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Can baseline serum microRNAs predict
response to TNF-alpha inhibitors in
rheumatoid arthritis?
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Abstract

Background: In rheumatoid arthritis, prediction of response to TNF-alpha inhibitor (TNFi) treatment would be
of clinical value. This study aims to discover miRNAs that predict response and aims to replicate results of two
previous studies addressing this topic.

Methods: From the observational BiOCURA cohort, 40 adalimumab- (ADA) and 40 etanercept- (ETN) treated
patients were selected to enter the discovery cohort and baseline serum profiling on 758 miRNAs was performed.
The added value of univariately selected miRNAs (p < 0.05) over clinical parameters in prediction of response was
determined by means of the area under the receiver operating characteristic curve (AUC-ROC). Validation was
performed by TaqMan single qPCR assays in 40 new patients.

Results: Expression of miR-99a and miR-143 predicted response to ADA, and miR-23a and miR-197 predicted
response to ETN. The addition of miRNAs increased the AUC-ROC of a model containing only clinical parameters
for ADA (0.75 to 0.97) and ETN (0.68 to 0.78). In validation, none of the selected miRNAs significantly predicted
response. miR-23a was the only overlapping miRNA compared to the two previous studies, however inversely
related with response in one of these studies. The reasons for the inability to replicate previously proposed miRNAs
predicting response to TNFi and replicate those from the discovery cohort were investigated and discussed.

Conclusions: To date, no miRNA consistently predicting response to TNFi therapy in RA has been identified. Future
studies on this topic should meet a minimum of standards in design that are addressed in this study, in order to
increase the reproducibility.
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Background
Rheumatoid arthritis (RA) is a chronic, disabling disease
that mainly affects the synovial joints, with a prevalence
of 0.5–1.0 % in Western countries [1, 2]. The introduction
of TNF-α-inhibiting therapy (TNFi), such as adalimumab
(ADA) and etanercept (ETN), has dramatically improved
the outlook for RA patients. Nevertheless, a substantial
proportion of patients (approximately 30–40 %) fail to
respond to TNFi therapy [3, 4]. As we cannot predict
before initiation of therapy which patients will be non-
responders [5], TNFi treatment is administered in a trial
and error approach. However in the time frame from
initiation of therapy until response can be judged, which is
usually 3–6 months later, non-responding patients suffer
from uncontrolled disease with possible joint damage
and the potential harmful side effects from treatment.
The challenge is therefore to identify responders and
non-responders to TNFi beforehand, so that TNFi use
or considering alternatives can be encouraged.
microRNAs (miRNAs) are a large family of highly

conserved noncoding genes that play a fundamental role
in biological processes by controlling protein expression
[6–8]. miRNAs execute these actions by binding to pro-
tein-coding messenger RNAs (mRNAs), resulting in
translational repression or mRNA degradation [7]. Be-
sides intracellulary, miRNAs are also found in several bio-
logical fluids, including saliva, plasma, serum and urine,
either circulating in conjunction with specific carrier pro-
teins or enclosed in extracellular vesicles [9, 10]. Exploring
the use of circulating miRNAs as biomarkers for diseases
has gained momentum in recent years because of the easy
accessibility, the associations with specific disease condi-
tions and their good stability [10, 11]. In RA, a systemic
inflammatory disease primarily manifesting in the joints,
biomarkers in the circulation would intuitively not be
the most relevant compartment. However, the levels
of miRNAs are frequently higher in the circulation
than in the synovial fluid and correlate with disease
activity in RA, indicating that the systemic compart-
ment provides a useful compartment for studying the
ongoing pathophysiological processes [12] In addition,
abnormal expression of both synovial and systemic
miRNAs have been linked to disease activity and patho-
genesis, even though their direct targets are not always
known [13–19]. Three recent studies focused on the
prediction of response to therapy in RA by using circula-
ting miRNAs, of which two investigated response to the-
rapy with TNFi [20, 21] and one to rituximab [22].
According to these studies, promising predictors for TNFi
therapy were miR-22 [20], miR-23a [21], miR-223 [21],
and miR-886 [20]. Circulating miR-23a seems of particular
interest, since it was the only identified candidate bio-
marker that was overlapping among both studies in univa-
riate analyses. However, upregulation of miR23a was found

in whole blood [20], whereas a downregulation was found
in serum [21] of future responders.
In this study we explored the serum miRNAs associated

with good and bad response to TNFi therapy, in order to
replicate the results that have been published before. In
addition to the previous studies performed, we involved
clinical parameters in the prediction and attempted to
validate the miRNAs and prediction models in a separate
cohort.

