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CNTFR = ciliary neurotrophic factor receptor; IFN = interferon; JCA = juvenile chronic arthritis; JDM = juvenile dermatomyositis; PBEF = pre-B-cell
colony-enhancing factor; PBMC = peripheral blood mononuclear cells; PCR = polymerase chain reaction; RA = rheumatoid arthritis; SAM = signifi-
cance analysis of microarrays; SLE = systemic lupus erythematosus.
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Introduction: the dawning of the microarray
era
The concept that the identification of genes that are differ-
entially expressed in a disease state will elucidate disease
mechanisms has driven the development of new technol-
ogy. Earlier approaches, including Northern blotting, poly-
merase chain reaction (PCR), and RNase protection, have
permitted analysis of small numbers of gene transcripts,
but the value of characterizing a broad spectrum of gene
products expressed in a cell population or in a disease
state has stimulated the invention of more sophisticated
tools. Subtractive hybridization and representational differ-
ence analysis, comparing gene expression in two cell pop-
ulations, are time-intensive approaches used in the late
1990s to assist in gene discovery and to identify molecu-
lar pathways relevant to a disease. Microarray analysis, a
system in which thousands of oligonucleotide sequences
are spotted on a solid substrate, usually a glass slide, and

RNA-derived material from a cell population is hybridized
to the gene array, is an innovative technology that has
already changed our understanding of the mechanisms
that underlie disease [1].

The utility of microarray analysis of gene expression was
demonstrated impressively in 2000 when Alizadeh and
colleagues used this technique to study the malignant cell
population of patients with diffuse large B cell leukemia
[2]. Although individual patient samples were not readily
differentiated on the basis of traditional cell surface phe-
notypic markers, microarray analysis discerned two dis-
crete tumor groups: those with a gene expression profile
similar to that of germinal center B cells from healthy indi-
viduals and those with a profile similar to that of activated
mature B cells. Significantly, these two groups were char-
acterized by markedly different clinical courses: B cell lym-
phomas of the germinal center type had a 5-year survival
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Abstract

Recent advances in the study of global patterns of gene expression with the use of microarray
technology, coupled with data analysis using sophisticated statistical algorithms, have provided new
insights into pathogenic mechanisms of disease. Complementary and reproducible data from multiple
laboratories have documented the feasibility of analysis of heterogeneous populations of peripheral
blood mononuclear cells from patients with rheumatic diseases through use of this powerful
technology. Although some patterns of gene expression, including increased expression of immune
system cell surface activation molecules, confirm previous data obtained with other techniques, some
novel genes that are differentially expressed have been identified. Most interesting is the dominant
pattern of interferon-induced gene expression detected among blood mononuclear cells from patients
with systemic lupus erythematosus and juvenile dermatomyositis. These data are consistent with long-
standing observations indicating increased circulating interferon-α in the blood of patients with active
lupus, but draw attention to the dominance of the interferon pathway in the hierarchy of gene
expression pathways implicated in systemic autoimmunity.
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of 76%, whereas lymphomas of the activated B cell type
were associated with a 16% 5-year survival. As striking as
this study was, at that time confidence was not high that
microarray analysis of gene expression could be success-
fully applied to heterogeneous populations of cells, cells
that were not monoclonal.

Numerous investigations over the past several years have
demonstrated that significant and useful microarray data
can be derived from more complex cell samples, including
cell populations from peripheral blood. Although such
studies face challenges in data interpretation, several lab-
oratories have used microarray analysis to study mononu-
clear cells from patients with autoimmune diseases. When
studying mixed cell populations, gene expression profiling
can successfully detect differential gene expression in
specific cell types present in the samples under compari-
son. However, it can also measure and reflect the cellular
composition of the sample. The contribution of variable
enrichment of a cell population in a sample can be sorted
out by combining cell sorting or histology with expression
profiling experiments. Cell sorting can also be used as an
initial step in sample preparation to enrich for specific cell
types in a cell mixture to overcome sensitivity and speci-
ficity limitations of arrays.

The recent advances in the analysis of broad gene expres-
sion patterns have rapidly led to new insights into patho-
genic mechanisms of rheumatic diseases and are
supporting new initiatives in therapeutic drug develop-
ment. Most striking are microarray data that have refo-
cused attention on the interferon (IFN) pathway in
systemic lupus erythematosus (SLE) [3–6].

