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CMV = cytomegalovirus; EAE = experimental autoimmune encephalomyelitis; EBV = Epstein–Barr virus; HHV = human herpesvirus; IFN = inter-
feron; MHC = major histocompatibility complex; MHV = murine herpesvirus; PCR = polymerase chain reaction; RA = rheumatoid arthritis; SLE =
systemic lupus erythematosus; TCR = T-cell receptor; TNF = tumor necrosis factor.
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Abstract
Reports of infection with certain chronic persistent microbes
(herpesviruses or Chlamydiae) in human autoimmune diseases are
consistent with the hypothesis that these microbes are reactivated
in the setting of immunodeficiency and often target the site of auto-
immune inflammation. New experimental animal models demon-
strate the principle. A herpesvirus or Chlamydia species can be
used to infect mice with induced transient autoimmune diseases.
This results in increased disease severity and even relapse. The
evidence suggests that the organisms are specifically imported to
the inflammatory sites and cause further tissue destruction,
especially when the host is immunosuppressed. We review the
evidence for the amplification of autoimmune inflammatory disease
by microbial infection, which may be a general mechanism
applicable to many human diseases. We suggest that patients with
autoimmune disorders receiving immunosuppressing drugs should
benefit from preventive antiviral therapy.

What do herpesviruses, Chlamydiae and
parvovirus B19 have in common?
The question of how infectious organisms contribute to
autoimmunity has continued to be of interest to clinical
rheumatologists and basic immunologists. Recent reviews
have considered the possible contributions of different
non-mutually exclusive mechanisms, including molecular
mimicry, bystander activation, cryptic antigens, and
epitope spreading [1–3]. However, current understanding,
as reflected by these reviews, does not account for the
skewed list of infectious organisms often quoted as being
associated with various autoimmune disorders. As
outlined in Table 1, certain organisms are repeatedly
mentioned as being linked to different autoimmune
disorders. These are human herpesviruses (HHVs), in
particular the non-neurotropic herpesviruses such as
Epstein–Barr virus (EBV), cytomegalovirus (CMV) and
HHV6 (the group also includes HHV7 and HHV8),
Chlamydiae and parvovirus B19. As these organisms are
mentioned in the context of so many different diseases it is
unlikely that they would have specific etiologic roles.

Moreover, there is a large, controversial and often
contradictory literature on these associations, which
suggests that pathogenic mechanisms might be
redundant and non-specific. New data demonstrate a role
for such microbes in augmenting disease expression in
several experimental mouse models [4–6].

One approach is to examine relevant similarities between
Chlamydiae, parvovirus B19 and non-neurotropic
herpesviruses. Although, superficially, they have nothing in
common, they may share cell tropisms (Table 2) in that
they have a predilection for hematopoietic cells and
endothelial cells. The ability of these organisms to ‘hitch a
ride’ and get around in hematopoietic cells might actually
serve a vital function. For instance, the infectious life-cycle
of herpesviruses includes three functions for infected host
cells: first, initial viral replication; second, a long-term
latency reservoir; and third, the production of infectious
virus at a convenient mucosal or skin site. The initial host
cell for productive lytic infection, for example with EBV,
may be an oral mucosa epithelial cell [7], but it is quickly
replaced by the major target cell, the B lymphocyte, during
acute infectious mononucleosis. For EBV the same cell
serves as the latency reservoir. Conveniently, herpesvirus
latency is frequently established in circulating hemato-
poietic cells. To complete the infectious life cycle, virus
must be produced and transmitted to uninfected
individuals. This occurs at mucosal sites: salivary glands,
buccal mucosa and urogenital mucosa [8–10]. It is
assumed that, at intervals, productive infection occurs in
mucosal epithelial cells even in normal individuals and that
these mucosal cells are infected in turn via circulating
hematopoietic cells after local reactivation of latent virus.
For this purpose EBV-infected B cells may use the CD48
molecule to bind heparan sulfate on epithelial cells
[11,12]. This may occur at sites of chronic or intermittent
inflammation. Indeed, the lymphoid organs of Waldeyer’s
ring, where EBV is thought to reactivate, are sites of
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physiologic chronic inflammation. Other such sites of
physiologic inflammation include the gastrointestinal
mucosa and certain types of urogenital mucosa such as
the cervical transitional mucosa [12].

