry mouth. Due to the presence of lympho-

cytic infi ltrates in the glands and the presence of auto-

antibodies (rheumatoid factors and antibodies against 

SS-A, SS-B, muscarinic receptors and alpha-fodrin), SS 

has been regarded as a disorder that is caused by aberra-

tions in the adaptive immune system. Recent evidence 

reviewed here, however, points to a major contribution of 

the innate immune system, at least in the initiation of the 

pathogenesis of SS.

Genetic susceptibility factors of Sjögren’s 

syndrome

Th e etiology of SS is still unclear. Since there is a familial 

aggregation of primary SS, however, genetic susceptibility 

factors have been suspected for a long time. Initially, 

HLA haplotypes were shown to be associated with 

primary SS. Later on, however, it became clear that they 

are primarily associated only with the subset of patients 

with SS-A (HLA-DRB1*15) or SS-A and SS-B antibodies 

(HLA-DRB1*03), but not with all subsets of SS. Currently, 

genome-wide association studies are being performed to 

identify the susceptibility genes of SS. So far, the genes 

IRF5 (Interferon regulatory factor-5) and STAT4 (Signal 

transducer and activator of transcription 4) have been 

convincingly identifi ed and replicated in several studies 

as susceptibility factors of primary SS independent of the 

presence of autoantibodies.

Interferon regulatory factor-5

IRF5 is a transcription factor that mediates virus- and 

IFN-induced signaling pathways. Infection of cells with 

various viruses can activate Toll-like receptors (TLRs) 

and, further downstream, IRF5 to induce IFNalpha and 

the transcription of numerous infl ammatory proteins [1]. 

IRF5-/- mice are highly vulnerable to both DNA and RNA 

viruses and infection of them was accompanied by low 

IFNalpha concentrations in the sera [2].

Th ree studies have confi rmed an association between a 

polymorphism in the IRF5 gene and primary SS. In a 

French study [3], the IRF5 SNP rs2004640 GT or TT 

genotype was identifi ed in 87% of primary SS patients but 

in only 77% of controls (odds ratio (OR) 1.93). Th e IRF5

rs2004640 T allele was found on 59% of chromosomes 

from primary SS patients compared with 52% of chromo-

somes from controls (OR 1.36). In a study of patients 

from Sweden and Norway [4], a 5-bp CGGGG indel in 

the promoter of IRF5 that is adjacent to rs2004640 was 

associated with primary SS (OR 1.63). In another French 

study [5], the 5-bp CGGGG indel in the promoter of the 

IRF5 allele was confi rmed to transmit an increased risk of 

primary SS in two cohorts (odds ratio 2.0).
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this cytokine may be a rational therapeutic approach.
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Th e CGGGG indel polymorphism of IRF5 is also 

associated with other autoimmune disorders, such as sys-

temic lupus erythematosus (SLE) [6,7], rheumatoid 

arthritis [8], and infl ammatory bowel disease [9], suggest-

ing common pathways in the induction of autoimmune 

disorders.

In functional studies, the presence of the risk allele was 

correlated with a high level of IRF5 mRNA in both 

peripheral blood mononuclear cells (PBMCs) and salivary 

gland epithelial cells (SGECs) and with increased levels of 

mRNA transcripts of the IFN-induced genes MX1 and 

IFITM1 [5]. As further evidence for the functional impact 

of the risk allele, increased expression of IRF5 mRNA 

from a promoter containing that allele was found using a 

minigene reporter. Increased expression of IRF5 protein 

was also observed in PBMCs from SLE patients carrying 

the risk allele of the CGGGG indel [6].

Signal transducer and activator of transcription 4

Th e STAT4 transcription factor plays a key role in signal-

ing via the IFNalpha receptor by being activated and 

translocated to the nucleus after receptor ligation [10]. 

Besides its role in type I IFN signaling, STAT4 is also 

induced by IL-12 and IL-23 production by macrophages 

and dendritic cells, and is responsible for the IL-12-

dependent activation of natural killer (NK) cells, polariza-

tion of naïve CD4+ T cells to IFNgamma-producing Th 1 

cells and the IL-23-dependent expansion of Th 17 cells. 