Analysis of microarray data
A statistical analysis of appropriately normalized micro-
array data is as important as the cell preparation, initial
hybridization, and data extraction in deriving valuable infor-
mation from this technology. Arrays are useful because
they allow large-scale screening for differential gene
expression. However, the thousands of variables in the
analyses represent a significant statistical problem. Theo-
retically, when using an array with 1000 genes and a stan-
dard t-test with a significance at the P < 0.05 level, one
would expect to identify 50 genes that are ‘differentially
expressed’ by chance alone. Corrections for multiple com-
parisons, such as the Bonferroni method, can be used to
address this problem but tend to lose efficacy with very
large numbers of comparisons, and some differentially
expressed genes might not appear as significant [7,8].
Significance analysis of microarrays (SAM) is an approach
that uses an estimate of the false detection rate to make
an estimate of significance under conditions in which
thousands of data points are being compared [9]. We
have learned that no one statistical algorithm is sufficient
to derive an accurate view of the genes significantly over-

expressed or underexpressed in one population compared
with another.

Although a comparative analysis of the current statistical
approaches to microarray data is beyond the scope of this
review, we will direct the reader to several of the most
useful algorithms that we and others have used to derive a
comprehensive data set that includes genes most signifi-
cantly differentially expressed between cell populations
(Table 1). When analyzing microarray data from two sets
of patient-derived samples, we first use the SAM algorithm
with parameters set to determine the genes significantly
overexpressed or underexpressed in the patient group of
interest compared with the control group [9]. The false
detection rate is set at approximately 5% (indicating that
in only 5 cases out of 100 will a gene be erroneously iden-
tified as significantly differentially expressed). Additional
algorithms, including supervised harvesting classification
and a method termed ‘shrunken centroids’, are then
applied to the data set [10–16]. Genes that either are
identified in several of the algorithms or are most highly
ranked in one of the algorithms are then used in a hierar-
chical clustering approach to identify additional genes that
are coexpressed with the most significantly differentially
expressed genes.

Array data can be internally validated by, for example, car-
rying multiple probes for the same gene. When data from
all such probes in a particular experiment are identified as
correlating in an array experiment, the probability of the
finding being real is increased. Further, when data from
multiple genes that are known to be coexpressed in a
cluster or cellular pathway are correlated, the result has
greater significance than data from a single gene. Micro-
array analysis cannot be relied on to develop a definitive
rank order of the most significant gene products associ-
ated with a particular disease or cell state. Rather, the
technology is most useful in drawing attention to path-
ways, and sometimes individual genes, that are most rele-
vant to the recent in vivo experience of the cell population
being studied.

As revealing as microarray data can be, confirmation of the
data using more accurate, quantitative, and less variable
approaches, such as real-time PCR, and validation in a
second patient population are essential for drawing mean-
ingful conclusions [17].

Early microarray data from the use of SLE
peripheral blood
In early 2003, Rus and colleagues reported data from a
study of gene expression in peripheral blood mononuclear
cells (PBMC) from 21 lupus patients and 12 controls [18].
The microarray assay used (Panorama Cytokine Gene
Array membranes; Sigma Genosys, Inc) included
375 genes enriched in cytokines, chemokines, cell surface
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receptors, and other immune-system cell surface mole-
cules, including adhesion molecules. Data analysis com-
prised several approaches: selection of genes with mean
expression in the SLE group that was more than 2.5-fold
that observed in the healthy control group; genes that
were significantly different between groups with the use of
the Mann–Whitney U-test at a significance level of
P < 0.05; and SAM analysis with a false detection rate of
8%. Fifty genes were identified as differing by more than
2.5-fold, and 20 genes differed between groups on the
basis of the Mann–Whitney U-test, of which 15 differed by
more than 2.5-fold between groups. The importance of
confirming microarray data with an additional technique
was clearly illustrated in this report. The gene that showed
the greatest fold difference between SLE and control
groups by microarray, that encoding ciliary neurotrophic
factor receptor α (CNTFR), could not be confirmed by
reverse transcriptase PCR (RT–PCR). Increased expres-
sion of two other genes that were also studied by
RT–PCR, CXCR2 and that encoding pre-B-cell colony-
enhancing factor (PBEF), was confirmed, although the
fold increase as assessed by RT–PCR was less than esti-
mated by microarray. Of the genes significantly overex-
pressed, the products of some, including MMP3,
TNFRSF1B (TNF receptor 2), IL1B, and FCGRIA, have
been documented to be increased in SLE. Among other
genes with increased expression were TNFSF10 (encod-
ing TRAIL), TNFRSF10C and TNFRSF10D (TRAIL recep-

