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Abstract

Introduction: Our understanding of autoimmunity is skewed considerably towards the late stages of overt disease
and chronic inflammation. Defining the targeted organ’s role during emergence of autoimmune diseases is,
however, critical in order to define their etiology, early and covert disease phases and delineate their molecular
basis.

Methods: Using Sjögren’s syndrome (SS) as an exemplary rheumatic autoimmune disease and temporal global
gene-expression profiling, we systematically mapped the transcriptional landscapes and chronological interrelationships
between biological themes involving the salivary glands’ extracellular milieu. The time period studied spans from
pre- to subclinical and ultimately to onset of overt disease in a well-defined model of spontaneous SS, the C57BL/6.
NOD-Aec1Aec2 strain. In order to answer this aim of great generality, we developed a novel bioinformatics-based
approach, which integrates comprehensive data analysis and visualization within interactive networks. The latter are
computed by projecting the datasets as a whole on a priori-defined consensus-based knowledge.

Results: Applying these methodologies revealed extensive susceptibility loci-dependent aberrations in salivary gland
homeostasis and integrity preceding onset of overt disease by a considerable amount of time. These alterations
coincided with innate immune responses depending predominantly on genes located outside of the SS-predisposing
loci Aec1 and Aec2. Following a period of transcriptional stability, networks mapping the onset of overt SS displayed, in
addition to natural killer, T- and B-cell-specific gene patterns, significant reversals of focal adhesion, cell-cell junctions
and neurotransmitter receptor-associated alterations that had prior characterized progression from pre- to subclinical
disease.

Conclusions: This data-driven methodology advances unbiased assessment of global datasets an allowed
comprehensive interpretation of complex alterations in biological states. Its application delineated a major
involvement of the targeted organ during the emergence of experimental SS.
Introduction
Common to autoimmune diseases is a long and clinically
silent phase. As a consequence, affected individuals are di-
agnosed only after immune system–mediated functional
deficiencies of the affected tissues result in overt disease
[1,2]. Hence, owing to the unavailability of human speci-
mens reflecting subclinical disease stages, understanding
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of the molecular basis of autoimmunity is skewed toward
late and overt disease phases. To conclusively assign etio-
logical relevance to any biological process altered in such
specimens is difficult, considering the causality di-
lemma. Nevertheless, stratifying the chronology of these
events is crucial in estimating whether genetic predis-
position to develop a specific autoimmune disease
might also involve genes associated with tissue develop-
ment and homeostasis or if the genes exclusively cluster
in processes associated with specific phases of innate
adaptive immune maturation [3-5].
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One approach to delineate, and to a certain extent strat-
ify, the molecular events associated with subclinical phases
of autoimmune diseases is the use of adequate experimen-
tal models [6,7]. For this purpose, a suitable experimental
strain must, in correspondence with humans, develop its
relevant autoimmune phenotype over an extended period
of time and in the context of its genetic background.
C57BL/6.NOD-Aec1Aec2 mice fulfill these criteria as a
model of primary Sjögren’s syndrome (SS) because they
develop, in the absence of other inflammatory conditions,
all major features relevant to the diagnosis of SS in
humans spontaneously and over a period of several
months [7,8].
With a prevalence of 0.1% to 0.3% in the total popula-

tion, SS is considered a relatively common autoimmune
disease. It mainly involves the exocrine glands. Nearly all
patients complain about persistent symptoms of dry
mouth, and many present with hyposalivation. Severe
disease outcomes also include disabling fatigue and de-
velopment of non-Hodgkin’s lymphoma. To date, all
therapies tested have been ineffective in reversing the
course of SS [9,10]. Similar to patients with systemic
lupus erythematosus, a subpopulation of individuals with
SS exhibit a type 1 IFN signature, suggesting that a viral
agent may be involved in triggering the disease [11]. As
a consequence, studies designed to discover genetic as-
sociations have focused either on innate immunity [12]
or on genes that might explain the dominant role of B
cells in the pathogenesis of SS [10]. Unfortunately, these
studies have yet to yield results that allow estimation of
an individual’s risk of developing SS.
Histological evaluations of minor salivary glands (SGs)

obtained from patients with SS commonly show focal in-
flammation that may coincide with epithelial cell atro-
phy and the presence of adipose tissue and fibrosis.
Morphologically, these glands may also display structural
disorganization, including loss of cell–cell and cell–
extracellular matrix (ECM) adhesion [13,14]. However,
organizing these findings chronologically and conclu-
sively as etiological, pathogenic or bystander processes
has not yet been possible [9].
Thus, the aim of this study was to delineate the tran-

scriptional landscape associated with the extracellular
milieu (EM) of the SGs during spontaneous emergence of
experimental SS. The global scope of our aim favors inte-
gration over reduction and is ideally based on a data-
driven approach that ensures impartial interpretation of
data sets as a whole. For this purpose, we developed a
novel data analysis pipeline that combines gene set enrich-
ment analyses (GSEAs) [15], leading edge (LE) analyses
[15] and Markov cluster algorithm (MCL) clustering [16]
for analysis of biological states. This set of data analyses
formed the basis for computation of interactive networks
within the Cytoscape software suite (National Institute of
General Medical Sciences, Bethesda, MD, USA) [17] and
design of an advanced visualization methodology. By
exploiting this approach, we sought to significantly im-
prove our ability to analyze such “-omics” data sets com-
prehensively and systematically and, in turn, to minimize
the introduction of personal bias.

Methods
Animals
C57BL/6.NOD-Aec1Aec2 and C57BL/6 male mice were
bred and maintained under specific pathogen-free condi-
tions at the Department of Pathology mouse facility at the
University of Florida, Gainesville, FL, USA. To dissect the
SGs, mice were killed by cervical dislocation after deep
anesthetization. All procedures were approved by the
University of Florida’s Institutional Animal Care and Use
Committee (protocols B317-2007 and 2008011756).