Th us, STAT4 has many stimulatory eff ects on the 

immune system and may contribute to autoimmune 

responses by aff ecting the functions of both innate and 

adaptive immune cells.

Association studies of SNPs in the STAT4 gene revealed 

that the T allele of rs7574865 was more common in 

primary SS patients (on 29.6% of chromosomes) than in 

controls (on 22.3% of chromosomes) [11]. Th e fi ndings 

were confi rmed in a cohort from Colombia and Germany, 

in which the T allele was again associated with primary 

SS (OR 1.40) [12]. Th e C allele of the SNP rs7582694 of 

the STAT4 gene, which is in complete linkage disequili-

brium with SNP rs7574865, was associated with primary 

SS in a French cohort (OR 1.57) [13].

Polymorphism of STAT4 has also been associated with 

other autoimmune disorders. Th e haplotype marked by 

the SNP rs7574865 was more common in SLE patients of 

European ancestry (OR 1.55) [14], in SLE patients from 

the US and Sweden (OR 1.57) [15] and in a Chinese Han 

population (OR 1.51) [16].

Th e T allele of SNP rs7574865 was also found to be 

asso ciated with rheumatoid arthritis [14,17], with ORs 

comparable to those observed in SLE, and, in a Spanish 

study, with susceptibility to limited cutaneous systemic 

sclerosis (OR 1.61), but not with diff use cutaneous sys-

temic sclerosis [18]. Th ese data have been confi rmed in a 

combined meta-analysis of the Spanish cohort and fi ve 

independent cohorts of European ancestry [18].

Th ere was no signifi cant association of any of the 

STAT4 genotypes with mRNA levels of STAT4α and 

STAT4β among 30 primary SS patients [13]. Th ere was, 

however, a weak correlation of STAT4 rs7574865 and 

rs7582694 polymorphisms, which are in complete linkage 

disequilibrium, with STAT4α mRNA levels in PBMCs 

from healthy donors [19]. In addition, the presence of the 

SNP correlated with increased expression of the risk 

allele of STAT4β in primary cells of mesenchymal origin 

(osteoblasts) [20].

Th ose patients who carry all of the IRF5 and STAT4 risk 

alleles have an increased risk (OR = 6.78) for primary SS 

[4]. Th e association of both STAT4 and IRF5 polymor-

phisms with many autoimmune diseases that are type 1 

IFN driven suggests that STAT4 and IRF5 can contribute 

to a general loss of tolerance and that IFN is also a major 

player in the induction of primary SS.

TREX-1

Recently, mutations in the TREX-1 gene (which encodes 

the most abundant 3’-5’ DNA exonuclease in cells [21]) 

have been found to be tightly linked with the develop-

ment of autoimmune diseases, including primary SS. 

Loss of function mutations of the human TREX-1 gene 

cause Aicardi-Goutieres syndrome [22], which presents 

as severe encephalitis in infants, a disorder resembling a 

congenitally acquired viral infection. Patients with 

Aicardi-Goutieres syndrome have elevated levels of type 

I IFN in the cerebrospinal fl uid. Mutations in the TREX-1 

gene have also been associated with monogenic chilblain 

lupus [23] and later with SLE [24]. Most of the cases we 

contributed to the latter analysis were patients who had 

suff ered from SLE and secondary SS, and subsequent 

careful exami na tion of relatives of these index subjects 

revealed that several family members carrying the 

TREX-1 mutations also suff ered from primary SS (un-

pub lished observa tions).

It has been suggested that TREX-1 mutations result in 

defective clearance of intracellular DNA, in particular 

from endogenous retroelements, which in the absence of 

functional TREX-1 induces the production of type I IFN 

and thus autoimmunity [25]. Trex-1 knockout mice die 

from infl ammatory myocarditis at an early age [26], and 

in Trex-1-defi cient mice single-stranded DNA fragments 

derived from endogenous retroelements have been 

shown to accumulate in the heart and induce myocarditis 

[25]. Th e accumulation of single-stranded DNA in the 

absence of Trex-1 induces the production of type I IFN 

and a double knockout of Trex-1 and the type I IFN 

receptor protected mice from developing the myocarditis 

observed in the Trex-1 single knockout [23], suggesting 

that IFN has a crucial role in this model of autoimmunity.
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Taken together, the observations from recent genetic 

studies point to a major infl uence of the type I IFN 

pathway, and thus innate immunity, on the pathogenesis 

of primary SS.