tors 3 and 4), IL1RAP (interleukin-1 receptor accessory
protein), TGFBR3 (transforming growth factor-β receptor
type III), and CCR7 (a T cell chemokine receptor important
for the recruitment of CD4 T cells to the periarteriolar lym-
phoid sheath). Although the Rus study did not provide an
opportunity to detect the expression of genes that were
not obviously directly related to immune system function, it
drew attention to several genes that had not been studied
previously in detail in SLE. Overall, the data presented in
this study supported the value of the microarray approach
for detecting genes differentially expressed among PBMC
from lupus patients.

A second early report came from Maas and colleagues,
who showed PBMC microarray data from a small number
of patients with SLE (n = 9), rheumatoid arthritis (RA;
n = 9), type I diabetes mellitus (n = 5) or multiple sclerosis
(n = 4), along with nine control subjects before and after
immunization with influenza vaccine [19]. The array used
(Research Genetics GF-211 membrane) included more
than 4000 genes, and the statistical analysis was based
on Eisen’s Cluster and Treeview software, as well as the
Research Genetics Pathways 3.0 program used to locate
differentially expressed genes in pathways related to the
immune system [15]. As in the Rus study, microarray
analysis of unfractionated PBMC provided data that
seemed to be reproducible and statistically significant,
and characterization of the cell composition of the PBMC
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Table 1

Statistical algorithms used in analysis of microarray data

Statistical algorithms Characteristics References Sources

Significance analysis of microarrays Identifies differentially expressed genes between [9] Stanford University,
(SAM) sample sets; estimates significance for genes; http://www-stat.stanford.edu/~tibs/

considers large numbers of genes in array x-mine, Brisbane, CA, http://www.x-mine.com/
experiments

Hierarchal clustering Unsupervised clustering; clusters genes with [15] University of California, Berkeley,
similar expression patterns; clusters samples http://rana.lbl.gov/EisenSoftware.htm
with similar expression patterns

Supervised harvesting classification Class prediction; identifies subset of genes that [10] x-mine, Brisbane, CA, http://www.x-mine.com/
best classify samples as gene sets; estimates
accuracy of gene set on prospective population

Classification and regression trees Class prediction; develops decision trees to [12,14] CART: Salford Systems,
(CART), multiple additive regression classify samples using the expression of a http://www.salford-systems.com/
trees (MART) subset of genes; estimates accuracy of the MART: Stanford University,

gene panel on a prospective set http://www-stat.stanford.edu/~jhf/R-MART.html
or Salford Systems

Shrunken centroids (prediction Class prediction; identifies subset of genes that [11] Stanford University,
analysis for microarrays, PAM) best classify samples as gene sets; estimates http://www-stat.stanford.edu/~tibs/PAM/

accuracy of gene set on prospective population index.html

Affymetrix MAS 5.0 Affymetrix

GeneSpring Silicon Genetics

Pathways 3.0 Research Genetics
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indicated that a variable presence of mononuclear cell
populations could not account for differential gene expres-
sion. However, the analysis was not able to distinguish a
gene expression profile that was distinct for SLE as com-
pared with RA or other autoimmune diseases. Ninety-five
genes were identified that distinguished the samples from
all four autoimmune diseases from healthy controls, includ-
ing those encoding the cell surface receptors TGFBR2,
CSF3R, and BMPR2, which were overexpressed in the
autoimmune patients, and several genes implicated in
apoptosis (TRADD, TRAF2, CASP6, CASP8), which
were underexpressed. It is of interest that ADAR, an IFN-
induced gene encoding the RNA-specific adenosine
deaminase, was highly overexpressed in most patients
with autoimmune disease. Increased RNA editing, depen-
dent on the ADAR protein, has been identified in T cells in
patients with SLE [20]. The patterns seen in the patients
with autoimmune disease were distinct from those
observed in samples from healthy subjects who had
received influenza vaccination, suggesting that the path-
ways involved in the immunopathogenesis of autoimmune
disease do not simply reflect an active immune response
to an antigen. This study relied mainly on clustering algo-
rithms to identify genes that were differentially expressed
among the study groups and also eliminated from analysis
genes whose expression levels did not vary by more than
3SD from their means, supporting our view that multiple
approaches, including algorithms such as SAM, are useful
in discerning gene expression relevant to disease-specific
molecular pathways.