Isolation of RNA from salivary glands
Total RNA was isolated according to the protocol de-
scribed in detail elsewhere [18]. When the mice were 4, 8,
12 and 16 weeks of age, the SGs free of lymph nodes were
excised in parallel from five C57BL/6.NOD-Aec1Aec2 and
five C57BL/6 mice, then snap-frozen in liquid nitrogen.
Total RNA from each mouse was isolated concurrently
using the RNeasy Mini Kit (QIAGEN, Valencia, CA,
USA), then RNA concentrations and purities were evalu-
ated using UV spectroscopy. The ratio of absorbance
(260 nm and 280 nm) of the RNA samples averaged 1.976.
Subsequently, each sample was hybridized separately on a
GeneChip Mouse Genome 430 2.0 Array and 3′ IVT Ex-
press Kit (Affymetrix, Santa Clara, CA, USA) according to
the manufacturer’s instructions (annotation: build 32; 6
September 2011). Microarrays were assessed using Affy-
metrix Expression Console Software 1.1 without changing
the default settings (Affymetrix), and the data quality was
deemed adequate for further analyses.

Submission of data to Gene Expression Omnibus
All the data sets reported herein have been deposited
and are publicly available in the Gene Expression Omni-
bus [GSE15640, GSE36378].

Verification of microarray data
In addition to the experiments performed to validate the
quality of the microarray data presented previously
[19,20], verification experiments were expanded to include
groups of genes in accordance with the specific aims of
this study. Real-time polymerase chain reactions (PCRs)
were carried out using the Extracellular Matrix & Adhe-
sion Molecules PCR Array (PAMM-013Z; SABiosciences,
Valencia, CA, USA) and the PI3K-AKT Signaling PCR
Array (PARN-058Z; SABiosciences) according to the
instructions provided by the manufacturer. These arrays
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were analyzed using RT2 Profiler PCR Array Data
Analysis software (SABiosciences) to calculate the fold
changes in gene expression occurring within the respective
time periods. These data were subsequently plotted
against the values yielded by the GeneChip Mouse
Genome 430 2.0 Array and 3′ IVT Express Kit array
(Additional file 1: Figures S1A to S1C) and subjected to
correlation analyses (Additional file 1: Figure S1D).
Data analysis pipeline
A flow diagram of the data analysis pipeline is depicted
in Figure 1.
Normalization of microarray probe cell intensity files
Probe cell intensity files (.CEL) were quantile-normalized
and underwent general background correction. Control
metrics were generated and passed for each array (Robust
Multichip Analysis performed with Affymetrix Expression
Console Software 1.1; Affymetrix). Genes covered by mul-
tiple probes on the microarray chip were collapsed to
genes by selecting the probe yielding the highest signal
(J-Express 2009 software; MolMine AS, Hafrsfjord,
Norway).
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biological states
To identify coordinated and significant changes between
the two chronologically closest time points from each
strain, the collapsed gene lists (21,673 genes) were
ranked based on the observed relative difference upon
performing significance analysis of microarrays (SAM)
in J-Express 2009. SAM makes no assumption about the
distribution of the data and effectively introduces a non-
arbitrary fold increase criterion, thus superseding the
introduction of a subjective fold-change threshold. These
ranked lists were loaded into the GSEA v2.07 database
(Broad Institute, Cambridge, MA, USA).

Compilation of gene sets for gene set enrichment analysis
A gene set (GS) is an a priori-defined groups of genes
compiled, curated and annotated to reflect one specific
trait that its members share, such as they are all collagens
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from the following bioinformatics resources as described
previously [22]: (1) Gene Ontology (GO) (n = 12,467), (2)
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building tool [23], we compiled the remaining GSs from
(5) BioCarta pathways (BC) (n = 249), (6) Reactome path-
ways (RE) (n = 943), (7) transcription factor (TF) binding
motifs (mouse orthologs were inferred from human genes)
(n = 615), (8) microRNA binding motifs as defined in the
miRDB database (http://mirdb.org/miRDB/) (MI) (n =
793) and (9) close genomic localization (Ensembl genes in
bands resource) (GB) (n = 393). All GSs (N = 21,855) were
downloaded between 14 and 20 August 2011.

Running gene set enrichment analysis and identification
of leading edge genes
GSEA aids in overcoming the analytical challenges posed
by pleiotropy, as genes are assigned to GSs that repre-
sent each of their traits, and by the fact that biological
processes commonly depend on a coordinated change in
the expression of several genes [15]. Statistical analyses
are performed for each GS by assessing the expression
pattern formed by its members within the entire data set
(21,673 genes). Thus, an asymmetrical distribution
skewed significantly to the overexpressed end of the
ranked list signifies significant enrichment. In contrast,
such an asymmetrical distribution indicates significant
depletion in cases where the expression pattern of the
GS is skewed significantly to the underexpressed end of
the ranked list. This step of computational interpretation
based on a priori-defined and consensus-based bio-
logical knowledge without setting arbitrary cutoffs, such
as fold change or significance level, prevents the intro-
duction of bias and increases the robustness and com-
parability of results. GSEA was performed for GSs larger
than 10 and smaller than 1,000 (7,871 of 21,855 GSs
retained). Permutation number was deemed adequate at
1,000 iterations, and default values were used for all
other parameters.
LE analysis identifies the genes of each GS that appear

in the ranked list at or before the point at which the
running sum reaches its maximum deviation from zero.
Hence, genes assigned to a GS’s LE (LE genes) are the
genes accounting for the individual GS significant en-
richment or depletion signal [15]. LE analyses were com-
puted after GSEA using GSEA v2.07.

Subtraction of alterations associated with age-related
salivary gland development
To normalize for changes in gene expression associated
with normal SG activities, we discarded GSs that yielded
significant enrichment or depletion in both strains in
parallel and over the same period of time (false discovery
rate (FDR) <0.05, nominal P-value <0.005, TAGS ≥ 50% in
C57BL/6 mice) from all subsequent analyses (Figure 2A;
parallel). Reciprocal changes over the same period of time
(for example, enriched in C57BL/6.NOD-Aec1Aec2 while
depleted in C57BL/6 mice) were retained and, together
with GSs uniquely altered in C57BL/6.NOD-Aec1Aec2
mice (Figure 2A; exclusive), selected for network building.