Methods
Clinical data collection
Patients initiating ADA or ETN therapy were selected from
the “Biologicals and Outcome Compared and predicted
Utrecht region in Rheumatoid Arthritis” (BiOCURA) study.
BiOCURA is an observational cohort, in which RA patients
eligible for biological treatment according to regular clinical
practice were enrolled and followed after start of treatment,
in one academic hospital and seven regional hospitals in
the Netherlands (see Acknowledgements). Re-inclusion
after switching to a different biological treatment was
possible, at which patients re-entered baseline again. The
study was approved by the local ethics committee of the
University Medical Center Utrecht and the institutional
review boards of the participating centers, and was
performed in accordance with the Declaration of Helsinki.
Informed consent was obtained from each patient.
Trained nurses gathered all data during a dedicated visit,

which included all clinical parameters, joint counts and
collection of blood. Visits were scheduled at baseline
(before initiation) and after 3, 6, and 12 months of treat-
ment. Disease activity was assessed using the disease acti-
vity score based on a 28-joint count (DAS28) [23] and
subsequently the European League Against Rheumatism
(EULAR) response was calculated [24]. This study design,
allowed the determination of a clinical response of each
patient, on the basis of three EULAR responses over the
course of 1 year.

Patient selection
Two separate cohorts were composed from the available
patients in the BiOCURA study: a discovery cohort was
used to screen the expression of a full panel of 758
miRNAs, while a validation cohort was used to test if the
results found in the discovery phase were reproducible. The
discovery cohort was formed by selecting the most extreme
patients regarding clinical response, among all ADA- and
ETN-treated patients included between June 2009 (start of
BiOCURA) and October 2012 (n = 74 ADA and n = 68
ETN). The top responding patients (n = 20 for both ADA
and ETN, from now on called “responders”), were identified
by the selection of patients with the best three EULAR
responses over the course of 1 year. The selection of bad
responders (n = 20 for both ADA and ETN, from now
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on called “non-responders”), was based on the most nega-
tive EULAR responses over the course of 1 year and/or
(early) discontinuation of TNFi treatment due to ineffi-
cacy. Patients with a baseline DAS28 < 2.6 were excluded
from the analysis in order to reduce the chance that
limited improvement in DAS28 resulted in misclassi-
fication as EULAR non-responders. For validation of
results, responders (n = 10 for both ADA and ETN) and
non-responders (n = 10 for both ADA and ETN) were
selected using the same criteria as in the discovery cohort,
among patients included from October 2012 until June
2015 (n = 25 ADA and n = 40 ETN). Since the validation
cohort was smaller, relatively more patients were selected
and the differences in clinical outcome between responders
and non-responders were less extreme. The baseline char-
acteristics for responders and non-responders are shown in
Table 1 and for responders and non-responders split
per cohort in Additional file 1. Additionally, the baseline

characteristics for the discovery and validation cohorts are
shown in Additional file 2.

miRNA analyses
Blood processing and RNA extraction
Blood was collected in Vacutainer® SSTII tubes (BD,
Franklin Lakes, NJ, USA) and processed immediately
after clotting. Samples were centrifuged for 10 min at
1500 g at room temperature and serum was aliquoted
and stored at −80 °C until use. RNA was extracted from
240 μl of serum using the miRcury RNA Isolation kit for
Biofluids (Exiqon), according to the manufacturer’s
instructions. During extraction, 300 pg of a synthetic
miRNA (Arabidopsis thaliana ath-miR-159a) was added
to each sample as a spike-in to monitor technical vari-
ability along the isolation procedure and for later
normalization.

Table 1 Baseline characteristics of responders and non-responders, split for treatment received

Item ADA (n = 60) ETN (n = 60)

Non-resp Resp p value Non-resp Resp p value

(n = 30) (n = 30) (n = 30) (n = 30)

Female gender, n (%) 21 (70) 21 (70) 1.00 25 (83) 21 (70) 0.36

Age, mean years ± sd 54.4 ± 10.9 53.5 ± 12.7 0.76 58.3 ± 9.2 55.1 ± 10.5 0.22

Current smoker, n (%) 16 (53) 8 (27) 0.06 8 (27) 7 (23) 1.00

RF positivity, n (%) 16 (53) 21 (70) 0.29 20 (67) 22 (73) 0.78

ACPA positivity, n (%) 19 (63) 19 (63) 1.00 19 (63) 26 (87) 0.07

CRP, mg/l median (IQR) 5.2 (1.6–10.5) 5.5 (2.0–12.3) 0.78 4.0 (2.0–9.0) 8.5 (4.0–18.3) 0.03

No. of previously used bDMARDs 1.00

0, n (%) 20 (67) 23 (78) 22 (73) 22 (73)

1, n (%) 9 (30) 7 (23) 7 (23) 7 (23)

2, n (%) 1 (3) 0 (0) 1 (3) 1 (3)

Concomitant treatment, n (%) 29 (97) 29 (97) 1.00 27 (90) 29 (97) 0.61

MTX, n (%) 21 (70) 27 (90) 0.10 18 (60) 25 (83) 0.08

SSZ, n (%) 2 (7) 4 (13) 0.67 4 (13) 2 (7) 0.67

HCQ, n (%) 8 (27) 7 (23) 1.00 10 (33) 11 (37) 1.00

GC, n (%) 15 (50) 4 (13) 0.01 11 (37) 6 (20) 0.25

Baseline DAS28, mean ± sd 3.9 ± 1.4 4.7 ± 0.9 0.01 4.3 ± 1.2 4.6 ± 0.9 0.21

TJC, median (IQR) 5.0 (1.0–13.0) 7.0 (4.0–14.3) 0.35 6.5 (2.8–11.3) 5.0 (2.8–11.3) 0.87

