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Abstract

Introduction: In recent years, there has been an increased demand for computer-aided diagnosis (CAD) tools to
support clinicians in the field of indirect immunofluorescence. To this aim, academic and industrial research is
focusing on detecting antinuclear, anti-neutrophil, and anti-double-stranded (anti-dsDNA) antibodies. Within this
framework, we present a CAD system for automatic analysis of dsDNA antibody images using a multi-step
classification approach. The final classification of a well is based on the classification of all its images, and each
image is classified on the basis of the labeling of its cells.

Methods: We populated a database of 342 images—74 positive (21.6%) and 268 negative (78.4%)— belonging to
63 consecutive sera: 15 positive (23.8%) and 48 negative (76.2%). We assessed system performance by using k-fold
cross-validation. Furthermore, we successfully validated the recognition system on 83 consecutive sera, collected by
using different equipment in a referral center, counting 279 images: 92 positive (33.0%) and 187 negative (67.0%).

Results: With respect to well classification, the system correctly classified 98.4% of wells (62 out of 63). Integrating
information from multiple images of the same wells recovers the possible misclassifications that occurred at the
previous steps (cell and image classification). This system, validated in a clinical routine fashion, provides recognition
accuracy equal to 100%.

Conclusion: The data obtained show that automation is a viable alternative for Crithidia luciliae immunofluorescence
test analysis.
Introduction
Anti-double-stranded DNA (anti-dsDNA) antibodies are
serological markers of systemic lupus erythematosus
(SLE), considered to be markers of disease activity and
organ damage. They entered to be part of classification
criteria for SLE, according to the recommendation of the
American College of Rheumatology and they have been
confirmed as immunological criteria for SLE in the re-
cently published SLICC (Systemic Lupus International
Collaborating Clinics) criteria [1,2]. Several assays are now
available for the detection of dsDNA autoantibodies. Cur-
rently used techniques in clinical laboratories vary from
the Crithidia luciliae immunofluorescence test (CLIFT) to
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radioimmunoassays (RIAs) (Farr assay and PEG assay) or
easily automatized enzyme-linked immunosorbent assays
(ELISAs) [3,4]. In the CLIFT, the antigen source is the
kinetoplast of the hemoflagellate Crithidia luciliae, which
contains naked circular DNA. The test detects medium-
to high-avidity isotype-specific anti-dsDNA antibodies,
thus coupling high disease specificity (98% to 100%) with
good sensitivity (47% to 55%) [5]. With respect to the
technique, indirect immunofluorescence (IIF) is affected
by several issues limiting test reliability and reproducibility
[6]. Therefore, in recent years, there has been an increase
in demand for computer-aided diagnosis (CAD) tools of-
fering support both to clinicians and to diagnosticians. In-
deed, CAD systems may be useful in many ways: (a) they
can be adopted as a second reader, thus augmenting the
clinician’s capabilities and reducing errors; (b) they allow
physicians to perform a pre-selection of the cases to be
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examined, enabling them to focus attention on only the
most relevant cases; and (c) they can be used as a tool for
training and education of specialized medical personnel.
Since the validation of the use of digital images for diag-
nostic purpose in the field of indirect immunofluorescence
[6], there has been research and industrial interest in de-
veloping CAD systems with applications in the fields of an-
tinuclear antibodies (ANAs), anti-neutrophil antibodies,
and CLIFT detection [7-24].
We recently presented an experimental model of the

CAD system for automated ANA detection on HEp2
cells (SLIM-system), which provides a reliable identifica-
tion of negative samples and a flexibility that permits
this application to be used for different purpose [24].
The aforementioned research efforts prove that there is
a growing interest in developing reliable and useful auto-
matic CAD systems in IIF. In this respect, we present a
CAD system for automatic analysis of dsDNA images,
whose performance has been validated in clinical routine
fashion to have achieving an accuracy equal to 100%.

System architecture
The system collects several images of the same well since
these images do not cover the entire well surface at the
used microscope magnification. This feature permitted us
to exploit a certain degree of redundancy, integrating
information extracted from different images of the same
well. The proposed CAD system applies a multi-step
classification approach, so that final classification of a well
is based on the classification of all its images. Furthermore,
each image is classified on the basis of the classification
of its cells.
In the first classification step, we worked on the cells.

