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Abstract

Tumour necrosis factor (TNF) signalling molecules are
considered as promising therapeutic targets of antirheumatic
therapy. Among them, mitogen-activated protein kinases are
thought to be of central importance. Herein, we investigate the
role in vivo of TNF-a signalling through c-Jun N-terminal kinase
(JNK)1 in destructive arthritis. Human TNF transgenic (hTNFtg)
mice, which develop inflammatory arthritis, were intercrossed
with JNK1-deficient (JNK7) mice. Animals (n = 35) of all four
genotypes (wild-type, JNK7-, hTNFtg, JNK1/hTNFtg) were
assessed for clinical and histological signs of arthritis. Clinical
features of arthritis (swelling and decreased grip strength)
developed equally in hTNFtg and JNK71/hTNFtg mice.
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Histological analyses revealed no differences in the quantity of
synovial inflammation and bone erosions or in the cellular
composition of the synovial infiltrate. Bone destruction and
osteoclast formation were observed to a similar degree in
hTNFtg and JNK7/hTNFtg animals. Moreover, cartilage
damage, as indicated by proteoglycan loss in the articular
cartilage, was comparable in the two strains. Intact
phosphorylation of JNK and c-Jun as well as expression of JNK2
in the synovial tissue of JNK7-/-hTNFtg mice suggests that
signalling through JNK2 may compensate for the deficiency in
JNK1. Thus, JNK1 activation does not seem to be essential for
TNF-mediated arthritis.

Introduction

Proinflammatory cytokines bind to their receptors on the
plasma membrane and transmit the stimulatory effects to
the nucleus via intracellular signalling molecules. Therefore,
these cytokines are considered as promising therapeutic
targets. Drugs specifically inhibiting such proteins are usu-
ally small molecules and are thought to open a new frontier
in antirheumatic therapy along with newly arisen cytokine-
blocking strategies. Among the many downstream mole-
cules of cytokine signalling, mitogen-activated protein
kinases (MAPKs) are of central importance in shuttling the
signal of proinflammatory cytokines, such as IL-1 or tumour
necrosis factor (TNF)-a, to their respective target tissues
[1,2].

Cellular activation by TNF-a is a critical step in chronic syn-
ovial inflammation and progressive joint destruction. This is
supported by the overwhelming effects of TNF blockade,
which has revolutionized the therapy of rheumatoid arthritis
(RA). It inhibits both inflammation and destruction of joints,
in a majority of patients suffering from RA [3-5]. The hypoth-
esis is supported by animal models in which specific over-
expression of TNF-o is sufficient to cause chronic
destructive arthritis [6]. Increased levels of this cytokine in
the synovial fluid and tissue of RA patients have also been
reported [7-9]).).

To design therapeutic tools that not only interfere with TNF
signalling but also effectively block TNF-mediated inflam-
matory responses, it is essential to identify the major signal-
ling targets of TNF in inflammatory joint disease. In fact,

Ab = antibody; AP-1 = activator protein-1; H&E = hematoxylin and eosin; hTNFtg = human tumour necrosis factor transgenic; IL-1 = interleukin-1;
JNK = c-Jun N-terminal kinase; MAPK = mitogen-activated protein kinase; PBS = phosphate-buffered saline; RA = rheumatoid arthritis; TNF = tumour

necrosis factor; TRAP = tartrate-resistant acid phosphatase; wt = wild-type.
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TNF-a signalling is a complex process, involving not only
MAPKSs but also other pathways including nuclear factor
kB and the caspase cascade [10,11]. MAPKSs are thought
to be of central importance for mediating the proinflamma-
tory effects of TNF-a. Interestingly, all three MAPK families
— p38 protein kinase, extracellular signal-regulated kinase,
and c-Jun N-terminal kinase (JNK) — are activated in the
synovial membrane of RA patients, and TNF-a has the
potential to signal through all of them [12]. Therefore, each
of these different MAPKs is a possible therapeutic target.

We investigated the role of JNK1 in TNF-mediated inflam-
matory joint disease. Our findings show that the JNK1 sig-
nal pathway is not essential for the development of arthritis
and joint destruction.

Materials and methods

Animals

The heterozygous human TNF transgenic (hTNFtg) mouse
(strain: tg197; background: C57/BL6) has been described
previously [6]. As reported elsewhere, mice of this strain
develop destructive arthritis resembling RA within 4-6
weeks of birth [6,13]. JNK1-deficient (JNK7-) mice were
generated as previously described [14]. The hTNFtg and
JNK1-- strains were intercrossed to obtain double mutant
animals. F, generations were used and all data were gener-
ated from littermates. A total of 35 mice (wt, n=7; hTNFtg,
n=13; JNK1, n=6; and JNK1"hTNFtg, n = 9) of six dif-
ferent breedings were studied. This study was approved by
the local ethical committee pf the Medical University of
Vienna.