SJC, median (IQR) 0.0 (0.0–4.0) 2.0 (0.0–4.0) 0.03 1.0 (0.0–3.3) 2.0 (0.8–4.0) 0.20

VAS-GH, mean ± sd 55.2 ± 23.8 63.8 ± 22.0 0.15 55.5 ± 22.8 55.1 ± 10.5 0.76

ESR, median mm/hr (IQR) 11.0 (3.8–26.0) 16.5 (9.0–32.0) 0.14 13.0 (5.8–33.8) 21.0 (14.3–39.5) 0.07

RA patients were selected from the observational BiOCURA cohort based on treatment outcome over the course of 1 year after the start of treatment with either ADA
or ETN. The presented clinical characteristics for responders and non-responders refer to the values present before treatment initiation. P values of comparisons between
responders and non-responders were calculated by means of an independent sample t test, Mann-Whitney U test, Fisher’s exact test (2*2) or chi-square (>2*2) based on
the distribution of the clinical parameter. Bold p values indicate significant associations (p < 0.05)
ACPA anti-citrullinated protein antibody, ADA adalimumab, bDMARDs biological disease-modifying antirheumatic drugs, CRP C-reactive protein, ESR erythrocyte
sedimentation rate, ETN etanercept, GC glucocorticoid, HCQ hydroxychloroquine, IQR interquartile range, MTX methotrexate, RF rheumatoid factor, SJC swollen
joint count, SSZ sulfasalazine, TJC tender joint count, VAS-GH visual analogue scale of general health

Cuppen et al. Arthritis Research & Therapy  (2016) 18:189 Page 3 of 12



miRNA profiling
miRNA profiling was performed by TaqMan RT-qPCR on
the OpenArray platform (Life Technologies, Carlsbad,
CA, USA). This method allows the simultaneous analysis
of 758 miRNAs, split into two equal pools (A and B).
Manufacturer’s instructions were followed with minor
adjustments. Briefly, 2.5ul of isolated serum RNA was
reverse-transcribed by using the miRNA multiplex RT
primers pools, either v2.1 for pool A or v3.0 for pool B,
and the TaqMan miRNA reverse transcription kit (Life
Technologies). RT products were pre-amplified using the
Megaplex PreAmp Primers pools A and B in the presence
of the TaqMan PreAmp Master Mix (Life Technologies),
by using the following thermal cycler conditions: 10 min,
95 °C; 2 min, 55 °C; 2 min, 72 °C and 16 cycles of 15 sec,
95 °C and 4 min, 60 °C and one single cycle of 10 min,
96 °C. The miRNA OpenArray profiling was performed
on the amplified cDNA, diluted to 1:40, with 0.1 × TE
buffer pH 8.0 and subsequently 1:2 by using the TaqMan
OpenArray Master Mix on the QuantStudio 12 K Flex
Real-Time PCR System (Life Technologies).
miRNA profiling data was analyzed using the Relative

Quantification application in the online accessible Thermo
Fisher Cloud (https://apps.thermofisher.com/apps/dash-
board/), using the relative threshold cycle (Crt) and the
comparative threshold cycle method [25]. Briefly, miRNA
expression was calculated after normalization by exogenous
ath-miR-159a spike-in (ΔCrt = Crt mean target – Crt mean
miR-159a). The relative fold change (FC) of each sample
was determined by setting the FC of a random ADA or
ETN non-responder sample at 1, and calculating the
FC compared to this reference (FC = 2–ΔΔCrt, where
–ΔΔCrt =ΔCrt reference – ΔCrt sample). Low expressed
miRNAs, i.e., having Crt higher than 27 were set to 27,
and samples with a low amplification quality (i.e., amplifi-
cation score < 1.24) were excluded from the analysis.

Individual miRNA analysis
miRNA-specific TaqMan Real-Time quantitative PCR (RT-
qPCR) assays were purchased from Life Technologies for
hsa-miR-23a-3p (ID 000399), hsa-miR-99a-5p (ID 000435),
hsa-miR-143-3p (ID 002249), hsa-miR-197-3p (ID
000497), and for the exogenous control ath-miR-159a (ID
000338). From 2.5 μl baseline serum RNA, cDNA was syn-
thesized by using individual miRNA-specific RT primers
contained in the miRNA assay in the presence of 3.3 U/μl
MultiScribe RT enzyme (Life Technologies), by using
the following thermal cycler conditions: 10 min, 4 °C;
30 min,16 °C; 30 min, 42 °C; and 5 min, 85 °C. Circulating
miRNA levels were quantified in duplicate from 3 μl
cDNA, with TaqMan Fast Advance Master Mix and
specific primers of the miRNA assay, using the following
amplification condition on the Quantstudio 12 K Flex
Real-Time PCR system: 2 min, 50 °C; 20 sec, 95 °C;

40 cycles of 1 sec, 95 °C; and 20 sec, 60 °C. RT-qPCR data
were calculated as described above, with the difference
that baseline threshold cycles (Ct) were used.