Network building
Network analysis is the study of a system that is depicted
as connections (that is, edges) between discrete objects
(that is, nodes). To define the EM, GSs that yielded a FDR
less than 0.05 and had either GO_0071944 (cell periphery),
GO_0031012 (ECM) or GO_0005911 (cell–cell junction)
as an ancestor in the GO tree were selected and qualified
as EM-related GSs.
GSs connected by an edge (≥8% of shared LE members)

to an EM-related GS were qualified as an EM-associated
process when they passed the significance criteria (FDR
<0.05, nominal P-value <0.005, TAGS ≥50%). Defining the
forces of attraction, the degree of overlap in LE members
between the GSs also determined their position in the net-
work computed using the edge-weighted, spring force–
directed layout in Cytoscape 2.8.2 [17]. Cytoscape is an
open source software platform utilized for visualizing
complex networks and integrating these networks with
any type of attribute data [17]. The connectivity parameter,
defined by the degree of overlap in LE members between
the GSs, could thereby also be applied as an edge weight
for the subsequent MCL clustering [16] computed within
Cytoscape. The clusters identified by the MCL are defined
by simulating the stochastic flow within the networks [16].

Results
Extent of alterations across the three time periods
Application of the data analysis pipeline outlined in
Figure 1 revealed that the most thematically diverse al-
terations specific for C57BL/6.NOD-Aec1Aec2 mice, in-
volving the most EM-related GSs and EM-associated
GSs (Figure 2B), occurred between 4 and 8 weeks of age.
The same was true for the number of genes accounting
for the GSs’ significant enrichment or depletion, that is,
LE genes (Figures 2C and 2D).
Significant enrichment at 8 weeks of age involved 79

GSs that depended on coordinated upregulation of 481
LE genes. Interestingly, 43% of these GSs were simultan-
eously becoming depleted in age-matched C57BL/6 mice
(Figure 2A; reciprocal). Over the same period of time,
downregulation of 359 LE genes led to significant deple-
tion of 29 GSs (Figures 2B and 2C). Between 8 and
12 weeks of age, a single GS was becoming depleted
(Figures 2A and 2B) in conjunction with downregulation
of 12 LE genes (Figures 2C and 2D). The transition from
12 to 16 weeks of age, which chronologically coincided
with the onset of overt SS-like disease in C57BL/6.
NOD-Aec1Aec2 mice, was marked by enrichment of 12
GSs comprising a total of 182 LE genes, as well as deple-
tion of 15 GSs as a consequence of downregulation of
227 LE genes (Figures 2B and 2C).

http://mirdb.org/miRDB/
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Figure 2 Extent of significant alterations during emergence and onset of overt Sjögren’s syndrome. (A) Number of exclusive GSs (GSs
yielding significance in C57BL/6.NOD-Aec1Aec2 mice only), reciprocal GSs (GSs yielding significance in C57BL/6.NOD-Aec1Aec2 and C57BL/6
mice, but with opposite trends) and parallel GSs (GSs yielding significance in C57BL/6.NOD-Aec1Aec2 mice and C57BL/6 mice with the same
trend (excluded)). (B) Number of extracellular milieu(EM)-related and EM-associated gene sets (GSs) significantly altered for each time period.
(C) Number of leading edge (LE) genes underlying the changes displayed in (A), categorized with respect to localization inside or outside the
susceptibility regions Aec1 and Aec2. (D) Number of LE genes underlying each of the major biological themes.
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Major biological themes involving the extracellular milieu
during emergence of Sjögren’s syndrome
Progression from pre- to subclinical disease occurs between
4 and 8 weeks of age
The network displaying all GSs enriched by 8 weeks of
age (Figure 3), together with interpretation of the re-
spective LE genes (Figure 4), allowed us to identify four
major biological themes: (1) activation of pathways char-
acteristic of innate immune responses to long double-
stranded RNA viruses; (2) insulin receptor (Insr) and
insulin-like growth factor 1 (Igfr1)-mediated signaling
via phosphoinositide 3-kinase (PI3K) and protein kinase
B (AKT) further guiding cell fate, proliferation and dif-
ferentiation; (3) remodeling of epithelial cell–ECM an-
chorage via focal adhesions (FAs) whose specificities
allowed bidirectional integrin growth factor signaling
pathway cross-talk as well as all effector processes re-
lated to cell motility; and (4) the three major classes of
intercellular junction complexes engaging in cell-cell sig-
naling via E-cadherin (CDH1) and involving transform-
ing growth factor β (TGFβ).
GSs that were depleted in 8-week-old C57BL/6.NOD-

Aec1Aec2 mice clustered in three independent networks
(Figure 5A), each depending on distinct sets of LE genes
(Figure 5B): (1) deceleration of ECM turnover, (2) down-
regulation of genes encoding gap junction proteins and
(3) loss of positive regulation of nerve impulses in con-
junction with downregulation of genes encoding members
of all classes of cysteine (Cys) loop neurotransmitter
receptors and fewer metabotropic receptors.



Figure 3 (See legend on next page.)
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(See figure on previous page.)
Figure 3 Enrichments in the transcriptional landscape of the extracellular milieu during transition from pre- to subclinical Sjögren’s
syndrome. Gene sets (GSs) enriched at 8 weeks of age delineate activation of the innate immune system coinciding with significant alterations
in the targeted tissue’s homeostasis and integrity. Proportions of leading edge (LE) genes shared between GSs defined distance, organization and
clustering of the GSs. Dashed lines, separators between major biological themes; annotations in italics, interpretation of transcriptional activity
inferred from the LE gene clouds displayed in Figure 4; node color, Markov cluster algorithm (MCL) cluster number. Node shapes: triangles,
extracellular milieu (EM)–related; circles, EM-associated; node size, relative to number of detected genes that are members of this GS (reference
node = 50 genes). Node label type size, relative to percentage of genes belonging to this GS’s LE (TAGS) (reference node = 75%). Node border:
none, alteration of this GS exclusive to C57BL/6.NOD-Aec1Aec2 mice; present, reciprocal trend in C57BL/6 mice. Edge color: degree of
overlap in LE genes between the two GSs connected by this edge. ECM, extracellular matrix; Igfr1, insulin-like growth factor receptor 1;
Insr, insulin receptor.
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Stabilization of subclinical disease state between 8 and
12 weeks of age
GO_0005581 (COLLAGEN) was the only GS yielding
significance during this time period (Additional file 1:
Figure S2A) and representing 12 LE genes (Additional
file 1: Figure S2B).