Clinical assessment

Arthritis was evaluated in a blinded manner as described in
earlier reports [13]. Assessments were started when the
mice were 5 weeks old and were repeated weekly. In brief,
joint swelling was assessed using a clinical score graded
from 0 to 3 (0, no swelling; 1, mild swelling of toes and
ankle; 2, moderate swelling of toes and ankle; 3, severe
swelling of toes and ankle). In addition, the grip strength of
each paw was analysed on a wire 3 mm in diameter, using

Table 1

a score from 0 to -4 (0, normal grip strength; -1, mildly
reduced grip strength; -2, moderately reduced grip
strength; -3, severely reduced grip strength; -4, no grip
strength at all). After cervical dislocation, the blood was
withdrawn by heart puncture and the paws of all animals
were dissected and preserved for histological analysis. The
last evaluation was performed 10 weeks after birth.

Histological sections and histochemistry

A total of 26 mice (wt, n = 7; hTNFig, n = 6; JNK1/, n =
6; and JNK1/-hTNFtg, n = 7) were assessed histologically.
Hind and front paws and right knee joints were fixed in
4.0% formalin overnight and then were decalcified in a
149% EDTA/ammonium hydroxide buffer at pH 7.2 (Sigma-
Aldrich, St Louis, MO, USA) at 4°C until the bones were pli-
able. Serial paraffin sections (2 pm) were stained with H&E,
or with toluidine blue for tartrate-resistant acid phos-
phatase (TRAP) activity. TRAP staining was performed as
previously described [13]. For immunohistochemistry,
deparaffinized, ethanol-dehydrated tissue sections were
boiled for 2 min in 10 mM sodium citrate buffer (pH 6.0)
using a 700-W microwave oven. Tissue sections were
cooled to room temperature and then rinsed using deter-
gent solution: 0.5% Tween in phosphate-buffered saline
(PBS).

For quantification of inflammation, areas of H-&-E-stained
sections were measured (5 sections/animal). The total area
of inflammation for each single animal was calculated by
evaluating all digital, carpal, and tarsal joints and the right
knee joint. The same H-&-E-stained sections were analysed
as described above for quantification of erosions. The
number of osteoclasts was counted as described above
analysing TRAP-stained serial sections. Cartilage break-
down (i.e., proteoglycan loss and matrix dissolution) was
measured from toluidine-blue-stained serial sections by
assessing cartilage according to the method of Joosten
and colleagues [15]. Total and destained cartilage areas
were measured and percentages of destained areas indi-
cating low proteoglycan content were ascertained.

Cellular composition (%) of cells infiltrating synovial tissue in two mouse strains with arthritis

Cells hTNFtg JNK1/-hTNFtg
Macrophages 495178 50.5 £5.3
Granulocytes 17.7+15 155+ 25
T lymphocytes 50%1.0 6.7+ 0.6
B lymphocytes 6.3+ 2.1 50+1.8

Values are percentages (mean * standard deviation) of positive cells among total cells in the synovial tissue. hTNFtg, human tumour necrosis

factor transgenic; JNK, c-Jun N-terminal kinase.



Figure 1
@) Joint swelling
2.5+
—7- hTNFtg
o 2.0 —@— UNK1"hTNFtg
s
o
w 1‘5_.
m
£
3 4
g 10
w
0.54
0.0 1
0 45 6 7 8 9 10 Age (wk)
Grip strength
®)
0 45 7 8 9 10 Age (wk)
0.0 'l L L L 1 J
2 054
o
b
e -1.0-
]
s
£ 1.5+
1
a 207
5 —7- hTNFt,
© 254 g
—&— JNKT hTNFtg
3.0

Clinical course of arthritis in human tumour necrosis factor transgenic
(hTNFtg) and JNK7-"hTNFtg mice. Joint swelling (a) and grip strength
(b) were assessed. No statistically significant differences between the
two groups were detected. Vertical bars indicate standard deviation.
Control animals (wild-type and JNK7-) showed no signs of arthritis (not
shown). JNK, c-Jun N-terminal kinase.