Statistical analyses
Differential expression of miRNAs between responders
and non-responders was calculated separately for ADA
and ETN by means of an independent sample t tests on
the –ΔΔCrt/–ΔΔCt, with a threshold for significance of
0.05 (uncorrected p value). The levels of differentially
expressed miRNAs were plotted in GraphPad Prism
(GraphPad, La Jolla, CA, USA) as FC of responders versus
non-responders. Validation was considered successful
when both the t test was significant and plots of the FC
showed the same direction (i.e., up/downregulation).
In order to determine the added value of the miRNAs

over clinical parameters, we built two prediction models
for each treatment, using multivariable logistic regression.
The first model consisted of all baseline clinical parame-
ters that were significantly different between responders
and non-responders (the “clinical model”). The second
model included the clinical parameters and the selected
miRNAs (–ΔΔCrt values) (the “combined model”). Per
model, the area under the receiver operating characteristic
curve (AUC-ROC) was calculated as an indicator of the
predictive ability. We considered an AUC-ROC of < 0.7
limitedly, 0.7–0.8 moderately and > 0.8 highly predictive of
response. The sensitivity and specificity were calculated
for the best cutoff value per model, according to Youden’s
index [26]. Evaluation of the added value of miRNAs was
based on the increase of predictive abilities when switch-
ing from the clinical to the combined model. In order to
validate the findings from multivariable analysis, the pre-
diction rules of the clinical and combined models were
applied in the validation cohort, thereby freezing the
regression coefficients of the individual parameters from
the original model. Again, the AUC-ROC, the sensitivity
and specificity were calculated to interpret the added value
of miRNAs over clinical parameters alone.

Results
Identification of miRNAs as predictor of TNFi response
We analyzed the profile of miRNAs present in the circu-
lation of responders versus non-responders with a broad
panel of 758 miRNAs. In the discovery cohort (n = 80),
four miRNAs were significantly differentially expressed
between responders and non-responders: high and low
baseline levels of respectively miR-99a and miR-143
predicted response to ADA, while patients with high
levels of miR-23a and miR-197 more frequently responded
to ETN (Fig. 1). Expression values of patients in the dis-
covery cohort were also plotted for miRNAs proposed by
the previous studies as predictors for response (Additional
file 3). miR-23a in ETN-treated patients was the only
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miRNA overlapping between this study and previous ones
published.
Since the measurement of miRNAs can be costly when

incorporated in clinical practice, we wanted to rule out
the possibility that the miRNAs identified do not increase
the magnitude of prediction that is already possible based
on clinical parameters. We therefore compared the pre-
dictive abilities of models based on clinical parameters

alone, and clinical parameters together with the miRNA
expression levels. The clinical characteristics that were
used, were those that presented a significant difference be-
tween responders and non-responders at baseline, namely
the DAS28 (p = 0.01), swollen joint count (SJC, p = 0.03)
and amount of glucocorticoid (GC) users (p = 0.01) for
patients treated with ADA, and C-reactive protein (CRP,
p = 0.03) for those treated with ETN (Additional file 1).

Fig. 1 miRNAs significantly differentially expressed in the discovery cohort. A large panel of miRNAs was measured using the OpenArray platform in
serum of 40 ADA- and 40 ETN-treated patients. miRNAs showing significant differences (p < 0.05) between responders and non-responders were
selected as potential predictors. Among all analyzed, four miRNAs were selected as potential predictors. Levels of miRNAs in each individual patient
are shown as the fold changes (FCs) for ADA (a and b) and ETN (c and d). The geometric mean per group is shown and p values between responders
and non-responders were calculated on the –ΔΔCrt using an independent sample t test. Several patients were excluded from the analysis because of
low amplification quality (scores < 1.24): miR-99a (n = 16), miR-143 (n = 0), miR-23a (n = 4), and miR-197 (n = 2)

Table 2 Multivariable models for prediction of response to TNFi

TNFi Model Model content AUC-ROC Sens. Spec.