Interferon-induced gene expression in
rheumatic diseases
A gene expression profile identified by microarray analysis
and consistent with IFN-mediated gene transcription in a
rheumatic disease was first reported by Tezak and col-
leagues in a study of muscle biopsy tissue from four
patients with juvenile dermatomyositis (JDM) [21]. Data
from biopsies were compared with gene expression data
from two healthy control peripheral blood samples as well
as previously obtained microarray data from muscle biopsy
samples from patients with Duchenne muscular dystrophy
by using Affymetrix HuFL GeneChips. Genes showing at
least a twofold difference in comparisons of JDM samples
with each of two control samples were used to develop a
list of differentially expressed genes. Ninety-one genes
showed more than twofold increased expression, and
87 genes showed more than twofold lower expression. It
should be noted that in studies using small numbers of
patient samples, although genes might be identified that
are truly differentially expressed between the samples, the
variable expression patterns might be unrelated to the
disease state. In this study, fold differences between
patient samples and controls were highly variable (ranging
from 3.8-fold to 96.4-fold higher in patients than in con-
trols), but the list of differentially expressed genes was

striking for its enrichment in those that have been linked to
IFN. MX1, MX2, G1P3, IRF7, and C1ORF29 were among
the IFN-induced genes overexpressed in the JDM muscle
samples. Increased expression of several genes, including
G1P3 (encoding IFN-induced 6-16) and CDKN1A (p21
cyclin kinase inhibitor), were confirmed by real-time PCR,
and G1P3 expression was also identified in JDM periph-
eral blood. It is of interest that there was no significant
increase in mRNA for either IFN-α or IFN-γ, although IFN-γ
protein was seen in JDM muscle by using immunohisto-
chemistry. The authors interpreted their data as consistent
with effects of both IFN-α/β and IFN-γ on gene expression.
In addition to this set of IFN-induced genes, gene expres-
sion profiles indicating ischemia and myofiber degenera-
tion and regeneration were detected.

Data supporting a pathogenic role for type I IFN (predomi-
nantly IFN-α) in SLE have been available for 25 years, with
type II IFN (IFN-γ) also being implicated in murine models
of lupus [22–31]. It has only been recently that microarray
data from several laboratories have refocused attention on
this important cytokine and its downstream targets.
Studies from our laboratory and from others have used
more extensive microarrays than those used in the two
SLE studies described above to characterize the broad
gene expression profile operative in the peripheral blood
of patients with SLE [3–6]. Most striking is an ‘IFN signa-
ture’, a prominent overexpression of mRNAs encoded by
genes regulated by IFNs and similar to that detected in
JDM muscle.

Detection of an interferon signature in SLE by
using microarray technology
Ambitious projects aimed at characterizing broad gene
expression profiles in large numbers of SLE PBMC
samples have come to fruition in 2003. Baechler and col-
leagues have reported microarray data from 48 SLE
patients and 42 healthy controls with Affymetrix U95A
GeneChips [4]. After eliminating genes that were highly
sensitive to induction ex vivo, 4566 genes remained for
analysis. An initial set of genes was selected on the basis
of an unpaired Student’s t-test (apparently without correc-
tion for multiple comparisons) and further selection based
on a more than 1.5-fold difference in expression between
lupus samples and controls, a difference of at least 100
units in the expression value, and P < 0.001 by t-test. SAM
analysis was not used in this study. In the full data set,
161 genes fulfilled all of these criteria. Hierarchical clus-
tering of these genes was then performed to identify gene
expression patterns among the study samples. As in the
JDM study, a striking increase in the expression of a group
of genes previously reported to be induced by IFN was
observed in about half of the SLE subjects. The authors
identified 23 of the 161 differentially expressed genes as
targets of IFN by determining gene expression of PBMC
cultured for 6 hours either with IFN-α plus IFN-β or with
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IFN-γ. It should be noted that the patterns of gene expres-
sion induced in PBMC by type I and type II IFNs can vary
with time after initial stimulation. The data from Baechler,
then, provide only a partial assessment of IFN-regulated
genes at a single point in time.