Transition from subclinical to overt disease between 12 and
16 weeks of age
The GSs enriched at 16 weeks of age (Figure 6A), in
conjunction with their respective LE genes (Figure 6B),
delineated two distinct themes: (1) emergence of an ef-
fector immune response characterized by reinforcement
of the IFNα signature and a natural killer (NK) cell
population, together with formation of the primary im-
munological synapse and late costimulatory signals de-
livering survival, proliferation and maturation signals to
T cells and B cells; and (2) resumption of gene transcrip-
tion for Cys loop receptors with acetylcholine (ACh), γ-
aminobutyric acid (GABA) and glycine (Gly) binding
specificities and initial upregulation of specific subsets of
metabotropic receptors.
At 16 weeks of age, 80% of the depleted GSs (Figure 7A)

and a large number of LE genes (Figure 7B) showed partial
reversal of the alterations pertaining to FAs and cell–cell
junctions observed earlier between 4 and 8 weeks of age
(Figures 3 and 4). The remaining 20% of the GSs, such as
those GSs not subject to earlier alterations, reinforced the
cellular component (CC) terms GO_0005923 (TIGHT
JUNCTION) and GO_0005925 (FOCAL ADHESION).

Major biological themes dependent to significantly
different degrees on genes located in Aec1 and Aec2
The quantitative contributions of the SS-predisposing
genomic regions Aec1 (chromosome 3; 0 to 46 cM) and
Aec2 (chromosome 1; 29.7 to 106.1 cM) to each GS are,
together with the LE genes located in these susceptibility
regions per biological theme, presented in Additional file
1: Figures S3 to S7. Comparing average proportions of LE
genes located in Aec1 and Aec2 per GS and per biological
theme showed that the innate immunity theme was least
dependent (mean = 1.75%), and that the adaptive immun-
ity theme was most dependent (mean = 18.71%), on LE
genes located in Aec1 or Aec2 (Figure 8 and Additional file
1: Figures S3 and S6). Regarding the subclinical phase of
SS, the greater reliance on genes located in the congenic
regions of the themes associated with the SGs’ homeosta-
sis and integrity compared to innate immunity may indi-
cate that the latter occur subsequently and in response to
these tissue-specific alterations (Figure 8 and Additional
file 1: Figures S3 and S4).

Detailed annotation of networks based on interpretation
of gene set parameters and leading edge gene patterns
As described in the Methods section, the number of LE
genes shared between GSs determined their position, in-
terconnectivity and cluster membership in correspond-
ence with all other GSs of a network. Thus, GSs in close
proximity to each other share distinct similarities in
their LE gene patterns. To resolve redundancies, com-
monly caused by GSs representing complex pathways,
highly interconnected network areas require additional
interpretation. The same accounts for large GSs anno-
tated with terms too general to reflect the true theme
shared by their LE members.
The basis for this curated annotation, written in italic

type in Figures 3, 5A, 6A and 7A, is formulated upon ana-
lysis of (1) the LE members of each MCL cluster displayed
as LE gene clouds generated by using a vector graphics–
capable adaptation of the WordCloud Cytoscape plugin
[24] (Figures 4, 5B, 6B and 7B), (2) each GS’s LE genes
(Additional file 2) and (3) current literature–based interac-
tome maps (Additional file 1: Figure S8). Additional file 3
comprises the networks displayed in Figures 3-7 as
infinitely scalable and electronically searchable vector
graphics, thereby allowing the visualization of network
detail.

Transcriptional changes underlying themes being enriched
during progression from pre- to subclinical Sjögren’s
syndrome–like disease
In Figure 4, the LE gene cloud for Cluster_01-01, in com-
bination with the percentage of each pathway covered by
its LE members (Additional file 2; TAGS), points toward
two pattern recognition receptors, namely, Toll-like
receptor 3 (TLR3) and IFN-induced helicase C domain–
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Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Annotation of the Markov cluster algorithm clusters with their respective leading edge gene clouds. The individual gene sets
(GSs) of each Markov cluster algorithm cluster shown in Figure 3 were collapsed into a metanode. Network: metanode color represents the original color
of the ancestor GSs and node size and node label font size are proportional to the number of GSs collapsed into this metanode (reference node = 15
GSs). Clustered leading edge (LE) gene clouds: Font color represents clustering of the LE genes based on the connections between the original GSs. Font
size is proportional to the frequency of the gene in the LEs of the GSs collapsed into this metanode.
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containing protein 1 (IFIH1), also known as MDA5.
Both these receptors are key molecules upstream of IFN
regulatory factor 3 (Irf3) and signal transducer and activa-
tor of transcription 1 (STAT1) (Figure 4, Cluster_01-01).
Also delineated by this cluster are upregulation of Tlr4
and its coreceptors Cd14 and lymphocyte antigen 96
(Ly96). These may, via their upregulated signaling cascade,
deliver the strongest trigger for the observed canonical ac-
tivation of nuclear factor κ-light-chain-enhancer of acti-
vated B cells (NF-κB) and mitogen-activated protein
kinase 8 (MAPK8) [4,25]. In addition, the gene nerve
growth factor (Ngf), which encodes another important in-
ducer of NF-κB, was upregulated, even though NGF’s cru-
cial receptor p75 neurotrophin receptor (p75NTR) [26]
was absent from the list of LE genes for RE_P75NTR SIG-
NALS VIA NF-KB; TAGS = 73% (Additional file 2).
Determining the effect of the interconnecting

NC_TRAIL SIGNALING PATHWAY; TAGS = 63% and
BI_MET PATHWAY; TAGS = 74% GSs is more difficult
because of incomplete coverage of the different arms of
the TNF-related apoptosis-inducing ligand (TRAIL) path-
way [27] and the hepatocyte growth factor receptor
(MET) pathway [28] by their respective LE genes (Add-
itional file 2). However, their involvement in determining
cell fate and proliferation is reflected by their central pos-
ition in Figure 3.
The GSs and LE genes associated with Cluster_02