IFN signature in primary Sjögren’s syndrome

As described above, the function of the susceptibility 

genes of SS suggest an important role of type I IFN in its 

pathogenesis. Indeed, two transcriptome studies docu-

mented an IFN signature in the salivary glands of patients 

with primary SS [27,28]. Using a complementary DNA 

microarray to compare gene expression profi les in minor 

salivary glands obtained from ten patients with primary 

SS and ten control subjects, there was an upregulation of 

numerous type I IFN-induced genes in primary SS [27]. 

Furthermore, global gene expression profi ling of minor 

salivary gland cells revealed that the expression of 23 

genes in the IFN pathway, including two encoding TLRs 

(TLR8 and TLR9), was signifi cantly diff erent between 

patients with primary SS and controls [28]. In addition, 

mRNA obtained from peripheral blood of patients with 

primary SS revealed a pattern of overexpression of IFN-

induced genes [29]. Approximately 50% of the over-

expressed genes in PBMCs from the peripheral blood of 

patients with primary SS were found to be IFN inducible.

It has been diffi  cult to detect elevated concentrations of 

IFN itself in the blood of patients with SS, most likely due 

to technical challenges with the commercially available 

ELISA kits. However, it was recently shown that serum 

and plasma from patients with primary SS can induce 

IFN-regulated genes in PBMCs from control donors [30]. 

In addition, higher concentrations of IFNalpha and 

IFNbeta in the serum of patients with primary SS were 

found when cell reporter assays were used, which are 

more sensitive than ELISAs [31].

Plasmacytoid dendritic cells (PDCs) are the most potent 

producers of IFNalpha, producing up to 1,000 times more 

type I IFN than other cells. Circulating PDCs express 

higher levels of the activation marker CD40 in patients 

with primary SS. Th e number of PDCs in the blood of 

primary SS patients is reduced, but in immuno histo-

chemistry studies these IFN-producing cells were detected 

in the salivary glands of all patients with primary SS but 

not in controls [28]. Th ese results imply an infl ux of PDCs 

from the blood into the infl amed tissues in primary SS.

Salivary gland epithelial cells

Immunohistochemistry revealed that the lymphocytic 

infi ltrates in SS form around epithelial structures of 

aff ected organs - for example, around the glandular epi-

thelium of the exocrine glands [32]. Th erefore, the term 

‘autoimmune epithelitis’ was suggested for primary SS 

[33] and research has focused on the role of epithelial 

cells such as the SGECs.

Evidence for the activation of SGECs has been provided 

by immunohistochemical analyses showing that they 

express MHC class I and II molecules, the costimulatory 

molecules CD80 and CD86, the adhesion receptors 

intercellular adhesion molecule (ICAM)-1 and vascular 

cell adhesion molecule, and the local production of 

various chemokines and cytokines (IL1, IL6, TNF family 

member B cell-activating factor (BAFF)). In addition, 

conjunctival epithelial cells have been found to present 

the autoantigen SS-B (La) [34]. SGECs may thus promote 

the formation of lymphoid follicles by attracting and 

activating both B and T cells.

Th ese fi ndings were able to be replicated in vitro after 

techniques had been developed for long-term culture of 

SGECs. Cultured SGECs produce high amounts of BAFF 

and express several TLRs [35]. In addition, SGECs have 

been found to be prone to apoptosis. Th ey produce 

exosomes, which are of endosomal origin and derive 

from the fusion of endosomes/lysosomes with the plasma 

membrane. Exosomes contain various proteins, including 

MHC class I and II and costimulatory molecules, cyto-

skeletal proteins and chaperones, and play a role in the 

exchange of cellular material and in the transfer of 

antigens to dendritic cells. SGECs have been shown to 

contain SS-A and SS-B [36], and therefore may initiate 

the typical autoantibody response in primary SS.

It is not clear yet what factors are responsible for the 

activation of SGECs in primary SS. Intriguingly, the signs 

of activation of SGECs, such as upregulation of MHC 

class I molecules, costimulatory molecules, TLRs and 

BAFF, remain stable even after long-term culture, 

demonstrating that these cells are intrinsically activated. 