To this aim, we first detected presumed kinetoplast by ap-
plying a threshold-based classification. In this way, we
were able to detect the compact set of pixels more fluores-
cent than other parts that are candidates to be a kineto-
plast. Conversely, the absence of such regions permitted
us to label the image as negative. Next, we considered only
those images containing at least one candidate kinetoplast
region. In such images, we located the cells and extracted
from them a set of features. The feature set permitted us
to divide the cells with a candidate kinetoplast in those
containing and not containing a true kinetoplast. This set
was composed of measures belonging to intensity histo-
gram, Fourier transform (FT), circular local binary pattern
(LBP), and morphological descriptors. Features computed
over the intensity histogram were related to the number of
high fluorescent pixels and to the absolute maximum in-
tensity value. Furthermore, features extracted from the
grey-level co-occurrence matrix describe the image tex-
ture, which varies between cells where only the kinetoplast
is fluorescent and cells where the basal body, the nucleus,
or artifacts are fluorescent. Features computed from the
FT catch information related to spatial frequency in the
image. For instance, the greater the number of fluorescent
objects inside a cell, the higher the frequency in the
spectrum. Circular LBP features describe image texture
with reference to circular information. Finally, the mor-
phological descriptors catch information on shape and in-
tensity of presumed kinetoplast. Given this set of features,
we applied a supervised classifier, namely a Support Vec-
tor Machine, which assigns a positive or a negative label
to each cell on the basis of the knowledge incorporated
during the training phase of the method.
In the second step of the proposed multi-step ap-

proach, we classified the images: given the set of labels
assigned to the cells, each image is classified by majority
voting over its cells. This combination rule, selected
among other criteria after preliminary tests, assigns to
the input image the label corresponding to the class re-
ceiving the majority of votes [25].
The third and last step classifies the well on the basis

of the labels associated with its images. To this aim, we
again used the majority voting rule, assigning to the well
the label of the class with the majority number of im-
ages. Furthermore, the system suspends the decision
when an equal number of images have opposite labels.
This choice corresponds to a conservative criterion that
aims at minimizing the misclassification risk.

Methods
We initially populated a database of annotates images by
using slides of Crithidia luciliae (CL) substrate (The
Binding Site) at the fixed dilution of 1:10 as recom-
mended by guidelines [26]. Two specialists took five CL
images per well, on average, with an acquisition unit
consisting of the fluorescence microscope (Orthoplan;
Leitz, Stuttgart, Germany) coupled with a 50-W mercury
vapor lamp and with a digital camera (F145C; Allied
Vision Technologies, Stadtroda, Germany). Images have
a resolution of 1,388 × 1,038 pixels and a color depth of
24 bits and are stored in a bitmap format. We used two
different magnifications (25- and 50-fold) to test robust-
ness to cell size variation. The images then were blindly
classified by two experts of IIF, who were asked to reach
consensus on the cases about which they disagreed.
This image data set consists of 342 images—74 posi-

tive (21.6%) and 268 negative (78.4%)—belonging to 63
sera: 15 positive (23.8%) and 48 negative (76.2%). One
hundred fifty-four images have been acquired by using
25-fold magnification, and the remaining 188 by using
the 50-fold magnification.
Moreover, specialists labeled a set of cells belonging to

images with fluorescent cells since our recognition ap-
proach requires the labels of individual cells to train the
corresponding classifier. This procedure was carried out at
a workstation monitor since at the fluorescence microscope



Table 1 Contingency table of threshold-based image
classification

Hypothesized class

Positive Negative

True class

Positive 74 (100.0%) 0 (0.0%)

Negative 47 (17.5%) 221 (82.5%)

Total 121 221
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it is not possible to observe one cell at a time. Notice that
the use of digital images in IIF for diagnostic purposes has
been discussed [6]. At the end, the cells’ data set consisted
of 1,487 cells belonging to 34 wells: 928 labelled as positive
(62.4%) and 559 as negative (37.6%). This means that, on
average, each image contained approximately eight cells.
These sets of cells and well images were used to develop

and test the proposed recognition approach. In keeping
with common practice in the pattern recognition and ma-
chine learning fields, we assessed system performance by
using the k-fold cross-validation. To avoid any bias intro-
duced by this procedure, we divided the set of 1,487 cells
into several subsets, one for each well, and then performed
a one-well-out cross-validation, in which the cells of one
well constitute the test set and the others the training set.
Furthermore, we validated the recognition system in a