Low-grade histological inflammation of the prostate may
be more common than is generally thought [13], and was
noted in 66% of autopsies of men over the age 40 in one
study [14] and in all men with benign prostate hypertrophy

Table 1

Disease associations

Chlamydia Chlamydia 
Disease EBV CMV HHV6 HHV7 HHV8 trachomatis pneumoniae PV B19 References

SLE +a +b + + + [127–133]

RA ++ ++ + ++ ++ ++ [64,95,130,134] 

Sjoegren’s disease ++ ++ [135,136]

Myocarditis + + + ++ [137–139]

MS + + ++ ++ [91,140–142] 

T1DMc + + [143]

IgA nephritis ++ ++ [144,145]

Guillain–Barré syndrome + + [146,147]

Uveitis ++ + [148,149]

Reiter’s syndrome + + ++ [64,89]

Polymyositis dermatomyositis + + [130]

Aplastic anemia ++ [66]

ITP + + + [150,151]

Vasculitis + + + ++ [130]

Behcet’s disease + [130]

Giant cell arteritis ++? + [152,153]

Scleroderma + + [154,155]

Glomerulonephritis ++ ++ [144,145,156–158]

Autoimmune infertility + [159,160]

Psoriais + [161]

Pityriasis rosea ++ ++ [162]

Atherosclerosis + + ++ [98]

Leprosy + + [102,103,163]

After transplant ++d ++d + + + + + [123,124,164–173] 

aAssociations that include some form of documented presence (by culture, electron microscopy, immunohistochemistry, PCR or in situ
hybridization) of the microbe in autoimmune target tissues are indicated by ++. Other associations are indicated by +. Note that the references are
not comprehensive and omit most of the contradictory literature; the purpose was to look for evidence of microbial presence specifically in the
autoimmune target tissues.
bCMV in SLE is often a complication from immunosuppressive therapy causing colitis, ileitis, retinitis, pneumonitis or vasculitis, but infection can
also occur before therapy. It is unclear whether infection occurs on top of a pre-existing autoimmune lesion in an autoimmune tissue (for example
skin or kidney). In settings of viral reactivation due to immunosuppression, the virus may be expressed ubiquitously and we were therefore more
interested in reports in which expression was limited to an autoimmune target tissue.
cA recent review lists up to six viruses associated with type I diabetes mellitus (T1DM), but we focus here only on those mentioned repeatedly in
association with a wide variety of autoimmune disorders.
dPTLD (post-transfusion lymphoproliferative disease) represents a spectrum of disorders in which lymphocytes (predominantly B cells) infiltrate the
allo-transplant organ. PTLD can evolve from a condition that is reversible upon cessation of immunosuppression, to an irreversible monoclonal
lymphoma. Productive herpesvirus infections, especially EBV and CMV, occur in situ in allotransplants. By contrast, EBV is not usually present in
rejected transplant tissues. Chlamydiae can cause infectious complications in severely immunodeficient transplant patients but do not directly
infiltrate the transplanted tissues.
CMV, cytomegalovirus; EBV, Epstein–Barr virus; HHV, human herpesvirus; ITP, immune thrombocytopenia; MS, multiple sclerosis; PV, parvovirus;
RA, rheumatoid arthritis; SLE, systemic lupus erythematosus.
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[15]. Discrete focal inflammation of clinically normal
salivary glands has also been noted [16]. Finally, asympto-
matic airway inflammation is common and can be elicited
by ubiquitous stimuli such as smoke or smog [17,18].
Herpesviruses must have evolved a way of migrating to
such mucosal sites, perhaps by taking advantage of inflam-
matory cells that go there naturally. A possible unintended
sequel is that inflammatory cells may also migrate to
internal sites of inflammation, such as the synovium of an
arthritic patient. Reactivation of virus at these sites does
not serve the purpose of the virus but may aggravate the
disease process. The prediction from this model is that any
organism that uses hematopoietic inflammatory cells to
migrate to a site of inflammation can be reactivated in
autoimmune target tissues. Thus, there need not be a
specific organism associated with a specific disease.