(Figures 3 and 4) suggest that INSR and IGFR1, via their
shared downstream signaling cascade involving PI3K
and AKT, upregulate mammalian target of rapamycin
complex 1 (mTorC1) and mTorC2. The mTor system in
turn is pivotal in determining cell fate [29]. Increased
autophagy is inferred by the presence of PI3K pathway
members and several autophagy-related protein (Atg)
encoding genes (Figure 4, Cluster_02).
In close proximity, Cluster_03-01 and Cluster_03-02

delineate cell-matrix adhesion complexes that transmit
regulatory signals and mechanical forces (Figures 3 and 4)
[30,31]. Cluster_03-01, including GO_0031581 (HEMI-
DESMOSOME ASSEMBLY); TAGS = 73%, defines the
hemidesmosome-mediated, laminin-5-dependent anchor-
age of epithelial cells’ intermediate filaments to the basal
lamina of the ECM. Cluster_03-02 represents, in large
part, signaling pathways that are activated by alterations in
a cell’s immediate surroundings and are transmitted via
actin cytoskeleton–anchored FAs, such as NC_SIGNAL-
ING EVENTS MEDIATED BY FOCAL ADHESION
KINASE; TAGS = 68% [31]. Thus, 31 of 77 genes anno-
tated in the CC GO_0005925 (FOCAL ADHESION) GS
were located in its LE (TAGS = 40%).
Matching the integrin genes (that is, Itgav, Itgb1, Itgb4

and Itgb5) with the dominant growth factor receptor genes
(that is, Met, Insr, Igfr1, fibroblast growth factor receptor 1
(Fgfr1) and Tgfbr1) in the LE profiles displayed in Figure 4
suggests that integrin αvβ5, upstream of the enriched
integrin-linked kinase signaling-associated GSs, provides a
basis for IGFR1-integrin cross-talk [32]. Similarly, αvβ5
and αvβ1 may allow for TGFBR1 signaling by collaborating
with integrin pathways (Figure 3) [33]. Tgfb1, Tgfb2 and
Tgfb3, together with the TF Smad family member 2
(Smad2) and Smad4 downstream of Tgfbr1 and the nega-
tive feedback–associated Smad7, are all present in the LE
of Cluster_04 (Figure 4). The presence of osteopontin
(Spp1), another ligand of integrins αvβ1 and αvβ5 in the LE
of Cluster_03-02 (Figure 4), indicates that FA maturation
may also occur in relation to innate immune cells.
Supporting a critical role of FA remodeling during this

transition from pre- to subclinical SS-like disease, cal-
pain 1 (Capn1) and Capn2 (Figure 4), which regulate the
dynamics of FA assembly and disassembly, are at the
center of the two calpain-specific GSs (Figure 3). In
addition, all other effector phases of non-muscle-cell
movement are represented by GSs and LE genes of Clus-
ter_03-02, Cluster_03-03 and the intercalated section of
Cluster_04, respectively (Figures 3 and 4) [30].
The fourth biological theme shares 14.3% of its LE

genes with Cluster_03-02 described above. This is due to
molecular similarities between CC GO_0030055 (CELL-
SUBSTRATE JUNCTION); TAGS = 41% and CC
GO_0005913 (CELL-CELL ADHERENS JUNCTION);
TAGS = 46%. Multiple LE genes belonging to the claudin
and the occludin gene families further indicate increased
formation of tight junctions at CC GO_0016327 (API-
COLATERAL PLASMA MEMBRANE); TAGS = 51%
[30]. These two types of cell–cell junction complexes de-
pend critically on CDH1 expressed by epithelial cells
[30]. Correspondingly, NC_E-CADHERIN SIGNALING
IN THE NASCENT ADHERENS JUNCTION; TAGS =
60% and CDH1 anchorage-related GS GO_0017166
(VINCULIN BINDING); TAGS = 60% were significantly
enriched and are mapped at the center of Figure 3. Fur-
thermore, enrichment of GS GO_0030057 (DESMO-
SOME); TAGS 40% [30] delineates a third class of
intercellular junction complexes associated with genes that
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Figure 5 (See legend on next page.)
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Figure 5 Depletions in the transcriptional landscape of the extracellular milieu during transition from pre- to subclinical Sjögren’s
syndrome. (A) Gene sets (GSs) depleted when the mice were 8 weeks of age define marked deceleration of extracellular matrix (ECM) turnover
and significantly decreased transcription of genes associated with gap junction formation and neurotransmission. The layout parameters of
Figure 4A correspond precisely to the layout parameters of Figure 3. The reference node allows estimation of scaling and direct comparison of
Figures 3, 5A, 6A and 7A and Additional file 1: Figure S2A. Mmp, matrix metalloproteinase. (B) Annotation of the Markov cluster algorithm clusters
displayed in (A) with their respective leading edge gene clouds. The layout parameters correspond precisely to the layout parameters of Figure 4.
The reference node allows estimation of scaling and direct comparison of Figures 4, 5B, 6B and 7B and Additional file 1: Figure S2B.
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are upregulated approximately 8 weeks prior to the onset
of SS-like disease in C57BL/6.NOD-Aec1Aec2 mice.
Transcriptional changes underlying themes being depleted
during progression from pre- to subclinical Sjögren’s
syndrome–like disease
In Figure 5A, CC term GO_0031012 (EXTRACELLULAR
MATRIX) is located at the center of the first major bio-
logical theme, becoming depleted during this time period
(Figure 5A). It was the largest GS that yielded significance
in this study, with 159 of its 320 members contributing to
its significance (TAGS = 50%). The LE genes grouped in
Cluster_01-01 delineate broad downregulation of genes
encoding collagens of the ECM (Figure 5B) [34]. Contrib-
uted by GS BI_INTRINSIC PATHWAY; TAGS = 73% and
suggesting endothelial cell activation, this cluster also in-
cludes coagulation factor–encoding genes.
The LE gene cloud of Cluster_01-02 in Figure 5B lists