daily routine fashion. In this respect, we used 83 consecu-
tive sera of outpatients and inpatients of the Campus
Bio-Medico, University Hospital of Rome. These images
were acquired in two different rounds. In the first round,
we collected 48 sera by using a 50-fold magnification lens
and the aforementioned equipment and substrate. In the
second round, other 35 consecutive sera were acquired
using slides of CL substrate (Inova Diagnostics, Inc., San
Diego, CA, US). We used the fluorescence microscope
Eurostar II coupled with a led and with a digital camera
(DX40; Kappa, Gleichen, Germany). In this case, images
have a resolution of 1,392 × 1,040 pixels and a color depth
of 24 bits and are stored in jpeg format. The images were
acquired by using the 40-fold magnification. At the end,
this validation set consisted of 83 wells, resulting in a total
of 279 images. This means that in this phase we acquired
an average of three images per well. The distributions of
wells in the positive and negative classes were 35.0% and
65.0% (29 and 54 wells), respectively. In the validation
phase, we collected a total of 279 images: 92 positive
(33.0%) and 187 negative (67.0%).
The next section will present the results we achieved:

the performance of the system has been estimated by
the accuracy, the specificity, the sensitivity, and the pre-
cision. To provide a deep insight in the data, we also re-
ported the contingency table.

Results
Cell classification
Cell classification performance has been estimated on the
1,487 cells described in section Materials and methods.
Percentages of recognition accuracy on cell images ac-
quired at 25- and 50-fold are 94.4% and 94.0%, respec-
tively. Sensitivity and specificity on cell images acquired at
25-fold are 94.7% and 93.8%, respectively, whereas on cell
images acquired at 50-fold, they are 97.1% and 89.9%, re-
spectively. These similar values suggest that cell classifier
is robust to cell size variation.
Image classification
As presented in section Materials and methods, image
classification consists of two steps. In the first one, we
apply a threshold-based classification which aims at de-
tecting clearly negative images. The system labeled 221
images as negative and 121 images as positive. All posi-
tive images passed this phase, whereas 17.5% of negative
images, in this step, were misclassified (Table 1). Such
errors are expected since threshold-based classification
looks for fluorescent connected regions, corresponding
to presumed kinetoplast. However, this step does not
permit a satisfactory performance in well classification,
since the discrimination between true- and false-positive
samples remains an open issue.
The second step applies cell classifier to recognize

whether the image is positive (that is, it contains true
fluorescent kinetoplasts). The system now works on
single-cell classification to recognize whether the images
having candidate kinetoplast regions contain the true
fluorescent kinetoplast. Of the 121 images labelled as
positive by the previous step, 73 images (98.6%) were
classified as true positive and 46 images (97.9%) as true
negative, as shown in the contingency table illustrated in
Table 2. Only two images have been misclassified. Inte-
grating the results of threshold-based and the cell-based
classification, we found that most of the false-positive
images given by threshold-based classification are now
correctly classified, with only one false positive (0.4%).
Finally, we analyzed whether magnification affects the

recognition performance. Classification accuracies on
images acquired by using 25- and 50-fold magnifications
are 99.4% and 99.5%, respectively. When the images are
acquired by using 25-fold magnification, sensitivity and
specificity are 96.2% and 100.0%, respectively. When the
images are acquired by using 50-fold magnification, sen-
sitivity and specificity are 100.0% and 99.3%, respectively.
These results confirm that the system is robust to vari-
ation of magnifications.

Well classification
The integration of information from multiple images of
the same wells enables us to recover the possible mis-
classifications that occurred at the previous steps. As de-
scribed in Table 3, the system correctly classified 98.4%



Table 2 Contingency table of overall image classification

Hypothesized class

Positive Negative

True class

Positive 73 (98.6%) 1 (1.4%)

Negative 1 (0.4%) 267 (99.6%)
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of wells (62 out of 63) whereas only one has been
rejected since it consists of two images labeled to the
two opposite classes. Indeed, the system suspended the
decision and asks the physician for the final decision.

System validation
CAD systems can be a valuable tool since they may offer
support to physicians in different working scenarios.
However, it is normal to have some skepticism about the
true usefulness of CAD systems in daily practice. In par-
ticular, physicians are often doubtful of performance of
such systems because their application in clinical prac-
tice requires a careful assessment in a daily routine fash-
ion. In this respect, we verified the strength of our CAD
system on 83 consecutive sera, as reported in section
Materials and methods. Each well has been classified ac-
cording to the approach described so far: the system first
labels its images and then takes the final decision. The
last row of Table 3 shows that the proposed CAD system
correctly classified all samples.

