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IFN = interferon; IL = interleukin; MRL/lpr = murine lupus; NF = nuclear factor; NZB/W = F1 generation of New Zealand Black with New Zealand
White mice; SLE = systemic lupus erythematosus; TNF = tumor necrosis factor; TNF-R, tumor necrosis factor receptor.
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Introduction
Serum tumor necrosis factor (TNF) levels in human sys-
temic lupus erythematosus (SLE) are increased [1–4]. In
spite of likewise increased soluble TNF receptors (TNF-R1
and TNF-R2), this increased TNF is bioactive [5]. While
these findings could open the door for TNF-blocking
therapy, TNF exerts several different effects and TNF
blockade may have a variety of consequences.

There are two main reasons for some concern about using
TNF blocking therapies in SLE patients. First, patients with
either rheumatoid arthritis or Crohn’s disease sometimes
develop antinuclear antibodies and IgM antibodies to
double-stranded DNA in the course of TNF-blocking thera-
pies [6–8]. These patients only rarely develop a lupus-like
syndrome, however, and both clinical symptoms and
autoantibodies disappear when anti-TNF treatment is
stopped in such patients [6,7]. Nevertheless, the propen-
sity to induce pathogenic antibodies to nuclear antigens
could constitute a serious problem in SLE.

The second reason for concern is that the F1 generation
of New Zealand Black mice with New Zealand White
(NZB/W) mice not only develops autoantibodies and a
lupus-like disease, but also has a clearly diminished pro-
duction of TNF [9]. In concordance with this observation,
New Zealand Black mice, which suffer from mild lupus,
also develop severe disease when rendered deficient in
TNF [10]. Furthermore, therapeutic application of TNF in
NZB/W mice showed significant benefit: high-dose TNF
given early in life delayed the development of autoantibod-
ies and lupus nephritis [9,11]. A deficiency of TNF thus
apparently fosters autoimmunity and disease in these
mice, but it is unclear how this relates to human disease
[12] and to other murine models of SLE with higher TNF
production.

The numerous possible roles of TNF in autoimmunity are
somewhat difficult to define not only by virtue of the multi-
ple biological effects of TNF, but also due to different
effects in different models and under different settings.
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However, although it is undisputed that this cytokine is
importantly involved in the context of autoimmunity, TNF
may indeed play more than one role [13–17]. In fact, many
functions of TNF are well defined, and we shall try to
discuss the different possible effects that TNF may have
on the pathogenesis of SLE.

Lymphoid organogenesis
Both membrane-bound TNF and secreted TNF are impor-
tant in the development of secondary lymphoid organ
structures, such as in lymph nodes, in the spleen and in
Peyer’s patches. Deficiency of TNF results in the absence
of germinal centers and in the absence of follicular den-
dritic cells. In particular, TNF cooperates with lymphotoxin
in secondary lymphoid tissue development and also medi-
ates signals for primary B-cell follicle generation [18–20].
While membrane-bound TNF confers the major structure
of secondary lymphoid organs, soluble TNF appears to be
involved in the generation of primary B-cell follicles [21].
Low levels of TNF may thus be associated with aberrant
B-cell responses [22].

Furthermore, TNF influences T-cell receptor signaling, and
TNF deficiency could also contribute to aberrant immune
reactivities through this additional pathway early on in
development and/or in the course of disease induction
[23]. The level of TNF expression both in its membrane-
associated form as well as in its soluble form thus con-
tributes importantly to the development of T cells, of B cells
and of dendritic cells (see later), and to the interactions
between these cells, and it may constitute one important
determinant of the type and level of immune responses.

Immune regulation
TNF exerts a wide variety of relevant immunoregulatory
functions on a variety of cells of the innate and adaptive
immune system. TNF is a growth factor for B lymphocytes,
and B lymphocytes are able to produce significant
amounts of TNF in an autocrine loop [24–26]. It is of inter-
est that this autocrine TNF production is induced by liga-
tion of CD40, a possible therapeutic target in SLE
[27–29], and is prevented by cyclosporin A, another ther-
apeutic agent for SLE [30]. Moreover, stimulation of
murine lupus (MRL/lpr) B cells by membrane-bound TNF
via their TNF-R2 provides a signal that overcomes the lack
of CD40 ligand (CD154) otherwise necessary for the pro-
duction of (auto)antibodies [31]. TNF may also exert a sig-
nificant influence on B cells by virtue of its capacity to
induce IL-6 [32]. The effects of IL-6 on multiple aspects of
B-cell development and activation as well as on SLE have
been well established [33]. IL-6 may also affect B cells via
T helper type 1 and T helper type 2 cells, the differentia-
tion of which IL-6 is also able to influence [34].