Herpesviruses
How well does this model fit for the organisms listed in
Table 1? EBV (HHV4) is well known to infect resting B
lymphocytes. CD27–, CD5–, IgD– memory B cells later
provide a latency reservoir [8,19]. There are estimates that
1 in 105 to 1 in 106 B cells carry latent EBV in normal
adults [20]. Upon reactivation of EBV in the lymphoid
tissue of Waldeyer’s ring [8], shedding occurs from the
oral mucosa. Although not yet proven, it is possible that
mucosal epithelial cells adjacent to these lymphoid organs
produce infectious virus [11,21]. Indeed, EBV can infect
several cell types other than B cells, including endothelial
cells [22], follicular dendritic cell lines [23], T lymphoma
cells in hemophagocytic syndrome [24], smooth muscle
tumor cells in immunosuppressed hosts [25] and synovio-
cytes from patients with rheumatoid arthritis (RA) [26–28].

Acute lytic infection with CMV (HHV5) occurs in
monocytes in the blood, and a latency reservoir is
established in circulating myelomonocytic cells and their

CD33+ CD34+ bone marrow progenitors [29–31]. About
0.01 to 0.004% of mononuclear cells from peripheral
blood donors, who had received granulocyte colony-
stimulating factor mobilization for transplant purposes,
contained the viral genome [32]. CMV can also infect
dendritic cells [33,34] and endothelial cells, and may
establish a latency reservoir in these cells too [30]. Lytic
infection can involve epithelial cells, fibroblasts, stromal
cells, neuronal cells, smooth muscle cells and hepatocytes
in infected target tissues. CMV seems to be reactivated
from latency by allostimulation [29,35]. Perhaps
reactivation also occurs by immune stimulation at a
mucosal site where CMV is excreted, such as the salivary
glands, the lactating mammary glands or the urogenital
tract [10,36,37], allowing both horizontal sexual trans-
mission and vertical transmission to the newborn infant.
Tumor necrosis factor-α (TNF-α) can substitute for
allostimulation in inducing expression of the CMV IE-1
gene [29,38], but for complete CMV reactivation it is likely
that other checkpoints must be overcome [39], perhaps
regulated by other cytokines such as interleukin-13 and
granulocyte/macrophage colony-stimulating factor, which
are known to promote the replication of human CMV [38].
Moreover, CMV has evolved its own specialized CC-
chemokine gene, MCK-2. The presence of MCK-2 results
in greater inflammatory responses and enables CMV
shedding in the salivary glands [40,41].

HHV6 infects cells of the myelomonocytic lineage both
acutely and then latently. This includes bone marrow
progenitors and myelomonocytic cells in peripheral blood
[42–45]. HHV6 also has tropism for T cells, B cells,
natural killer cells (viral subgroup A) and dendritic cells
[45]. Finally, lytic infection can occur in many other cell
types including neurons, muscle cells and epithelial cells.
The last of these probably allow productive infection at a
mucosal site, such as the salivary glands [46–48].

Table 2

Characteristics of human herpesviruses, Chlamydiae and parvovirus

Main Proposed Other 
Organism Receptors cellular tropism latency cell tropism References

EBV CD21, MHC-II, α5β1 integrin B B EPC, EC [8]

CMV EGFR M/M M/M; EC N, EPC, EC [174]

HHV6 CD46+ M/M, T, B M/M N, EPC [175]

HHV7 CD4+ heparan sulfate receptor T M/M N, EPC, EC [176,177]

HHV8 Heparan sulfate receptor, EGFR EC, M/M, B, T B N, EPC [174,178]

Chlamydia pneumoniae Heparan sulfate receptor M/M EC,EPC [179]

Chlamydia trachomatis M/M EC,EPC

Parvovirus B19 Erythrocyte P antigen Erythroid precursors EC [66,67]

B, B cells; CMV, cytomegalovirus; EBV, Epstein–Barr virus; EC, endothelial cells; EGFR, epidermal growth factor receptor; EPC, epithelial cells;
HHV, human herpesvirus; MHC, major histocompatibility complex; M/M, myelomonocytic cells; N, neural cells; T, T cells.
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HHV7 may infect predominantly T cells but also
myelomonocytic cells [49–51]. Like other herpesviruses it
can infect epithelial and endothelial cells. Salivary glands
are a major site of production of HHV7 [9,52]. HHV6 and
HHV7 antigenemia occurs in the setting of CMV
reactivation in transplant patients [53].