Discussion
The proposed CAD system for automatic analysis of
CLIFT applies a multi-step classification approach, as
illustrated in section System architecture. The first step
identifies the clearly negative images, applying a thresh-
old-based classification. Images supposed to be positive
are subsequently classified by a classification system that
discriminates true- from false-positive images by using dif-
ferent features (for example, morphological descriptors
that provide information on shape and intensity of pre-
sumed kinetoplast). This classification system is able to
correctly recognize all false-positive images given by the
threshold-based classification, with only one false positive
remaining (0.4%). Hence, the multi-step approach is one
Table 3 Performance of cell, image, and whole well
classification

Accuracy Sensitivity Specificity Precision

% % % %

Cell classification 94.2 95.5 92.1 95.3

Image classification 99.4 98.6 99.6 98.6

Well classification 98.4 93.3 100 100

System validation 100 100 100 100
of the strengths of the proposed system since it permits
recovery of the possible misclassifications that occur in
each step.
To provide the final result, the CAD system performs

well classification, integrating information from multiple
images. On this phase, the system correctly classified
98.4% of wells, whereas for one well it suspends the clas-
sification and asks the physician for the final decision.
This happens since there are two images for such a well
that are labelled to the two opposite classes (positive and
negative).
Furthermore, the system went through a validation

phase run on clinical routine, where it achieves an accur-
acy of 100%. It is worth noting that images of sera used in
this validation phase were collected in two different rounds
by using substrates produced by different companies, dif-
ferent microscopes, different lighting sources, different
digital cameras, and two different compression algorithms,
as described in section Materials and methods. Despite this
large variability, the results show that the system is robust
and is able to adapt to different working scenarios. Indeed,
the classification algorithm employed in our proposal
automatically tunes its free parameters to the characteris-
tics of the images at hand. We therefore deem that our
methodology for automated CLIFT standardization can be
adapted to many laboratories, regardless of which equip-
ment is used.
The standardized detection of anti-dsDNA antibodies

is a topic that has attracted recent research interest
[3,4,15-17]. Roggenbuck and colleagues [3] compared Farr
assay, ELISA, and CLIFT, remarking that CLIFTcan be au-
tomated, thus reducing the interlaboratory variability simi-
lar to HEp-2 IIF in antinuclear antibody detection [10,12].
Elsewhere, Roggenbuck and colleagues [4] suggested that
the Aklides (Medipan, Berlin, Germany) reading system
can also be used for the automated reading of images given
by the modified CLIFT presented in [27]. In another re-
port, the authors [16] reviewed and summarized the gen-
eral and specific features of seven recent available
commercial systems for automation of the IIF method,
pointing out that the Aklides (Medipan) and the Image
Navigator (Immuno Concepts, Sacramento, CA, USA) sys-
tems are able to detect antibodies to dsDNA. While for
the Image Navigator system no data are available in the lit-
erature [15], the results of the Aklides systems in case of
automated CLIFT analysis are reported in [16,17]. In these
papers the authors collected 44 sera and then they com-
pared the Aklides diagnostic performance on dsDNA sam-
ples with the traditional visual interpretation made by
laboratory experts. The results showed that the Aklides
system got values of accuracy, sensitivity, specificity and
precision equal to 90.9%, 90.9%, 90.9% and 76.9%, respect-
ively. Furthermore, in the case of critical samples, the
Aklides system does not permit the clinicians to work in
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parallel with the automated system, according to what was
reported in the articles.
Conclusions
The need of automatic applications in indirect immuno-
fluorescence for autoimmunity comes from the high
inter- and intra-laboratory variability, which is due to
subjective image evaluation and to the different level of
expertise between operators while they read and inter-
pret the images. In addition, immunologists and clinical
pathologists have to face the increasing laboratory work-
load observed in recent years. CAD tools are able to re-
spond to this demand, but currently a critical issue is
the development and validation of systems providing
high accuracy and also giving the clinician the possibility
to operate on critical samples.
Returning to our proposal, we deem that the global

architecture adopted in our CAD system provides the
following benefits:

� the threshold-based approach reduces the occur-
rence of false-negative classification, whereas the
cell-based classification permits clinicians to distin-
guish between true- and false-positive images;

� the initial threshold-based classification allows a
rapid categorization of several images;

� the system is tolerant with respect to
misclassification in cell recognition; in fact, if
enough cells per image are available, it is reasonable
that misclassified cells, if limited, do not affect image
classification;

� the proposed system, validated in a clinical routine
fashion, provides recognition accuracy equal to
100%, showing that automation is a viable
alternative for CLIFT analysis.

The classification system has proved to be able to
adapt to the different substrates and equipment. Never-
theless, in future works, we plan to extend our validation
tests to substrates produced by other companies to fur-
ther assess the robustness and adaptability of the classifi-
cation system. Furthermore, we plan to investigate how
the CAD works with diluted sera to introduce the
chance to differentiate between low and high positive.
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