ADA Clinical SJC, GC use, DAS28 0.75 80 % 70 %

Clinical + miRNAs SJC, GC use, DAS28, miR-99a, miR-143 0.97 92 % 91 %

ETN Clinical CRP 0.68 67 % 75 %

Clinical + miRNAs CRP, miR-197, miR-23a 0.78 80 % 79 %

Baseline clinical parameters of patients that were different between responders and non-responders (p < 0.10) were used to build a “clinical model”. In a “combined
model”, the clinical parameters and miRNAs predictive for response were combined, in order to determine the additive value of miRNAs in the prediction of response.
For ADA, a model containing the clinical parameters (the square root of) SJC, DAS28 and GC use was compared with a model containing these parameters and the
level of circulating miRNAs associated with response to ADA, miR-99a, and miR143 (–ΔΔCrt values). For ETN, the clinical model only contained the (log-transformed)
CRP and the combined model also included miR-197 and miR23. Per model AUC-ROC is shown as an indicator of the predictive ability. A useless model would score 0.5,
whereas a perfect model would score 1.0. The sensitivity (proportion of positive tests among all responders) and specificity (proportion of all negative tests among all
non-responders) were shown for the best cutoff value per model, according to Youden’s index.
ADA adalimumab, AUC-ROC area under the receiver operating characteristic curve, CRP C-reactive protein, ETN etanercept, GC glucocorticoid, SJC swollen joint
count, TNFi TNF-α-inhibitor
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The predictive properties of these models without and
with miRNAs are shown in Table 2. The clinical model for
ADA showed a moderate predictive value (AUR-ROC
0.75), that was increased by the addition of miR-99a and
miR-143 in the combined model (AUR-ROC 0.97). For
ETN, the CRP alone was only limitedly able to predict
response (AUC-ROC 0.68), however, the predictive value
increased by the addition of miR-23a and miR-197 in the
combined model (AUC-ROC 0.78).
Since replication in (prognostic) research is key to prove

validity, we tried to confirm our results in an additional
cohort of 40 patients. The differentially abundant miRNAs
from the discovery cohort were analyzed in the validation
cohort by using single RT-qPCR assays (Fig. 2). None of
the miRNAs could significantly predict the response to
TNFi in the validation cohort (p > 0.05). For miR-99a and
miR-143 in ADA users, inverse directions were seen com-
pared to the results in the discovery cohort.
Multivariable analyses did not confirm the predictive

abilities of the combined models found in the discovery

phase (Additional file 4). Contrary to what was observed
in the discovery phase, application of the prediction model
for ADA including only clinical parameters showed better
predictive abilities than the corresponding combined
model (AUC-ROC from 0.93 to 0.57). This is most likely
explained by the inverse relationship of the miRNAs and
response in the validation compared to the discovery
cohort. For ETN, the addition of miRNA added to the
prediction of response (AUC-ROC from 0.59 to 0.66),
generating a model that was only limitedly predictive.

Factors that can contribute to the inability to validate
findings in multiple cohorts
It is of importance to investigate which factors are involved
in the inability to validate findings in multiple cohorts, since
these issues could also be applicable to other studies aiming
to identify miRNAs predicting the response to TNFi the-
rapy. Possible (combinations of) factors could be, but are
not limited to, the usage of different miRNA detection
methods, selection of false positive results in the discovery

Fig. 2 Validation of selected miRNAs. Using single assays, miRNAs selected in the discovery cohort were measured in an independent cohort of
patients treated with ADA (a and b) (n = 20) and ETN (c and d) (n = 20). miRNAs were considered validated when showing the “same direction”
of variation as in the discovery cohort and a significant difference (p < 0.05) between responders and non-responders. Shown are the fold
changes (FCs) of the individual patients and the geometric means per group. P values were calculated on the –ΔΔCrt using an independent
sample t test. No patients were excluded from the analysis because of low amplification scores
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phase, or clinical parameters influencing the relationship
between miRNA levels and response.
Despite that miRNA expression analysis in the discovery

and validation phase were both based on the same method
of detection, i.e., miRNA-specific retrotranscription
combined with TaqMan-based RT-qPCR, the scale (high
throughput versus single assay) of the techniques suffi-
ciently varies. To evaluate whether these differences could
impact the final result, we performed a technical

replication in all 40 ADA or 40 ETN samples from the
discovery cohort using single assays for the four selected
miRNAs (as described in "Methods" - miRNA analyses -
Individual miRNA analysis).
Correlations of the results obtained by the profiling

versus those measured by single assay were assessed by
calculating the Spearman correlation (r) between the
normalized detection levels (ΔCrt and ΔCt respectively)
without excluding samples based on amplification scores

Fig. 3 Correlation between OpenArray and single assay results. A technical replication of the four selected miRNAs was performed. Per miRNA,
all ADA (a and b) or ETN (c and d) samples from the discovery cohort were re-analyzed using TaqMan single miRNA assays. The normalized
values for the OpenArray (ΔCrt) and single assay (ΔCt) for all 40 samples was plotted and the Spearman correlation (r) was calculated
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(Fig. 3). The correlations of test-retest values ranged from
0.45 to 0.88 (all p < 0.0001), which can be considered
ranging from reasonable to good, thus demonstrating that
the two analyses are concordant. Comparison of the single
assay miRNA expression levels between responders versus
non-responders confirmed that miR-143 was significantly
lower in ADA-responders, whereas the other miRNAs
showed the same direction as in the profiling, though did
not reach significance (Additional file 5).
To verify whether these results could be related to a