The potential of TNF to modify T-cell receptor signaling
has already been briefly mentioned. Interestingly, short-

term stimulation of activated T lymphocytes with TNF
results in further activation and proliferation [35–37].
Moreover, TNF stimulation leads to increased production
of IFN-γ [35], a cytokine with a clear-cut pathological role
in SLE [38–40].

In addition, chronic TNF exposure induces a reversible
loss of the surface T-cell receptor complex, and thus T-cell
hyporesponsiveness [41,42], but still allows for IL-2-medi-
ated proliferation. Since similar effects in rheumatoid
arthritis patients are readily reversed by anti-TNF therapy
[42], this normalization of T-cell hyporesponsiveness in
patients treated with TNF-blocking agents may also influ-
ence the induction of autoantibodies.

TNF also constitutes an activating cytokine and a matura-
tion factor of dendritic cells, which are essential in immune
regulation [43] and have also been implicated in auto-
immunity in general, and SLE in particular [44,45]. The
numbers of both myeloid and plasmacytoid dendritic cells
are reduced in the peripheral blood of SLE patients
[46,47]. These dendritic cell counts (or numbers) nega-
tively correlate with the patients’ soluble TNF-R2 levels
[46], which in turn correlate with TNF levels [2].

These findings together suggest that dendritic cells have
been matured by TNF and hence are found in lymphoid
organs rather than in the peripheral blood. On the con-
trary, IFN-α produced by lymphoid dendritic cells is
another important maturation factor for dendritic cells and
is thought to be involved in SLE pathogenesis [48].
However, TNF is able to inhibit the production of IFN-α
[49].

It is interesting that aged NZB/W mice behave differently,
in that they have increased numbers of circulating den-
dritic cells that can be matured by TNF [50]. This is proba-
bly due to the decreased systemic TNF production
described in NZB/W mice [9].

Apoptosis
The connection of TNF to cell death is already indicated
by its name. Indeed, the pro-apoptotic properties of the
cytokine, mediated mainly via TNF-R1 but possibly also via
TNF-R2, are well established [51–54]. By virtue of also
being able to activate anti-apoptotic pathways, and NF-κB
in particular, however, TNF can also inhibit apoptosis by
inducing a variety of anti-apoptotic molecules, such as
inhibitor of apoptosis, TNF-receptor associated factor, and
FLICE-like inhibitory protein [52–57]. Rheumatoid arthritis
synovial cells are just one example where TNF appears to
use such pathways to block Fas-mediated programmed
cell death [58,59]. In concordance with these findings,
induction of a stress response, which acts mostly via the
same signal transduction molecules as TNF, inhibits apop-
tosis [60].
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Therefore, while lymphocytes of SLE patients die when
stimulated with high concentrations of TNF in vitro and
while serum TNF apparently is associated with the
increased in vitro lymphocyte apoptosis rate typical of SLE
[5], the in vivo role of TNF in this respect is not clear. In
fact, the observation of decreased apoptosis rates upon
addition of autologous plasma [5] rather suggests that the
propensity to undergo apoptosis in vitro may be due to
cytokine withdrawal afflicting in vivo activated cells [61].

Theoretically, an abrupt fall in bioactive TNF, as induced
by therapeutic TNF blockade, could thus lead to increased
Fas-mediated apoptosis. The subsequent exposure of the
immune system to more apoptotic material might then be
involved in inducing the aforementioned occurrence of
antibodies to nuclear antigens during TNF-blocking
therapy [6,7].

However, the notion that TNF can counteract Fas may also
be important in another regard. Given that in several mouse
strains mutations of Fas (lpr) or FasL (gld) cause severe
lupus-like disease by preventing FasL-induced apoptosis
[62,63], protection against Fas-induced apoptosis by TNF
may foster autoimmunity. Along these lines, TNF is indeed
necessary for sustaining the gld phenotype [64].

Inflammation
We have so far concentrated on aspects of TNF in the
afferent limb of the immune response (Fig. 1, upper part),
which suggest that TNF may promote a derangement of
immune regulation and be one factor potentially responsi-
ble for autoantibody induction. However, TNF is the most
important proinflammatory cytokine and a harbinger of
tissue destruction. In fact, in contrast to the complex role
of TNF in apoptosis and in immune regulation, its powerful
proinflammatory effects are unequivocal and have been
numerously reviewed [65].