Whether or not the activating stimulus is a virus remains 

unknown so far. SGECs appear to be the initially 

activated cells in the pathogenesis of SS and other cell 

types, such as PDCs, or components of the adaptive 

immune system are activated subsequently via the 

presentation of autoantigens or transfer of exosomes.

Pattern recognition receptors

Th e cellular part of the immune system consists of natural 

killer cells, monocytes, macrophages, granulocytes, 

dendritic cells and mast cells. Th e innate immune system 

responds to antigens in an HLA class II-independent 

manner. According to the danger model [37], an infl am-

matory response is initiated by conserved molecular 

patterns that may be associated with both foreign 

antigens and cellular components released by damaged 

cells. In order to recognize the molecular patterns, cells 

of the innate immune system express receptors able to 

detect highly conserved pathogen-associated molecular 

patterns (PAMPs), endogenous components released 

from damaged cells (danger associated molecular patterns 

(DAMPs)), also referred to as alarmins [38], and the loss 
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of MHC class I molecules. Th e receptors recognizing 

DAMPs and PAMPs are termed pattern recognition 

receptors (PRRs). So far, several PRRs have been 

characterized, in particular TLRs, retinoic acid inducible 

gene (RIG) I-like receptors and NOD-like receptors. 

TLRs primarily bind to PAMPs in the extracellular space 

and in endosomes: for example, TLR3 to viral double-

stranded RNA, TLR4 to lipopolysac charide, TLR7 to 

single-stranded RNA and TLR9 to unmethylated DNA. 

RIG-1 is an intracellular receptor that binds to nucleic 

acids, and NOD1 and NOD2 are activated by bacterial 

peptidoglycans.

According to the danger model, tissue stress (for 

example, cell necrosis, hypoxia, low pH), and not only 

exogenous pathogens, can produce danger signals. Th e 

activation of antigen-presenting cells via PRRs leads to 

the upregulation of MHC class I and II and costimulatory 

molecules and to the secretion of proinfl ammatory 

cytokines, such as type I IFN, by PDCs. Th ese factors 

activate the adaptive immune system, which in turn may 

produce autoantibodies. In SS, antibodies against SS-A, 

which is complexed to hYRNA, form immune complexes 

that can bind and stimulate TLRs. Th us, a vicious cycle 

may be initiated in which the innate and adaptive 

immune systems stimulate each other to give a perpetuat-

ing autoimmune response.

Genetic studies on the role of PRRs have revealed that 

SNPs of NOD2 are associated with Crohn’s disease 

[39,40] and Blau syndrome [41]. With regard to SS, there 

is so far evidence for a role of TLRs expressed by SGECs, 

which does not exclude a major role for other PRRs.

Role of Toll-like receptors in primary Sjögren’s 

syndrome

SGECs express TLR3 and other TLRs. In comparison to 

other cells types, TLR3 is expressed at particularly high 

levels. In addition, RT-PCR analysis and functional 

studies revealed transcriptional activation of TLR2, TLR3 

and TLR4 in cultured SGECs of patients with primary SS 

[35]. TLR3 binds double-stranded RNA of viral origin 

and its synthetic analogue poly(I:C). TLR3 ligation 

induces the production of proinfl ammatory cytokines 

and upregulates BAFF production in SGECs.

Th e role of TLRs in the pathogenesis of SS has also 

been addressed by studies in mice. Th e injection of 

poly(I:C), a TLR3 agonist, stimulates the production of 

type I IFN. Th e treatment rapidly induces a temporal 

hypofunction of the salivary glands of most mice strains, 

which recover after termination of the poly(I:C) treat-

ment. Mice defi cient in IFNalpha-receptor1 are partially 

protected. In NZB/W F1 mice, however, which are prone 

to the development of a lupus-like disease, TLR3 stimu-

lation induces severe sialadenitis [42]. Th e loss of saliva 

production precedes lymphocyte infi ltration [42]. Four 

months after the discontinuation of the innate immunity 

stimulation, a lymphocytic infi ltrate developed with 

forma tion of lymphoid aggregates in the salivary glands. 

Th is animal model of primary SS illustrates the initial 

sequential activation of innate immunity and the 

subsequent activation of ada ptive immunity.