false discovery rate, we recalculated the differential ex-
pression for all miRNAs in the discovery cohort while
applying the Benjamini and Hochberg false discovery rate
(B&H FDR), which showed corrected p values of 1.00 for
all miRNAs. Considering none of the miRNAs was signifi-
cantly different after correction, there is the possibility
that only false positive results were selected in the disco-
very phase.
Another possible explanation why we were unable to

replicate the results from previous studies and our disco-
very cohort is that clinical parameters interact with miRNA
levels and these clinical parameters were not equally dis-
tributed between the cohorts. Differences in case-mix
between cohorts that were unaccounted for (see Additional
file 2) would then lead to different estimations of each

miRNA and response. Despite this, an adjustment for these
clinical parameters would then give comparable estimations
for the miRNAs involved. We investigated this theory by
running a crude model of response including the specific
miRNA only, and an adjusted model considering both the
miRNA and clinical parameters, and run these models for
the two cohorts analyzed (Table 3). Despite the adjustment,
the odds ratios (OR) of these miRNAs for response were
still (very) different between the discovery and validation
cohort. This indicates that the clinical parameters do not
explain why results could not be validated. On the other
hand, these analyses showed that clinical parameters have a
strong effect on the association between miRNA levels and
the response to therapy, as indicated by the (relatively large)
differences between crude ORs and adjusted ORs. There-
fore, adjustment for clinical parameters will contribute to
externalization of results to cohorts with a different case-
mix, as is a common occurrence in a heterogeneous disease
such as (established) RA. Considering that clinical parame-
ters could affect the expression of miRNAs, miRNA levels
may be, to a certain extent, a representation of patient’s
clinical characteristics. Therefore, we evaluated the corre-
lation of clinical parameters and miRNAs levels, as mea-
sured by single assays, irrespective of response The analysis
revealed that all miRNAs associated with either CRP or
erythrocyte sedimentation rate (ESR) (Additional file 6).
However, since the explained variance of each miRNA by
clinical parameters was less than 35 %, miRNA levels are
not a complete reflection of clinical characteristics and can
thus contain informative additional information.
Since the exact origin of circulating of miRNAs is un-

known and blood cells have been proposed as a key source
[27], we wanted to rule out the possibility that the serum
levels of miRNAs are a reflection of the composition of
circulating leukocytes. We therefore correlated the levels
of serum miRNAs with the percentage of peripheral blood
leukocyte subsets, as measured by flow cytometry in 20
randomly selected patients (Additional file 7). Out of all
comparisons that were considering the surface markers
CD3, CD4, CD8, CD14, CD19, CD45, and CD16 + 56 and
the FC of all four miRNAs, one significant correlation was
observed between the levels of miR-197, as measured in
the profiling, and the percentage of natural killer-like
T cells (r = 0.587, p = 0.008). However, this association was
not reproduced when considering the miRNA levels
measured by the single assay (r = 0.083, p = 0.831). Even
though we cannot exclude the contribution of other rare
cell subsets that were not identified, these results sug-
gested that the levels of serum miRNAs in responders
versus non-responders are not dependent on the com-
position of circulating leukocytes, thus making a dif-
ferent leukocyte composition an unlikely cause for the
inconsistency between the two cohorts analyzed and
the other studies.

Table 3 Influence of clinical parameters on the association of
each miRNA to response

miRNA Cohort Crude OR Crude p value Adjusted OR Adjusted
p value

miR-99a Discovery 6.78 0.03 6.82 0.06

Validation 0.32 0.28 0.85 0.91

miR-143 Discovery 0.45 0.04 0.39 0.04

Validation 1.75 0.31 3.43 0.24

miR-23a Discovery 4.08 0.03 3.82 0.05

Validation 2.81 0.31 1.86 0.65

miR-197 Discovery 4.32 0.02 5.00 0.03

Validation 1.41 0.68 0.99 0.99

In order to test if clinical parameters influenced the association between
miRNA levels and response, each univariately selected miRNA was first
inserted in a logistic regression model on response (crude) in the discovery
and validation cohort (–ΔΔCrt and –ΔΔCt values respectively). Then the
baseline clinical parameters that were different between discovery and
validation (Additional file 2, p < 0.10) were added to a separate model
(adjusted). The parameters that were used to adjust the association of
miR-99a and miR-143 with response to ADA were (log-tranformed) CRP,
DAS28, (the square root of) SJC and VAS-GH. The association of miR-23a
and miR-197 with response to ETN was adjusted for age and (log-transformed)
ESR. If clinical parameters would be the main cause for the inability to validate
the findings, the adjusted ORs of the miRNA in discovery and validation should
be comparable. The analyses showed that relationship between each miRNA
and response was significantly influenced by clinical parameters in most cases;
however, because the adjusted ORs between discovery and validation after
correction are not comparable, the clinical parameters do not explain the
found differences between the different cohorts
ADA adalimumab, CRP C-reactive protein, DAS28 disease activity score based
on a 28-joint count, ESR erythrocyte sedimentation rate, ETN etanercept, OR
odds ratio, SJC swollen joint count, VAS-GH visual analogue scale of
general health
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Discussion
Prediction of TNFi response is needed for a more person-
alized approach in RA treatment. Since two previous stud-
ies have addressed this question and identified candidate
miRNAs [20, 21], we aimed at verifying whether these
could be validated in an independent cohort, and even-
tually, whether we could find new predictors. High values
of circulating miR23a were univariately predictive of
response in our study and one previous work [20], how-
ever, miR-23a was inversely related to response in a third
study [21] and is thus not a consistent predictor. On the
basis of the profiling results, four miRNAs showed an
added value to clinical parameters in predicting response
to TNFi. However, these miRNAs could not be validated
in a separate cohort of consecutively included patients.
Several factors could have contributed to the inability