genes associated with all categories of specialized ECM
proteins [30]. These include laminin (LAM) encoding sub-
units, such as Lama4 and Lamb1; proteoglycans, such as
versican (Vcan); and glycoproteins, such as fibrillin 1
(Fbn1) and Fbn2. Genes coding for all matrix metallopro-
teinases (MMPs) capable of degrading collagens, as well
as distinct members of the disintegrins and metallo-
proteinases with thrombospondin motif (ADAMTS)
family, also contributed to the significance of the GSs
grouped in Cluster_01-02 (Figure 5A). ADAMTS pepti-
dases catalyze procollagens (for example, Adamts3) and
inhibit angiogenesis (for example, Adamts5, Adamts8,
Adamts9 and Adamts20) [35]. Genes annotated as
inducers of wingless-type mouse mammary tumor virus
(MMTV) integration site family members (Wnt) (for
example, Norrie disease (Ndp)), several Wnt genes (for
example, Wnt1) and all Wnt1-inducible signaling pathway
proteins (Wisp1, Wisp2 and Wisp3) [30] completed the LE
of Cluster_01-02. These changes complement the marked
and broad deceleration of ECM turnover as a potential
consequence of the ongoing innate immune response
and/or delayed conclusion of developmental processes in
the SGs of C57BL/6.NOD-Aec1Aec2 mice.
The second theme delineates downregulation of genes

associated with GSs annotating gap junction core proteins
(for example, PF_00029 (CONNEXIN); TAGS = 67%)
(Figures 5A and 5B) and thus represents the only class of
cell-cell junctions not enriched at 8 weeks of age.
The third theme is dominated by genes coding for

ligand-gated ion channels essential for neurotransmis-
sion (Figure 5B, Cluster_03) [36]. The largest part of
these genes encodes subunits of anionic Cys loop recep-
tors (GABAA 12/12, GABAA-ρ 2/3 and GlyR 5/5), cat-
ionic Cys loop receptor subunits (serotonin-gated 5-
HT3A and 5-HT3B and nicotinic ACh receptor 14/16
subunits), 18 of 20 ionotropic glutamate receptor sub-
units and ATP-gated channels P2X purinoceptors P2X1,
P2X3, P2X5 and P2X6, as well as subsets of voltage-
gated and acid-sensing potassium channels (for example,
amiloride-sensitive cation channels 1 to 3 (ACCN1 to
ACCN3) and ACCN5). The remaining clusters of this
gene cloud represent mainly metabotropic receptors in-
volved in sensory perception, whereas the LE genes asso-
ciated with GO_0051971 (POSITIVE REGULATION OF
TRANSMISSION OF NERVE IMPULSE; TAGS = 62%)
also include inflammatory mediators such as IFNγ,
tumor necrosis factor (TNF) and interleukin 6 (IL-6), all
of which are known to decrease the threshold for nerve
impulse generation (Additional file 2) [37].
Transcriptional changes underlying stabilization of
subclinical disease between 8 and 12 weeks of age
LE genes associated with the continued depletion of
GO_0005581 (COLLAGEN); TAGS = 46% encode all pep-
tide chains for collagen type I, the most abundant collagen
of the ECM, and collagen type III (Additional file 1: Figure
S2B and Additional file 2). Collagen type IV, which has
coverage of 67%, is associated with basal membranes [34].
Transcriptional changes underlying themes being enriched
during transition from subclinical to overt Sjögren’s
syndrome–like disease
In Cluster_01 of Figure 6A, GO_0009897 (EXTERNAL
SIDE OF PLASMA MEMBRANE); TAGS = 33% intercon-
nects the EM-associated GSs that delineate the adaptive
effector immune response. The LE pattern of integrins
(Cluster_01; Figure 6B) suggests an increase of CDH1
adhesive integrin αEβ7-expressing intraepithelial T cells,
whereas CD11c, encoded by Itgax and Itgb2, points to-
ward antigen-presenting cells (APCs) of myeloid origin
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Figure 6 Enrichments in the transcriptional landscape of the extracellular milieu during transition from subclinical to overt Sjögren’s
syndrome. (A) Gene sets (GSs) enriched at 16 weeks of age mirror the establishment of a pathogenic immune reaction in the targeted tissues
and, in addition, reflect partial normalization of prior neurotransmitter receptor gene-associated alterations. The layout parameters correspond
precisely to the layout parameters of Figure 3. The reference node allows estimation of scaling and direct comparison of Figures 3, 5A, 6A and 7A
and Additional file 1: Figure S2A. ACh, acetylcholine; GABA, γ-aminobutyric acid; Gly, glycine; MHCII, major histocompatibility complex class II; NK,
natural killer. (B) Annotation of the Markov cluster algorithm clusters displayed in Figure 5A with their respective leading edge gene clouds. The
layout parameters of Figure 5B correspond precisely to the layout parameters of Figure 4. The reference node allows estimation of scaling and
direct comparison of Figures 4, 5B, 6B and 7B and Additional file 1: Figure S2B.
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[38]. The latter represent the most probable source for the
concomitant increase in transcription of various INFα-
encoding genes (Infα-1, Infα-5, Infα-9 and Ifitm1) in the
SGs of C57BL/6.NOD-Aec1Aec2 mice (Figures 6A and 6B).
The establishment of a NK cell population in the tar-

geted tissues is supported by several distinct LE members
(Cluster_01; Figure 6B). Cytotoxicity-triggering receptors
NKG2-D type II integral membrane protein (Klrk1), Cd244
and its ligand encoded by UL16-binding protein 1 (Ulbp1)
represent three key components of NK cells’ effector path-
way. In contrast, the NK cell receptor complex encoded by
killer cell lectinlike receptor subfamily D member 1 (Klrd1)
and G member 1 (Klrg1) exert a regulatory anticytotoxic
effect [38,39]. The LE genes Cd244 and Cd48, in conjunc-
tion with Cd2 and intercellular adhesion molecule 2
(Icam2), may further suggest regulation of CD8+ T cells by
NK cells. Expression of major histocompatibility complex
(MHC) and MHC-related genes, however, were skewed to-
ward upregulation of MHC class II (MHCII) and MHCII
invariant chain (Cd74) expression (Figure 6B).
The chemokine receptor-ligand profile characterizes

emigration of multiple APC and lymphocyte populations
(Cxcr4:Cxcl12), as well as reinforced recruitment of
T-helper type 1 (TH1) cells, NK cells and plasmacytoid
dendritic cells (Cxcl3:Cxcl9/Cxcl10 and Ccr7:Ccl19)
(Figure 6B) [38]. Immune cell homing may also be facili-
tated by increased expression of LE genes that encode
mucosal vascular addressin cell adhesion molecule 1
(MAdCAM-1) and lymphocyte function–associated anti-
gen 1 (Lfa-1), encoded by Itgal and Itgb2 and Icam1.
ICAM1 and LFA-1 ligation is also critical for Cd28-