The pattern of expression of the IFN-regulated genes was
complex (Table 2). Eleven of the IFN-regulated genes that
were differentially expressed between SLE and control
PBMC clustered together and were preferentially induced
by a combination of IFN-α and IFN-β. However, two genes
preferentially induced by IFN-γ (SERPING1 and
FCGR1A) were also significantly increased in the SLE
patients and clustered with the IFN-α/β-induced genes.
Additional genes, preferentially induced by IFN-α/β but not
clustering with the major IFN-induced group (CD69,
RGS1, IL1RN, and AGRN), were also increased in the
SLE group, and two genes repressed by IFN-α/β were
significantly underexpressed in the SLE patients. Three
genes significantly overexpressed in SLE were decreased
in expression by both IFN-γ and IFN-α/β (EREG, THBS1,
and ETS1). These are decreased somewhat more by IFN-γ
than by IFN-α/β. Taken together, these SLE data, along
with the very useful information about genes induced by
type I and type II IFNs, support the type I IFNs as being
particularly important in the gene expression pattern that
distinguishes SLE PBMC from those of healthy controls.
Confirmation of these data by a more quantitative tech-
nique will be essential to determine more precisely the rel-
ative expression of this gene set in patients with SLE, as
well as those with other autoimmune diseases.

In addition to the IFN-regulated genes, the Baechler study
documented an increased expression of genes encoding
immune system activation antigens, including TNFR6
(encoding Fas), CD54 (ICAM-1), and CD69 in the SLE
samples, along with FCGRIA (as observed in the Rus
study) and FCGRIIA (Table 3) [4]. Other genes detected
by Rus and colleagues were also identified (IL1B, IL1RB).
Genes with decreased expression in the SLE samples
included TCF3 (encoding transcription factor E2 α),
important in B cell development; TCF7 (transcription
factor 7 [T-cell specific, HMG box]), a polymorphism of
which has been associated with type I diabetes; and LCK
(lymphocyte-specific tyrosine kinase), which mediates
T cell activation.

A second extensive gene expression study by Bennett and
colleagues also used Affymetrix U95AV2 microarrays to
analyze PBMC from 30 pediatric lupus patients ranging in
age from 6 to 18 years (mean age 13), 12 patients with
juvenile chronic arthritis (JCA), and 9 healthy control chil-
dren [5]. Of the 30 SLE patients, 18 were studied no
more than 1 year after diagnosis, reflecting the gene
expression profile at a point in time closer to the onset of
symptoms than is usually possible to document in adult

SLE patients. Data were analyzed with a correction for
multiple comparisons. With this approach, 15 genes were
found differentially expressed between SLE patients and
healthy controls, and 14 of those 15 were identified as
targets of IFN. Several of the most significantly differen-
tially expressed genes were among those identified in the
Baechler study (C1ORF29, MX1, LY6E, PLSCR1, and
APOBEC3B) and others identified with less stringent sta-
tistical criteria were also found in the Baechler study
(Table 2) or are closely related to genes identified by
Baechler (OAS1, OAS2, MX2). In addition, Bennett identi-
fied IFI44 (encoding hepatitis C-associated microtubular
aggregate protein), IFIT4 (termed CIG49 by those
authors), CIG5 (viperin), and C1ORF29 as nearly univer-
sally expressed in their SLE subjects. The JCA samples did
not demonstrate overexpression of IFN-induced genes.

Although neither the Baechler study nor the Bennett study
confirmed the IFN-regulated gene expression signature by
using more quantitative techniques, the similarity of results
derived from the two studies is remarkable, strongly sup-
porting the significance of the IFN pathway in SLE and
also demonstrating the power of microarray technology,
even when applied to heterogeneous populations of
peripheral blood cells.