Finally, HHV8 targets myelomonocytic cells, lymphocytes
and endothelial cells [54,55]. There may be a latency
reservoir in B cells and circulating monocytes. Epithelial
cells can also be infected and HHV8 is detected in the
saliva of asymptomatic persons [9,52,56].

The cellular receptors used for herpesviral entry and fusion
are often expressed ubiquitously (Table 2) and do not
completely explain the targeted cell types. Just because a
receptor is known does not mean it is the only one. CD21
and major histocompatibility complex (MHC) class II are
known EBV receptors on B cells but α5β1 integrin is a
receptor for entry into polarized tongue and nasopharyn-
geal epithelial cells [7]. Nevertheless, there is a recurrent
pattern in that these β- and γ-herpesviruses establish
latency in hematopoietic cells and are reactivated for
production of infectious virus at a suitable mucosal site. To
some extent this may also apply to α-herpesviruses,
although their distinguishing feature is tropism for, and
latency in, neuronal cells and host-to-host transmission
through skin lesions.

Chlamydiae
Chlamydiae are bacteria that live within vacuoles in
eukaryotic cells. Acute infections target mucosal cell
surfaces (lung, genital tract or eye). Persistence for many
years is common, and studies in mouse models have
shown that quiescent organisms can be reactivated
[57,58]. Host cells include endothelial cells (Chlamydia
pneumoniae) and epithelial cells (Chlamydia trachomatis).
Circulating monocytes also carry Chlamydiae and may
serve to disseminate the organism [59,60]. In vitro, small
amounts of interferon-γ (IFN-γ) arrest chlamydial develop-
ment and promote a morphologically distinguishable
persistent form. This is reversible in the presence of
excess tryptophan [57,61]. Thus, it is thought that IFN-γ
limits available intracellular pools of tryptophan for the
bacteria without affecting their viability and that this
occurs via the tryptophan decyclizing enzyme indoleamine
2,3-dioxygenase. However, not all Chlamydiae are
dependent on exogenous tryptophan: serovars D–K of
Chlamydia trachomatis, with urogenital rather than ocular
tropism, possess trpRBA, a tryptophan synthase gene
cluster, and can synthesize tryptophan from indole
substrates produced by vaginal microbial flora [62]. In
IFN-γ knockout mice, and even more so in mice with
severe combined immunodeficiency, C. trachomatis
(strain MoPn) disseminates to various tissues from the
genital tract and infection fails to resolve [63]. Thus, as

with the Herpesviruses, the host inflammatory response
can control the persistence of Chlamydiae, although the
mechanistic details differ. The proinflammatory cytokine
mix present in the arthritic synovium may promote the local
persistence of Chlamydiae [57,61,64,65].

Parvovirus B19
With parvovirus B19, acute infection occurs in the upper
respiratory tract [66,67]. At least 50% of the general
population have been exposed and have detectable IgG
antibodies. There are three clinical syndromes: fifth
disease (erythema infectiosum), hydrops fetalis, and
transient aplastic crisis/pure red cell aplasia. The latter led
to the discovery that parvovirus B19 has exquisite cell
tropism for early erythroid cells and progenitors, resulting
in a cytopathic effect in giant pro-normoblasts [66].
However, anemia develops primarily when red cell turn-
over is increased, as in patients with chronic hemolysis.
The virus uses globoside or erythrocyte P antigen to gain
entry to these cells. Although the receptor is present on
other cells, including megakaryocytes and endothelial
cells, productive infection is restricted to pronormoblasts
[66]. Parvoviruses of other animal species infect lympho-
cytes and monocytes, but this has not been shown for
B19 in humans. A reticuloendothelial site for B19 infection
remains a possibility (N. Young, personal communication).
Parvovirus B19 is a single-stranded DNA virus that does not
enter typical latency or become integrated in the host cell
genome. However, persistence of the organism does occur.