dependent T-cell activation [38]. The pattern of LE genes
encoding costimulatory molecules assigns importance to
both the activating Cd28-dependent pathway and the
inhibitory cytotoxic T-lymphocyte antigen 4 (Ctla4)–
dependent pathway (Figure 6B; Cluster_01). Regarding the
T-cell-associated central component of the immunological
synapse, T-cell receptor (TCR) accessory proteins (for
example, Cd3), TCR coreceptors Cd4 and Cd8 and TCR-
associated molecules (for example, Cd45 (Ptprc)) are also
covered by the LE gene cloud of Cluster_01. The con-
comitant upregulation of Il2, Il2rb and Il2rg, as well as the
presence of Cd69, represent effects downstream of T-cell
activation [38]. Regulating activation of T-cell effector
lineages at this stage may thereby involve the two LE gene
B7 family members B and T lymphocyte attenuator (Btla)
and Tnf receptor superfamily 18 (Tnfrsf18) (Figure 6B).
With respect to late costimulatory signals, Cd40:Cd40lg

and inducible T-cell costimulator (Icos):IcosL are the
receptor-ligand pairs present in the LE of Cluster_01
(Figure 6B). Both these systems, together with LE-gene
Il4, are critical for mounting effective TH2 responses [38].
B-cell-specific genes (for example, immunoglobulin

heavy constant μ (Igh-6), Cd79a, Cd79b, Cd19 and Cd22)
are highly represented in the LE gene cloud of Cluster_01
(Figure 6B). Increased transcription of Tnfrsf13C (that is,
Baffr),Tnfrsf17 (that is, Bcma) and Tnfrsf13B (that is,Taci),
together with their common ligand Tnfsf13b (that is, Baff),
as well as the activation-induced cytidine deaminase gene
(Aicda) (Figure 6B and Additional file 2; LE gene list
for KE_04672 (INTESTINAL IMMUNE NETWORK FOR
IGA PRODUCTION); TAGS = 60%), further indicates
strong signaling for survival, proliferation and differenti-
ation of B cells in SGs marked by overt disease [38,40].
The second biological theme enriched by 16 weeks of

age pertains to neurotransmission and marks a partial re-
versal of changes that occurred earlier in the disease
course. Of the 78 LE genes defining enrichment at this
later stage (Figure 6B; Cluster_02), 40 were previously as-
sociated with depletion of GSs concerning neurotransmis-
sion at 8 weeks of age (Figure 5B; Cluster_03). Reinitiating
transcription are mainly ACh-, GABA- and Gly-gated
ionotropic receptors coding genes (Additional file 2).
Overlaps were also found for genes encoding receptors for
dopamine (that is, Drd1a) and substance P (that is, Tacr1).
Unique to enrichment at 16 weeks of age were genes en-
coding for metabotropic receptors specific for ACh (that
is, Chrm4) and somatostatin (that is, Sstr1, Sstr2, Sstr4,
Sstr5) (Figure 6B and Additional file 2) [36].

Transcriptional changes underlying themes being depleted
during transition from subclinical to overt Sjögren’s
syndrome–like disease
GSs (Figure 7A) and their LE genes (Figure 7B) depleted
and downregulated, respectively, during this time period,
predominantly signify the reversal of previous enrich-
ments in FAs and cell-cell junction–associated GSs ob-
served at 8 weeks of age (Figures 3 and 4). Pairwise
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Figure 7 Depletions in the transcriptional landscape of the extracellular milieu during transition from subclinical to overt Sjögren’s
syndrome. (A) Gene sets (GSs) depleted at 16 weeks of age signify, to a major extent, the partial reversal of enrichments in FAs and cell–cell
junction-associated GSs observed at 8 weeks of age. The layout parameters of Figure 6A correspond precisely to the layout parameters of Figure 3. The
reference node allows estimation of scaling and direct comparison of Figures 3, 5A, 6A and 7A and Additional file 1: Figure S2A. (B) Annotation of the
Markov cluster algorithm clusters displayed in Figure 6A with their respective LE gene clouds. The layout parameters of Figure 6B correspond precisely
to the layout parameters of Figure 4. The reference node allows estimation of scaling and direct comparison of Figures 4, 5B, 6B and 7B and Additional
file 1: Figure S2B.
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comparison of the overlapping GSs revealed that, on aver-
age, 54% of LE genes contributing to depletion at 16 weeks
of age also contributed to these GSs’ prior enrichment at
8 weeks of age. The highest percentage of LE members
following this pattern was identified for NC_SIGNALING
EVENTS MEDIATED BY FOCAL ADHESION KINASE,
with 79%, and the lowest percentage was found for
GO_0043296 (APICAL JUNCTION COMPLEX), with
43% (Additional file 2). The LE genes not included in
these LE overlaps did not define additional biological
themes, but instead contributed predominantly to the in-
creased average coverage of the EM-related GSs at
16 weeks (TAGS 45%) compared to 8 weeks of age (TAGS
38%) (Additional file 2).

Discussion
Although the technology for generating global gene ex-
pression profiles has matured, analysis and interpretation
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of these data sets still pose great challenges. This is also
true with regard to delineating the underlying biological
and chronological complex changes in biological states,
such as covert stages of autoimmunity in an organ subse-
quently targeted by an autoimmune disease. Thus, the
possibility of assessing all relationships among all compo-
nents of a biological system simultaneously with an inte-
grated and standardized concept such as the one
presented herein meets a clear demand [41].
With respect to the immune system–specific findings of

this study, considering the presence of IFN signatures in pa-
tients with SS [11], enrichment of innate immune response
pathways at 8 weeks of age in C57BL/6.NOD-Aec1Aec2
mice was anticipated. In addition, the molecular basis
underlying the effector immune response at disease onset
mimicked all major aspects of sialadenitis described in pa-
tients with SS [9]. Further validating our findings is that
C57BL/6.NOD-Aec1Aec2 mice, during their spontaneous
**

 III

ve
 im

m
unity

uro
tra

nsm
iss

io
n

(p
ar

tia
l r

ev
er

sa
l)