Additional observations by Bennett and colleagues
included the significant overexpression of DEFA3, encod-
ing the neutrophil-specific α3 defensin that is predomi-
nantly expressed in precursors of mature
polymorphonuclear cells [5]. Sorting of granular cells iden-
tified by flow cytometry confirmed a population of early
granulocyte cells not present in mononuclear cell popula-
tions from controls. DEFA3 and another neutrophil gene
FPRL1 (encoding formyl peptide receptor-like-1), along
with several of the IFN-induced genes, were highly corre-
lated with disease activity as measured by the Systemic
Lupus Erythematosus Disease Activity Index.

Our laboratories have performed microarray analyis on
PBMC samples from 22 SLE, 15 RA, 8 osteoarthritis,
2 JCA, and 9 control PBMC samples and have detected a
gene expression signature virtually identical to that
described by the other groups (Table 2) [3]. Importantly,
our data were derived from a microarray (proprietary to
Expression Diagnostics, Inc) distinct from that used by
Baechler and Bennett and included more than 8000 gene
sequences, most of which were identified from subtracted
and normalized cDNA libraries isolated from resting and
activated leukocytes. We have found that, in contrast to the
RA, osteoarthritis, and JCA patients, and healthy controls,
most adult SLE patients express the IFN gene signature
(example data shown in Fig.1). Moreover, we have con-
firmed the increased expression of several of those overex-
pressed genes by using real-time PCR analysis and in a
second cohort of SLE patients [3]. Of great interest is the
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Table 2

Interferon-induced genes identified in large-scale microarray analyses of SLE PBMC

Response of PBMC to IFN-α/β
(type I)/IFN-γ (type II) Expression in SLE compared with control PBMC

Gene Protein Reference: [4]* [4]† [5]‡ [3]§ [6]||

IFIT1 Interferon-induced protein with tetratricopeptide repeats-1 18.3 Up Up Up
OASL 2′-5′-oligoadenylate synthetase-like 16.3 Up Up Up
LY6E Lymphocyte antigen 6 complex, locus E 14.9 Up Up Up Up
OAS2 2′-5′-oligoadenylate synthetase 12.7 Up Up
OAS3 2′-5′-oligoadenylate synthetase NA NA Up
IFI44 Hepatitis C microtubular aggregate protein 10.7 Up Up
MX1 Myxovirus resistance 1 9.8 Up Up Up
G1P3 Interferon, alpha-inducible protein (IFI-6-16) 7.1 Up Up
PRKR Protein kinase, interferon-α-inducible double-stranded 6.9 Up Up

RNA-dependent¶

IFIT4 Interferon-induced protein with tetratricopeptide repeats 4 6.8 Up Up Up
PLSCR1 Phospholipid scramblase 1 6.6 Up Up Up
C1ORF29 Hypothetical protein expressed in osteoblasts; similar to IFI44 6.1 Up Up Up
HSXIAPAF1 XIAPassociated factor-1 6.1 Up Up Up
G1P2 Interferon, alpha-inducible protein (IFI-15K) 5.9 Up Up
Hs. 17518 Viperin 5.5 Up
(Cig5)
IRF7 Interferon regulatory factor 7 4.6 Up Up
CD69 Early T-cell activation antigen 4.1 Up
LGALS3BP Lectin, galactoside-binding, soluble, 3 binding protein 3.8 Up Up
IL1RN Interleukin-1 receptor antagonist 3.5 Up Up
APOBEC3B Phorbolin 1-like 2.0 Up Up Up
RGS1 Regulator of G-protein signaling 1 1.8 Up
AGRN Agrin > 71.2 (γ → < 0) Up Up
EREG Epiregulin 1.3 (α/β and γ → < 0) Up
THBS1 Thrombospondin 1 1.3 (α/β and γ → < 0) Up
ETS1 v-ets erythroblastosis virus E26 oncogene 1.2 (α/β and γ → < 0) Up

homolog 1
ADAM9 A disintegrin and metalloproteinase domain 9 1.1 (α/β and γ → < 0) Up
SERPING1 Serine (or cysteine) proteinase inhibitor (C1 inhibitor) 0.85 Up Up
USP20 Ubiquitin specific protease 20 0.25 (α/β and γ → < 0) Down
MATK Megakaryocyte-specific tyrosine kinase < 0.13 (α/β → < 0) Down
FCGR1A Fc fragment of IgG, high-affinity Ia receptor 0.08 Up Up