In the original description [68], viremia was described in
healthy asymptomatic blood donors. By nested PCR,
parvovirus DNA was found in bone marrow from 4 of 45
random cadavers [69]. It is also known that the virus can
be transmitted by blood products [70]. Virus can ‘persist’
in normal and immunodeficient patients without clinical
evidence of disease [70,71]. Patients with congenital
immunodeficiency, children with leukemia during or after
chemotherapy, patients with AIDS, and transplant
recipients may suffer persistent parvovirus B19 infection
and the viral DNA load can be as high as in acute infection
[66]. Cryptic infection with low-grade viral replication in
normal hosts [72] may explain why B19 DNA is found in
the bone marrow of patients with arthritis [73], some of
whom may have B19 DNA in the synovium and the
synovial fluid [74–76] and occasionally viral DNA is
widespread including in the serum and skin [77].

The pathogenic role of viral DNA in the synovium is
debated because control samples from osteoarthritis
patients, or patients with recent joint trauma, also
contained B19 DNA. While transgenic expression of
nonstructural protein-1 (NS1) of parvovirus B19 in C57Bl/6
mice did not result in spontaneous arthritis, it did render
mice of a resistant genetic background susceptible to
collagen-induced arthritis [78]. In these mice NS1 was
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expressed in the synovium after arthritis induction. There
are further associations where B19 DNA has been found
in the relevant tissues, for example hepatitis, myocarditis
and various types of vasculitis [67].

Perhaps cryptic infection is normally contained in the
presence of neutralizing antibodies, which are present in
many sera and can be administered therapeutically in the
form of intravenous immunoglobulin to immunodeficient
patients [66]. It is not known whether this virus uses
hematopoietic cells for dissemination within the body, nor
is it known where or how the virus is excreted for
dissemination to new hosts. Data are also lacking on
whether the inflammatory milieu might influence viral
replication. Autoimmunity associated with parvovirus B12
infection (Table 1) is thought to be due to immune
complexes, cross-reactive antibodies, immune dysregulation
or the production of inflammatory cytokines [79–82].
Overall, the data on this virus are not as strong as those
for herpesviruses and Chlamydiae in support of the
hypothesis proposed herein.

Circumstantial evidence for the hypothesis
In summary, it is possible that both herpesviruses and
Chlamydiae gain access to sites of chronic tissue
inflammation through a Trojan horse mechanism, because
the influx of inflammatory hematopoietic cells will include a
small number of cells that carry these organisms in
dormant forms. There is some circumstantial evidence for
this hypothesis. First, several studies aimed at discovering
the autoantigen in human autoimmune diseases have used
TCR repertoire analysis. In several instances, expanded
CD4 and CD8 clones were found. Although investigators
had invariably been hunting for autoantigen-reactive
clones, the only specificities that have been uncovered are
herpesvirus antigens! For example, CD4 clones from RA
synovia examined by Li and colleagues were ‘auto-
reactive’ with EBV-transformed B cell lines [83]. CD8
clones in psoriatic arthritis bore the signature TCR BV
CDRIII region of T cells specific for BMLF1 of EBV [84].
CD8 clones from RA synovia characterized by Bonneville
and colleagues in a series of elegant studies were reactive
with latent and lytic viral antigens, including BZLF1 and
BMLF1 [85,86]. Curiously, the EBV antigens identified
were often lytic gene products. This implied that productive
viral infection might have occurred in the synovium.