For immunohistochemistry, dewaxed, ethanol-dehydrated
tissue sections were boiled for 2 min in 10 mM sodium cit-
rate buffer (pH 6.0) using a 700-W microwave oven, then
allowed to cool to room temperature and rinsed in deter-
gent solution (0.5% Tween in PBS) for 10 min. Tissue sec-
tions were blocked for 20 min in PBS containing 20%
rabbit serum and were then incubated for 1 hour at room
temperature with the following antibodies (Abs): rat mono-
clonal antimacrophage (F4/80) Ab (Serotec Inc, Oxford,
UK); diluted 1:80), rat monoclonal anti-CD3 Ab (Novocas-
tra, Newcastle, UK; diluted 1:100), rat monoclonal anti-
CD45R/B220 Ab (Pharmingen International, Oxford, UK)
and rat monoclonal antineutrophil Ab (clone7/4, Serotec),
mouse monoclonal antiphosphorylated-JNK Ab (clone G7,
Santa Cruz Biotechnology, Santa Cruz, CA, USA), mouse
monoclonal anti-JNK2 Ab (clone D2, Santa Cruz), and
mouse monoclonal phospho-specific anti-c-Jun Ab (clone
KM-1, Santa Cruz). The sections were rinsed, and then
endogenous peroxidase was blocked with 0.3% hydrogen
peroxide in Tris-buffered saline (10 mM Tris/HCI, 140 mM
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NaCl, pH 7.4) for 10 min. This was followed by 30 min of
incubation with a biotinylated antirat IgG secondary Ab
(Vector, Burlingame, CA, USA). Then, sections were incu-
bated with the appropriate VECTASTAIN@ABC reagent
(Vector) for another 30 min using 8,3'-diaminobenzidine
(Sigma).

Statistical analysis

Data are shown as means * standard deviation. Group
mean values were compared using a two-tailed Student's ¢
test.

Results

TNF-induced clinical signs of arthritis develop
independently of INK1

To study the role in vivo of JNK1 activation in TNF-mediated
arthritis, we intercrossed hTNFtg with JNK7--mice. The off-
spring of all four genotypes (wt, \TNFtg, JNK1--, and JNKT-
"hTNFtg) were born at Mendelian frequency and were via-
ble. To evaluate arthritis, we assessed joint swelling and
grip strength weekly in all four genotypes. Neither wt nor
JNK1-- mice developed any signs of paw swelling, and
both maintained normal grip strength (data not shown). In
contrast, the hTNFtg animals developed joint swelling at 6
weeks of age, which increased to a maximum at week 10
(P<0.05 in comparison with wt and JNK7-"). In the JNK1-
"hTNFtg group, joint swelling started at age 7 weeks and
increased significantly thereafter (P < 0.05 in comparison
with wt and JNK71). There was no significant difference
between the hTNFtg and JNK7-/-hTNFtg mice at any time
of the analysis (Fig. 1a). In addition, grip strength signifi-
cantly decreased in both hTNFtg and JNK7/-hTNFtg
strains, but no significant difference between the two gen-
otypes was found (Fig. 1b). Thus, overexpression of TNF-o
induces clinical signs of arthritis also in the absence of
JNKT.

Similar degrees of synovial inflammation and cellular
composition of synovial inflammatory tissue in hTNFtg
and JNK17-/-hTNFtg mice

We next more closely evaluated arthritis by quantitative and
qualitative histological analysis of inflammatory tissue (Fig.
2). Animals of both control groups, wt and JNK7--, did not
show any sign of joint inflammation or destruction. In con-
trast, h\TNFtg mice not only developed intense inflammation
but also showed multiple bone erosions. Comparable
destructive changes were observed in joints from JNK7--
hTNFtg mice. Quantitative analysis of the area of synovial
inflammation revealed no significant differences between
hTNFtg and JNK7-/-hTNFtg mice (Fig. 3a). Similarly, quan-
tification of erosive changes was comparable in these two
genotypes (Fig. 3b). Furthermore, immunohistochemical
analysis revealed similar distributions of T cells, B cells,
granulocytes, and macrophages within the synovial mem-
branes of the two genotypes (Table 1).
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TNF-driven osteoclast formation in the inflamed joints.
Staining for the osteoclast-specific enzyme TRAP revealed
numerous osteoclasts within arthritic bone erosions in both
hTNFtg and JNK7-/-hTNFtg mice (Fig. 4a). Quantification of
osteoclasts revealed no significant difference between the
two groups (Fig. 4b), reflecting that the absence of JNK1
does not alter the progression of joint destruction in condi-
tions of TNF overexpression.