In this regard, murine and human data on systemic lupus
arrive at the same conclusions. First, MRL/lpr mice have
high TNF in their serum as well as in their nephritic
kidneys, and both serum and renal TNF are correlated with
disease activity [66–68]. Also, anti-TNF therapy in
MRL/lpr mice [69,70], in motheaten mice [71] and in
C3H.SW mice [72] is beneficial. Moreover, even in
NZB/W mice, TNF application only delays and does not
prevent death from lupus [9]. Finally, even NZB/W
kidneys contain remarkably high amounts of TNF once
glomerulonephritis is established, and low dosages of TNF
administered in late NZB/W disease accelerate renal
damage [73,74].

All these data suggest that TNF is pivotally involved in the
tissue destruction observed in lupus organ disease. These
conclusions are further supported by observations that
macrophages are induced to produce high levels of TNF
by immune complexes [75]. Since murine lupus like
human SLE constitutes an immune complex-mediated
disease and since large amounts of immune complexes
are deposited in the glomeruli, it is highly unlikely that the
TNF expressed in renal tissue confers protective effects. It
rather portends what TNF expression in different tissues is
usually for: inflammation and consecutive tissue injury.

As in experimental lupus, TNF is highly expressed in
glomeruli in all forms of lupus nephritis [76–79], and the
degree of TNF expression correlates with renal inflamma-
tory activity [79], as measured by a histological activity
index. This correlation again suggests involvement of TNF
in the inflammatory and destructive process of the
disease. These data are further supported by the finding
that infliximab significantly reduced proteinuria, one of the
hallmarks of active lupus nephritis, in two patients treated
with this TNF blocker for a short period of time [79].

Figure 1

In the afferent limb of the (auto)immune response, tumor necrosis
factor (TNF) acts as a growth factor for B cells and may promote
dendritic cell (DC) maturation, but leads to T-cell hyporesponsiveness
and to the expression of anti-apoptotic molecules. Its inhibition by TNF-
blocking agents here could influence the immune response in several
ways. First, by better activation of T cells, including help for B cells and
influences in the T helper type 1/T helper type 2 cell balance (via IL-6).
Second, by reduced TNF effects (but increased IFN-α effects) on DCs,
and thus a divergence in DC maturation and activation steps. Finally,
by effects of B-cell activation via interference with B-cell proliferation
and (IL-6-mediated) class switching. All these changes could modulate
autoimmunity, particularly when paralleled by effects on apoptosis
(induction or inhibition). In the efferent limb, TNF is induced by immune
complexes (IC), and promotes inflammation and secondary tissue
destruction; liberation of autoantigens during necrosis could fuel
autoimmunity. TNF blockade therefore rapidly reduces TNF-induced
inflammation, but may also block immunomodulatory and anti-apoptotic
activities of TNF. Taken together, TNF blockade can interfere in a
beneficial way with tissue destruction, but in the afferent limb it may in
part foster autoimmunity. Ag, antigen; Ab, antibodies; M0,
monocytes/macrophages; T, T cells; B, B cells.
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However, longer term follow up and careful observation of
potential adverse events (which were not seen hitherto)
are mandatory. All these data together indicate that TNF
plays a detrimental proinflammatory role in SLE organ
involvement (Fig. 1, lower part).

Conclusion
Understanding how the immune system integrates the
pleiotropic properties of TNF is a challenge, particularly so
in diseases like SLE. TNF is both a proinflammatory
cytokine and an immunoregulatory cytokine. TNF has dif-
ferential effects on B cells, on T cells and on dendritic
cells as well as on the process of programmed cell death.

These complex properties may explain why TNF blockade
can induce increases in antinuclear antibodies and at the
same time rapidly reduce inflammation and prevent inflam-
mation-induced damage, also observed in SLE patients.
These properties also explain why TNF deficiency may
foster systemic autoimmunity under some circumstances,
as seen in the NZB/W mice, but why lupus autoantibodies
also occur in mice with increased TNF [80].

TNF is therefore a cytokine with two roles in SLE: its capac-
ity as a prime immune regulator, and its capacity as a proin-
flammatory mediator. In the afferent limb of the
immunoinflammatory response, with its role in lymphoid
organ structure development and cellular interactions
therein, as well as its influence on B cells, on T cells and on
dendritic cells, TNF can modulate an autoimmune response;
blocking TNF therefore may or may not be wise (Fig.1). In
the efferent limb of the response, TNF clearly induces
inflammation and local injury. With respect to the local
injury, blocking TNF should be highly beneficial (Fig.1).

A critical view on all of these aspects will be necessary to
further increase our understanding of the role of TNF in
SLE. In the end, however, it is clinical trials that will put all
hypotheses to their most relevant tests.
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