to replicate findings from previous works and our own
selection of miRNAs. A first possible contributing factor
is technical variability of the techniques employed for
the miRNA analysis. Within our study and the previous
studies, pre-analytical and analytical protocols were stan-
dardized, as is considered to contribute to more reliable
measurements in miRNA studies [28]. Correlations be-
tween the two protocols used to analyze miRNA expres-
sion were reasonably good, though could explain (some)
difference in the outcome. Indeed, a significant differen-
tial expression between responders and non-responders
could only be replicated for miR-143, which was the
miRNA with the best amplification quality in the array
among those selected (i.e., amplification score ≥ 1.24 in
all samples). The previous studies used comparable tech-
niques for biomarkers discovery: TaqMan single miRNA
assays [21] and the same platform as in our discovery
step (TaqMan OpenArray, Pool A) [20]. Furthermore,
the OpenArray appears one of the most reliable high-
throughput technique for miRNA analysis [29], and it
was successfully used for profiling of serum miRNA in
multiple studies by us [Chouri E, et al, manuscript in pre-
paration] and others [30, 31]. Interestingly, miR-23a was
positively related to response both in our discovery cohort
and in a previous study that was also using the OpenArray
as profiling platform [20]. On the contrary, the absence of a
relation or inverse relation with response was found in all
cases employing TaqMan single assays [21]. Altogether, the
analytical techniques and their technical variability are
unlikely to be explanatory for all the differences within and
between the studies, though they might be a contributing
factor.
The lack of correction for multiple testing in the disco-

very phase might have led to a subsequent (wrongful)
selection of candidate miRNAs. However, a correction for
multiple testing was not applied, because this could be too
strict when trying to replicate findings already identified
by others and would also have increased the chance of

excluding potentially useful miRNAs (false negative re-
sults). In addition, a separate validation step will reveal
which of the (less strictly) selected miRNAs has a true bio-
logical meaning, and thus compensates for the absence of
correction for false discovery rate. Yet, the fact that the
application of B&H FDR resulted in a p value of 1.00
for all analyzed miRNAs is suggestive for the possibility
that false positive miRNAs were selected. The identifica-
tion of miRNAs in the previous studies might also be
based on false positive results, since no correction for
multiple testing was performed and results were not vali-
dated in a separate cohort. Not unimportant, if all pro-
posed predictors so far are indeed false positives, this
might entail an absence of biologically relevant miRNAs
for the prediction of TNFi response in RA.
A third contributing factor for the inability to validate

our findings could be related to differences in baseline
clinical parameters, which could influence the relation
between miRNAs and response. In additional analyses,
however, we demonstrated that the clinical parameters
were not able to explain why results could not be repli-
cated between the discovery and the validation cohort.
However, we did observe that the predictive values of
miRNAs were dependent on clinical parameters (large
difference in crude OR and adjusted OR) and that, to a
certain extent, circulating miRNA levels are a reflection of
clinical parameters. Since the other studies did not correct
for clinical parameters, heterogeneity in baseline charac-
teristics of included patients might explain why miRNAs
were not reproduced across studies. This is especially
likely to have occurred if the heterogeneity across studies
involves clinical characteristics relating to response, such
as baseline DAS28, SJC, GC use and CRP, which were
indeed the parameters that differed across the studies con-
sidered. In particular, patients included in the work by
Castro-Villegas et al. [21] were more frequently treated
with GCs (64.7 % versus 30.0 %), whereas those in the
cohort used by Krintel et al. [20], showed a higher median
CRP (15 versus 6 mg/l), TJC (15 versus 7), SJC (10 versus
1) and VAS-GH (70 versus 60) as compared to our cohort.
In both previous studies the prediction model with
miRNAs was not compared to or combined with baseline
clinical parameters, which would have made the predictive
estimations more generalizable. Concluding, heterogeneity
cannot explain why results could not be validated within
our study, although it might explain to a certain extent why
the predictors identified across the studies are different.
Another possible contributing factor is represented by