The genes and corresponding proteins listed were identified as significantly differentially expressed in SLE and healthy control PBMC in the study
by Baechler and colleagues [4], or were among the most commonly overexpressed transcripts among SLE PBMC in the study by Bennett and
colleagues [5]. The significant overexpression of these genes in SLE compared with control PBMC in microarray data sets from Crow and
colleagues [3] or Han and colleagues [6] is also noted. In addition, genes identified by Baechler and colleagues as both regulated by type I (IFN-
α/β) or type II (IFN-γ) and differentially expressed by SLE PBMC are noted. A ratio of gene expression induced in healthy PBMC by IFN-α/β (1000
U/ml for 6 hours) compared with IFN-γ (1000 U/ml for 6 hours) for each gene was calculated by determining the net microarray score for each of
four control samples studied by Baechler and colleagues (stimulated microarray score minus unstimulated microarray score) for both IFN-α/β and
IFN-γ stimulation, determining the average of the four scores, and dividing the IFN-α/β score by the IFN-γ score for each gene. In some cases,
scores for both IFN-α/β- and IFN-γ-induced gene expression were less than background [indicated as (α/β and γ → < 0)]. When the score for
either IFN-α/β-induced or IFN-γ-induced gene expression was less than the background, the score for the lower value was replaced with a score of
50, to permit the calculation of an approximate ratio. Abbreviations: JCA, juvenile chronic arthritis; NA, not available; OA, osteoarthritis; RA,
rheumatoid arthritis. *The microarray system used was an Affymetrix U95A GeneChip (Affymetrix, Santa Clara, CA); 4566 genes were analyzed.
Four healthy donors of PBMC were studied. †The microarray system used was an Affymetrix U95A GeneChip; 4566 genes were analyzed. The
donors of PBMC studied were 48 with SLE and 42 healthy. ‡The microarray system used was an Affymetrix U95AV2 GeneChip; about 4600
genes were analyzed. The donors of PBMC studied were 30 pediatric with SLE, 12 with JCA, and 9 healthy children. §The microarray system used
was a proprietary microarray from Expression Diagnostics, Inc; 8143 oligonucleotides are represented. The donors of PBMC studied were 22 with
SLE, 15 with RA, 8 with OA, 2 with JCA, and 9 healthy. ||The microarray system used was a Mergen ExpressChip DNA Microarray (Mergen, Ltd,
San Leandro, CA); 3002 genes are represented. The donors of PBMC studied were 10 with SLE and 18 healthy. ¶Identified as capicua homolog
in some studies.
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identity of the stimulus for the IFN-induced gene expression
signature. It is noteworthy that none of the SLE or JDM
studies identified significantly increased expression of
type I or type II IFN mRNA, with the exception of a recent
report by Han and colleagues [6] that detected IFN-ω,
another type I IFN species, by using a distinct microarray
system (Mergen ExpressChip DNA Microarray System

Human HO4) in a study of 10 SLE patients and 8 healthy
controls. The Han study also detected an increased
expression of several of the genes identified in the other
three studies (Table 2). In contrast to the Baechler and
Bennett reports, which note that type I and II IFNs are
undetectable in serum from most SLE patients, we have
measured plasma IFN-α protein by ELISA and are currently
analyzing those data in relation to the IFN target gene
expression data, as well as measures of clinical disease
activity. Importantly, our data provide direct support for
IFN-α in the gene expression profile observed in SLE
PBMC (KA Kirou, C Lee, S George, K Louca, M Peterson,
MK Crow, unpublished observations). However, it should
be noted that the IFN signature is complex, as described in
detail for the Baechler study, and additional work will be
required to determine the relative roles of type I and type II
IFN in the gene expression profile observed in SLE periph-
eral blood. Analysis of the age of study patients, time from
diagnosis, organ system involvement, and current therapy,
along with gene expression data, will be essential for an
understanding of the place of IFN family members in
disease pathogenesis.

Beyond the impressive IFN gene signature, each of the
studies identified additional genes that were differentially
expressed in SLE and control samples. In view of the bio-
logical, patient, and assay variation encountered in gene
profiling of SLE, a diagnostic gene signature might prove
most useful clinically. An algorithm such as shrunken cen-
troids can be used to develop a robust multigene classifier
that can be tested in clinical studies as a measure of diag-
nosis or clinical outcome [11].