) F
oca

l a
dhes

io
n &

 ce
ll-

ce
ll

ju
nct

io
ns (

par
tia

l r
ev

er
sa

l)

08wk enriched

08wk depleted

12wk depleted

16wk enriched

16wk depleted

nes located in Aec1 and Aec2 (mean ± SEM). Proportion of leading
2/gene set (GS)/major biological theme within the same disease phase
st. P-values <0.05 were considered significant (*P < 0.05, **P < 0.01,
standard errors of the mean. ECM, extracellular matrix; Igfr1, insulin-like



Delaleu et al. Arthritis Research & Therapy 2013, 15:R174 Page 16 of 19
http://arthritis-research.com/content/15/5/R174
and slow development toward overt disease, displayed alter-
ations in biological pathways that, if knocked out or overex-
pressed from birth on a healthy genetic background, induce
aspects of SS. These models of SS include mice deficient for
NF-κB feedback regulation (C57BL/6.IκBαM/M) and mice
transgenic for Baff [7].
Direct comparison of the results presented herein with

the conclusions formulated subsequent to analyses using
conventional “top gene list” approaches [19,20] defines the
added value of this systems biology–based methodology as
follows. (1) Focusing on the transcriptional landscape re-
lated to and associated with the EM seemed adequate to
map, in its entirety and in a standardized fashion, the al-
terations in the SG’s decision-making processes associated
with the emergence of autoimmunity in this model. Em-
phasizing the EM prevented the mapping of some of
previously documented downstream effects induced via
signals transmitted by the EM, however [19,20]. (2) The
early activation of the innate immune system described
4 8 12
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ously been reported in the context of this data set. (3)
By applying this methodology, the data set could be
interpreted in significantly more detail, which subse-
quently could be combined to present a more compre-
hensive picture.
The transcriptional landscape of the EM of tissues tar-

geted by autoimmunity described herein opens a novel
and integrative perspective on the development of auto-
immune diseases that might be of more general relevance
(Figure 9) [42]. As a first step, it will be important to in-
vestigate how strongly, in other experimental models of
autoimmunity, the LE genes differ. The chronological in-
terrelationships and major biological themes identified
herein may be the same, however. This knowledge may
prove especially critical when aiming to delineate, on a
systems level, the mechanisms of action and the targeted
organ’s state subsequent to experimental immunomodula-
tory intervention [43].
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The chronology of the etiopathology defined herein es-
tablishes several important points. First, long before overt
experimental SS, susceptibility loci-dependent and par-
tially transient alterations associated with the targeted tis-
sue’s homeostasis and integrity formed the basis for an
innate immune reaction. The latter, in contrast, was
dependent predominantly on genes descending from
the asymptomatic C57BL/6 strain that served as a gene-
tic background for the generation of C57BL/6.NOD-
Aec1Aec2 mice. If a role of genes governing the SGs’
homeostatic state at such an early stage of autoimmunity
can be confirmed, these genes may indeed crucially con-
tribute to an individual’s risk of developing SS [5]. Second,
the long-lasting, stable subclinical disease state may eluci-
date novel diagnostic strategies for identification of SS at
an earlier state and thereby enable timely immunomodula-
tory treatment [44]. Third, major themes that defined this
stable subclinical disease were abandoned concomitantly
with the onset of overt disease. This permits speculation
about whether these transient alterations may represent
processes initiated by the SGs to resolve environmental
challenges or to compensate for developmental deficien-
cies, primarily without involvement of the adaptive im-
mune system. Fourth, LE gene patterns associated with
costimulatory signals revealed both effector and regulatory
ligand-receptor pairs’ being present, indicating that ef-
fector as well as immunoregulatory processes govern the
onset of overt disease [45].
Although global data sets are seldom adequate to define

the role of a single gene or protein, the isolated study of
individual components in turn is limited in terms of eluci-
dating how properties of biological systems emerge as a
result of coordinated interactions between its numerous
members and processes [41]. To take full advantage of the
unbiased nature of “-omics” data sets, our concept inte-
grates data analysis by relying extensively on bioinformat-
ics resources for compilation of consensus-based, a priori-
defined biological knowledge with an interactive model for
data interpretation based on networks computed entirely
from experimental data. Importantly, this concept is trans-
ferable to global data sets of any nature and achieves an
important reduction in the number of arbitrary cutoffs set
at the stage of data analysis. It also diminishes significantly
the amount of personal bias commonly introduced during
the process of data interpretation [46] and overcomes the
confines of lists and matrices, which have clear limitations
in conveying large amounts of complex data and interrela-
tionships [47].
Obviously, to base such mappings on additional di-

mensions, such as global protein synthesis or posttran-
scriptional modification profiles, would significantly
improve the validity of such analyses. They will become
more feasible technologically and economically in the fu-
ture [48]. In this study, we have computed a meaningful
basis that has allowed us to formulate conclusions in
agreement with the generality of our aim. In the future,
assigning specific weights to the individual genes based
on their uniqueness or importance to a specific GS may
further standardize and facilitate the final steps of data
interpretation. In the meantime, it is important to pro-
vide additional user-friendly graphical layouts of the net-
works, such as the ones presented herein, to enable the
reader to scrutinize the authors’ detailed interpretation
of the networks.

Conclusions
By adhering to the principles of systems biology and
adapting bioinformatics-based methodologies and data
visualization to suit our aims, this study has delineated a
novel perspective on the chronology and interplay be-
tween the SGs’ EM and the role of the innate and adaptive
immune systems during the emergence of spontaneous,
experimental SS (Figure 9). The timeline defined herein
highlights the importance of genes governing the target
tissue’s homeostatic state in establishing a stable subclin-
ical disease state long before the clinical manifestation of
SS. Formulating conclusions in agreement with the gener-
ality of our aim was possible only after having developed
and applied the integrated data analysis and data
visualization pipeline, which is also presented herein. This
data-driven approach advances systematic and impartial
interpretation of global datasets on the background of
standardized, consensus-based, a priori-defined biological
knowledge. It is widely applicable to the fields of immun-
ology and rheumatology and will greatly facilitate analysis
of complex alterations in biological states on a systems
level, such as changes induced as a consequence of experi-
mental treatment interventions.
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