the chosen study design, in terms of inclusion criteria,
measurement and time point of response, statistical ana-
lyses, etc. Krintel et al. [20], analyzed a cohort of TNFi-
naïve patients treated with MTX and intra-articular
triamcinolone, which were additionally randomized to
ADA treatment (n = 90) or placebo treatment (n = 90).
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To identify miRNAs specifically predictive for EULAR
response to ADA combination therapy, an interaction term
for each miRNA with the received treatment was added to
the prediction model. Castro-Villegas et al. [21] used a
cohort of patients treated with ADA, ETN or infliximab
and investigated how serum miRNAs changed over time in
ten patients after TNFi initiation using miScript miRNA
PCR array (Qiagen, Hilden, Germany). In the following
step, the ten most relevant miRNAs were measured by
single-miRNA assays in 85 additional patients, and univari-
ate and multivariable tests were applied to predict response
to any TNFi. In case the true predictive ability of miRNAs
is weak, the design might make the difference in inclusion
or exclusion of each miRNA, which would explain the
differences in identified miRNAs across studies. In addition,
discrepancy in found miRNAs across studies might arise
from the fact that each TNFi treatment is analyzed inde-
pendently (our study and Krintel et al. [20]) or in combin-
ation with others to find universal miRNAs for TNFi
response (Castro-Villegas et al. [21]). Indeed, despite that
all registered TNF-alpha- inhibiting therapies target TNF-
alpha, they have small chemical differences and etanercept,
in particular, also targets lymphotoxin-alpha [32]. It is
therefore possible that biomarkers predictive of response to
TNFi therapy are to some extent TNFi-specific.
Despite the advantage in terms of stability, the identifi-

cation of circulating miRNAs with a concrete potential of
application in clinical practice is very limited. In other
inflammatory diseases, such as inflammatory bowel disease,
the usage of miRNAs as potential biomarkers is still being
explored, though has so far not revealed usable predictors
of response to therapy [33]. In this line, the usefulness and
robustness of miRNAs as biomarkers has been questioned;
e.g., in non-neoplastic diseases only 33 % (139/416) of
the reported miRNAs were considered either biologically
plausible, specific for the disease or interpretable with the
current knowledge [34]. Another study showed that up to
58 % of the reported circulating miRNAs related to cancer
subtypes were not disease-specific and most likely derived
from blood cells [35]. These studies indicate that false
positive results in studies exploring circulating miRNA are
lurking, and warrant additional carefulness when propo-
sing a miRNA as a marker for a specific disease or disease
state. For RA specifically, biomarkers are frequently iden-
tified in the circulation [13–19]. However, because the
disease primarily affects the joints, the synovial compart-
ment might constitute an alternative good source of bio-
markers for RA, as has been demonstrated for cell-derived
microparticles in the synovium compared to the circu-
lation [36–38]. Since in RA the synovial miRNAs do
not necessarily correlate with plasma miRNAs [12], it is
possible that synovial miRNAs have better predictive
abilities than the circulating ones. If so, incorporation of
any predictive test on the synovial fluid or synovial tissue

instead of the circulation, will affect the clinical feasibility
negatively. In the future, the discovery of potential bio-
marker can be boosted by the implementation of novel
high-throughput techniques. One of the most promising
at this regard is next-generation sequencing (NGS)
that has the potential to also identify novel and not pre-
viously annotated miRNAs (currently 1882 known (http://
www.mirbase.org, accessed July 4, 2016 [39]), as it is not
restricted to a predefined selection of miRNAs such
as the multiplex-based techniques used in this study
[40]. NGS might identify previously unknown targets
and discover novel miRNAs for the prediction of response
to RA.

Conclusions
So far, there are no miRNAs that can be used in the predic-
tion of response to TNFi therapy. We believe that a com-
bination of differences in study design, technical variability,
lack of multiple testing corrections, and heterogeneity
between studies could contribute to these discrepancies.
However, it is also conceivable that the irreproducibility of
results is caused by the absence of truly biologically relevant
miRNAs in the prediction of response to TNFi. Overall,
our study demonstrated that in order to increase reprodu-
cibility of the results, future studies addressing this topic
should (1) standardize detection methods, (2) investigate
the added value of miRNAs over clinical parameters, (3)
technically replicate findings using a method suitable in
case of implementation in clinical practice (i.e., single
assay), (4) validate findings in a separate cohort, especially
when correction for multiple testing in the discovery phase
is not performed, and (5) since heterogeneity influences the
ORs of miRNAs, prediction models should preferably be
validated in a cohort close to the target population.
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Additional file 3: Expression of miRNAs predicting TNFi response
identified in other studies. In this analysis, the predictive ability of miR-22,
miR-23a, miR-223 and miR-886-3p is explored. (DOCX 217 kb)

Additional file 4: Validation of multivariable models for prediction of
response to TNFi. The prediction models from the discovery cohort were
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single assays (DOCX 15 kb)

Additional file 5: Technical replication of selected miRNAs from the
discovery cohort. Using single miRNA assays, the four selected miRNAs
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Additional file 6: Clinical parameters at baseline associated with current
miRNA levels. Serum values of the four selected miRNAs were tested for
their relationship with clinical parameters, independent from response.
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