Microarray analysis of gene expression at
sites of tissue damage
The next generation of reports describing global gene
expression patterns based on microarray assays will prob-
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Figure 1

Exemplary gene sequences that cluster with PRKR and OAS3.
Hierarchical clustering was performed on the total study population to
determine genes that cluster with PRKR and OAS3. A visual
demonstration of the expression of a selection from those genes,
comprising a partial IFN signature, is shown. Data are shown from a
subset of SLE samples tested (n = 14) and from rheumatoid arthritis
(RA) (n = 11), juvenile chronic arthritis (JCA) (n = 2), and control
samples (n = 8). Relative expression compared with an internal control
ranged from approximately –0.5 (bright green) to 0.5 (bright red).

OAS3
PRKR
OAS2
IFI44
IFI44
IRF7
IRF7
IFIT1
CCL2
LYL1
AQP3
MX2
IFIT1
MX2
HSXIAPAF1
STAT1
G1P3
CCL3
ADA
IFITM2
Hs.76853
CCR1
CD1a
Hs.17481
ADAR
HIST2H4

Healthy               RA         JCA             SLE

Table 3

Selected gene families overexpressed or underexpressed in SLE PBMC

Gene families overexpressed Examples Gene families underexpressed Examples

IFN target genes See Table 2 Transcription factors TCF3, TCF7

TNF and TNF receptor families TNFSF10 (TRAIL), TNFRSF10C (TRAIL receptor 3), Kinases LCK
TNFR6 (Fas)

Chemokines and chemokine
receptors CCR7, CXCR2 T cell receptors TCRB, TCRD

Cell surface activation antigens CD69 C-type lectins KLRB1

Fc receptors FCGR1A, FCGR2A

Metalloproteinases MMP3, MMP9

Defensins DEFA3, F2RPA

Genes listed have been identified in microarray studies described in [3–6,8,19].
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ably derive from studies of tissue samples from sites of
disease activity. Unpublished data presented at scientific
meetings demonstrate the feasibility of microarray analysis
of glomeruli from lupus nephritis kidneys and from skin
lesions of lupus patients. As valuable as those data will be,
we are encouraged that peripheral blood seems to
provide a reasonable sampling of those gene pathways
that are activated and relatively disease specific.

Conclusion
Since the dramatic illustration of the clinical utility of
microarray technology in patients with malignant disease
3 years ago, efforts to study mixed mononuclear cell popu-
lations in patients with autoimmune diseases have been
remarkably successful. Not only are microarray-derived
data interpretable and significant, but they have drawn our
attention back to a key cytokine pathway. Increased
expression of IFN in patients with active SLE was first
reported in 1979, but relatively few investigators have
pursued the role of IFN in SLE [22]. An important excep-
tion is the group led by Ronnblom and Alm, who noted the
induction of lupus autoantibodies and clinical lupus in
patients receiving therapeutic IFN-α [26]. That group has
gone on to characterize the IFN-producing cells as well as
some of the properties of immune complexes that induce
the production of IFN by plasmacytoid dendritic cells
[32–37]. In addition, Bennett’s collaborators, led by
Banchereau, have presented functional data showing the
induction of efficient stimulators of allogeneic T cell
responses by IFN-α in SLE sera [28]. Now, the repeated
appearance of IFN-induced genes among the most signifi-
cantly overexpressed genes in data derived from multiple
laboratories using distinct microarrays raises the profile of
IFN as a pathogenic mediator of the myriad alterations to
the immune system seen in SLE.

In view of the important effects of IFN on immune system
function, including activities that could contribute to the
development of systemic autoimmunity, this cytokine
system might represent an excellent target for therapeutic
modulation [38–44]. At the same time, both type I and
type II IFNs are important, if not essential, for effective host
defense against pathogenic microbes. The weight of data
are consistent with the action of type I IFNs as primary
mediators of the observed gene expression signature in
SLE, with significant consequences for the development
of clinical disease. However, additional potential mediators
of the IFN gene signature, including CpG DNA or double-
stranded RNA, are candidates that should be explored.
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