Proteoglycan content is reduced in cartilage of hTNFtg
and JNK1-/-/hTNFtg mice

Lastly, we addressed whether the absence of JNK1 influ-
ences cartilage damage in TNF-a-induced arthritis. Quanti-
tative assessment of proteoglycan loss by toluidine blue
staining showed a marked reduction of proteoglycan con-
tent in both hTNFtg and JNK7/-hTNFtg mice (Fig. 5a). But
again, no significant difference in the percentage of the
affected cartilage surface was detected between hTNFtg
and JNK1/-hTNFtg mice. In contrast, wt and JNK7-- ani-
mals revealed virtually no alterations of articular cartilage
(Fig. Bb). This suggests that TNF-a. induces degradation of
cartilage independently of JNK1.

Quantitative analysis of synovial inflammation and joint destruction.
There were no differences in the extent of inflammatory tissue between
human tumour necrosis factor transgenic (hTNFtg) and intercrossed
(JNK1/hTNFtg) mice. Mean areas of inflammation (a) and erosions (b)
were comparable in these two strains. Vertical bars indicate standard
deviation. JNK, c-Jun N-terminal kinase.

Lack of INK1 decreases expression of phosphorylated
JNK but does not affect activation of c-Jun

Surprisingly, JNK1--hTNFtg mice developed destructive
arthritis comparable to that of hTNFtg animals. Therefore,
we assessed JNK signalling in animals of both genotypes.
Histological staining of synovial membrane from JNK1--
hTNFtg mice revealed significantly fewer cells expressing
phosphorylated JNK than in hTNFtg animals (Fig. 6a; P <
0.05). The expression within the synovial membrane of
JNK2 (Fig. 6b) or phosphorylated c-Jun (Fig. 6c) was simi-
lar in both groups that developed arthritis.

Discussion
In RA, cytokine-mediated cell activation leads to chronic
synovial inflammation as well as bone and cartilage
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Synovial osteoclasts in human tumour necrosis factor transgenic
(hTNFtg) and JNK1--hTNFtg mice. As demonstrated by staining with
tartrate-resistant acid phosphatase (a), there are abundant osteoclasts
(OC) at the site of erosions in hTNFtg and intercrossed (JNK1+-
hTNFtg) mice, which all developed arthritis (magnification 100x). The
number of osteoclasts was similar in the two animal groups (b). Vertical
bars indicate standard deviation. JNK, c-Jun N-terminal kinase.

destruction. Evidence from basic and clinical research has
established TNF-a as one of the major players in the patho-
genesis of RA. The effects of TNF-a. are mediated via mem-
brane receptors which themselves activate intracellular
messenger cascades, such as MAPK. JNKs are especially
important, because of their ability to phosphorylate the acti-
vator protein (AP)-1 component c-Jun, making them critical
regulators of transcription [16]. The JNK proteins include
three different isoforms, of which JNK1 and (with even
higher affinity) JNK2 phosphorylate c-Jun [17]. JNK2 is
preferentially bound to c-Jun in unstimulated cells, whereas
JNK1 becomes the major c-Jun-interacting kinase after cell
stimulation [18]. Notably, JINK1 appears to be a key regula-
tor of the differentiation of type 1 T helper cells in mice [19].

Like other MAPK pathways, JNK signalling is activated in
the synovial tissue of RA patients [12,20-22]. Studies with
cultured synovial fibroblast-like cells from RA patients have
established proinflammatory cytokines, such as TNF-a and
IL-1, as important activators of JNK signalling, and JNK2 is
the dominant isoform in synovial cells [12,20-22]. In these
cells, TNF-induced phosphorylation of JNK leads to the
phosphorylation of c-Jun and finally activation of the tran-
scription factor complex AP-1 [20]. Loss of either JNK1 or

hTNFtg  JNKT“hTNFtg

Evaluation of proteoglycan loss in human tumour necrosis factor trans-
genic (hTNFtg) and JNK7/hTNFtg mice. As shown by toluidine blue
staining (@), arthritis leads to loss of proteoglycan (arrows) in the carti-
lage of hTNFtg and intercrossed JNK7-"hTNFtg mice (magnification
100x). The area of early cartilage damage (b) was similar in the two
groups with arthritis, whereas the joints of wild-type (wt) and JNK1
knockout (JNK1--) animals were unaffected. Vertical bars indicate
standard deviation. JNK, c-Jun N-terminal kinase.

JNK2 suppresses AP-1 [21]. The JNK pathway is therefore
involved in the regulation of genes coding for collagenases,
chemoattractants such as macrophage chemoattractant
protein-1, or the adhesion molecule E-selectin [23,24].