Stimulation of the adaptive immune system by 

components of innate immunity

Type I and II IFNs are the main inducers of the 

production of BAFF. Transgenic mice that overexpress 

BAFF develop polyarthritis and hallmarks of both SLE 

and SS, including infi ltrates in the salivary glands and 

reduced saliva production [43]. Th e concentration of 

BAFF was found to be increased in the sera of patients 

with active SS [44], as well as in the salivary glands [45] 

and the saliva. Increased BAFF production was detected 

in T cells and monocytes as well as in salivary gland duct 

cells. Epithelial cells, therefore, are not only a target for 

the autoimmune response in primary SS, but also 

important in perpetuating the disease since they can 

present autoantigens and produce proinfl ammatory 

cytokines, including BAFF.

Possible triggers of the IFN signature in primary 

Sjögren’s syndrome

So far, the initial inducer of IFN overproduction and the 

pathogenesis of SS has remained unclear. Th e type I IFN 

signature would be well in line with a viral trigger of the 

disease. For example, chronic sialadenitis is associated 

with hepatitis C virus and HIV infection. Epstein-Barr 

virus, retroviruses, enteroviruses and coxsackievirus have 

been suggested to induce SS [46], even though there is 

still no defi nitive proof of their contribution to the 

disease.

O n the other hand, the female predominance of SS 

suggests a role of hormones in its pathogenesis. In parti-

cular, a role for estrogen deprivation has been suspected, 

as the disease often starts after menopause. Estrogen-

defi cient mice develop a disease similar to primary SS 

[47]. Estrogen defi ciency induces aberrant class II MHC 

expression in exocrine glands via interactions between 

epithelial cells and PDCs. Th e expression of MHC class II 

molecules is increased in the exocrine glands of 

ovariectomized C57BL/6 (B6) mice compared to control 

B6 mice. Th e salivary gland dendritic cells adjacent to the 

apoptotic epithelial cells become activated. Estrogen 

defi ciency also induces the overexpression of the trans-

cription factor retinoblastoma-associated protein 48 

(RbAP48). Mice with transgenic overexpression of RbAp48 

develop autoimmune exocrinopathy resembling SS, with 

ocular and oral dryness, a lymphocytic infi ltrate in the 

salivary and lachrymal glands, and production of 

autoantibodies typical for SS (anti-SS-A, anti-SS-B, and 
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anti-fodrin). R bAP48 overexpression leads to activation 

and apoptosis of epithelial cells that express MHC class II 

molecules and the costimulatory molecules CD80, CD86 

and ICAM [48].

Conclusion: current model of the pathophysiology 

of primary Sjögren’s syndrome

SS appears to be triggered by environmental factors such 

as viral infection or hypoestrogenism. In patients carry-

ing susceptibility genes predisposing to enhanced reac tion 

of the innate immune system via IFN pathway proteins, 

epithelial cells become activated and may also produce 

IFN and other cytokines (Figure 1). Subse quently, 

autoantigen presentation by the epithelial cells and BAFF 

overproduction induced by IFN stimulates B- and T-cell 

activation. Finally, autoantibodies against SS-A/SS-B, 

alpha-fodrin and muscarinic receptors develop as a sign 

of the involvement of the adaptive immune system.

In conclusion, there is increasing evidence that innate 

immunity, in particular the production of IFNs and the 

activation of epithelial cells via TLRs, plays a major role 

in the initiation of the pathophysiology of SS. Th ese 

fi ndings are encouraging for future trials using anti-IFN 

antibodies as new biologicals in the treatment of primary 

SS.
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Figure 1. Current model of the initiation of the pathogenesis of Sjögren’s syndrome. (1) The disease is triggered by either a virus or 

hypoestrogenism. (2) Salivary gland epithelial cells (SGECs) become activated and start to express MHC class II molecules. (3) The subsequent 

activation of plasmacytoid dendritic cells (PDCs) induces a high production of proinfl ammatory cytokines, including IFNalpha, in individuals with 

the risk alleles of the susceptibility genes IRF5 and STAT4. (4) Under the infl uence of the high IFN concentration in the glands, TNF family member 

B cell-activating factor (BAFF) is produced and, together with the autoantigen presentation on SGECs, stimulates the adaptive immune system.
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