These data indicate that JNK1 is dispensable in TNF-medi-
ated joint disease. Of interest, arthritis in hTNFtg mice is
directly induced by overexpression of TNF, a potent trigger
of the JNK pathway. Thus, it is surprising that even if dis-
ease is caused by the overexpression of a trigger of JNK-
signalling, the absence of JNK1 is not essential for the
development of the disease. However, the hTNFtg animal
model has its limits, since it bypasses the autoimmune
inductive phase, which is seen in other arthritis models
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Analysis of JNK activation in human tumour necrosis factor transgenic (nTNFtg) and JNK1///hTNFtg mice. Synovial inflammatory tissue of the mice
were stained with antibodies against the phosphorylated form of JNK (a), total JINK2 (b), and the phosphorylated forms of c-Jun (c). Positive cells are
stained in brown (arrows; magnification 400x). Results of quantification (percentages of positive cells) are given in separate bar charts. Vertical bars
indicate standard deviation. JNK, c-Jun N-terminal kinase; p-c-Jun, phosphorylated c-Jun; p-JNK, phosphorylated JNK. 1 cm = (a) 40 um, (b, c) 30

pm.

such as collagen-induced arthritis or adjuvant arthritis, as
well as in human disease. Thus, although these findings are
relevant for TNF-mediated inflammation and connective tis-
sue destruction, their implication for human RA should be
seen with caution. Interestingly, the role of JNK has been
investigated in autoimmune-based models of experimental
arthritis in two outstanding studies. Treatment of rat adju-
vant arthritis with SP600125, an inhibitor that affects
kinase activity of both JNK1 and JNK2, was followed by a
modest decrease of inflammation and paw swelling and an
impressive inhibition of radiographic damage [21]. The
influence of selective deletion of JNK2 was investigated in
collagen-induced arthritis in mice. The severity of arthritis
was even slightly increased, and histological evaluation
showed a degree of synovial inflammation comparable to
that in wt mice [25]. These latter findings suggest that
selective inhibition of JNK2 is not effective to block destruc-
tive arthritis and raises the question whether JNK1 is a
more promising target or effective inhibition of arthritis

depends on the nonselective inhibition of JNK1 and JNK2.
Our data extend this knowledge: the selective inhibition of
JNK1 is not effective to block inflammation in TNF-driven
arthritis. In fact, we show that even in the complete
absence of JNK1, phosphorylation of JNK, although to a
reduced amount, still occurs via engagement of JNK2. The
latter is expressed in the synovial inflammatory tissue and
its activation by TNF is sufficient to induce c-Jun transcrip-
tion factor. Taken together, these findings from various
experimental models of arthritis suggest that only the inhi-
bition of both JNK isoforms, JNK1 and JNK2, may be a fea-
sible approach to achieve a major blockade of synovitis and
thus achieve therapeutic efficacy.

Development of local bone erosions in the joints affected
by chronic arthritis depends on the presence of osteoclasts
[13,26]. Interestingly, JINK1 plays an important role in oste-
oclastogenesis. Cells derived from JNK7-- mice revealed
an impaired differentiation of osteoclasts in vitro [27]. Thus,



targeting of JINK1 could have been considered as a feasible
approach to protect from inflammatory joint damage. Sur-
prisingly, however, the degree of bone erosions as well as
numbers of osteoclasts was not affected by the lack of
JNK1, indicating that TNF-driven osteoclastogensis is inde-
pendent of JNK1 in vivo.

In fact, matrix metalloproteinases substantially contribute to
irreversible degradation of collagen. The IL-1-dependent
induction of matrix metalloproteinases in chondrocytes is
regulated through complex pathways including MAPKs,
AP-1, and nuclear factor kB transcription factors [28].
Interestingly, lack of JNK2 led to a modest but significant
reduction of cartilage damage in collagen-induced arthritis
[25]. Therefore, we hypothesized that a reduction of carti-
lage damage could be expected after knocking out JNK1 in
hTNFtg mice. However, much as with synovial inflammation
and bone loss, no significant protection of articular carti-
lage has been observed in JNK7--hTNFtg, suggesting that
JNK1 does not seem to be important in TNF-mediated car-
tilage destruction.

Conclusion

Taken together, these findings show that JNK1 is not
essential for TNF-mediated joint disease. Specific inhibitors
of JNK1 in mice probably work in conditions that are not pri-
marily dependent on TNF-a. Moreover, an effective inhibi-
tion of synovitis and joint destruction may necessitate a
combined blockade of the JNK isoforms or even additional
MAPKs.
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