These results were corroborated by using MHC class I
tetramers, specifically EBV and CMV peptides bound to
HLA-A2. Synovial T cells specific for herpesvirus antigens
were found enriched in the synovium in comparison with
blood obtained at the same time from the same patient
[87,88]. Finally, these studies revealed that the
concentration of herpes-specific T cells in the inflam-
matory synovium was not disease specific. This pheno-
menon was observed in RA, in psoriatic arthritis, in

ankylosing spondylitis, in uveitis, and in multiple sclerosis,
where target tissues were also enriched in CMV-specific
and EBV-specific T cells [89]. In this context the much
touted association of a disease such as multiple sclerosis
with HHV-6 or Chlamydia [90,91] is less puzzling. As with
CMV and EBV, these organisms may reactivate within the
autoimmune target tissue.

Whether herpesviruses are produced in situ in autoimmune
target tissues has been examined in several studies [26–28].
Koide and colleagues were able to culture infectious EBV
from RA synoviocytes obtained ex vivo [26]. Takeda and
colleagues provided immunohistological and in situ
hybridization studies in support of productive viral infection
in RA synovia [27]. Many studies have provided serological
evidence of productive EBV infection in RA, and also for
HHV6 and CMV [92,93]. Productive infection by EBV in
the oral mucosa is significantly increased in RA in
comparison with normal subjects [92]. Finally, PCR studies
for viral DNA and RNA in RA synovia have yielded
contradictory results [28,94,95]. However, negative results
can easily be explained by the rapid and efficient clearance
of virus-infected cells by a competent immune system.
Some samples that were negative by PCR were
nevertheless enriched for EBV-specific CD8 cells [94].

As discussed, T cells specific for lytic viral antigens can
accumulate in the inflammatory target tissues in several
autoimmune diseases. However, this is not specific to
autoimmunity. It might also occur in other inflammatory
lesions, including atherosclerotic plaques for example
[96–98]. The association between herpesvirus infection of
the arterial wall and atherosclerosis is striking for Marek’s
disease in chickens [99]. Infection of apoE–/– mice with a
murine γ-herpesvirus accelerates atherosclerosis, and viral
mRNA is present in the aorta [100]. There may be other
examples, as suggested by unusual reports such as the
detection of EBV by PCR and immunohistochemistry in
fibroadenomas of the breast in immunosuppressed hosts
[101], and the association of EBV with leprosy [102,103].

The key question is whether this matters for disease
progression. If these microbes aggravate disease by
superimposed infection, antimicrobial therapy would be
predicted to halt disease progression. This question has
now been addressed in animal models.

Murine models to test the hypothesis
Murine herpesvirus (MHV)-68 is a mouse gamma
herpesvirus. It most closely resembles EBV and HHV8
and is a natural pathogen of small rodents. This virus has
now been used to infect mice with transiently induced
arthritis [4] using serum transferred from K/BxN mice
[104]. Normally, a clinically severe but transient inflam-
matory arthritis develops within 2 days and resolves after 3
to 4 weeks.

Arthritis Research & Therapy    Vol 7 No 2 Posnett and Yarilin
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The course of this transient arthritis was aggravated and
prolonged by infection with MHV-68 given 2 to 5 days
after arthritis induction [4]. In immunocompetent mice the
disease remained transient, but in severely immuno-
compromised mice a relapse of arthritis was observed.
The relapse was due to lytic viral infection in synovial
tissues of recovering arthritic, but not normal, joints in the
same animal. Infection was demonstrated by PCR,
immunohistochemistry and electron microscopy. Virus-
specific T cells were enriched in the affected joints.
Clinical relapse of arthritis could be inhibited with an
antiviral drug, cidofovir, known to be active against
MHV-68. Latent infection could be reactivated in the
synovium when normal mice, latently infected with
MHV-68, were treated with Cytoxan. This was associated
with increased arthritis and viral antigens in the synovium
by immunohistochemistry. These data strongly suggest
that a herpesvirus infection can be imported to the
inflammatory site of an autoimmune target tissue. Genuine
viral infection is established, and this alters the course of
the autoimmune disease.

MHV-68 infection is also known to exacerbate experi-
mental autoimmune encephalomyelitis (EAE) in mice, an
experimental mouse model for multiple sclerosis [5]. The
mechanism by which the virus altered disease expression
was not uncovered in this study. Although viral DNA was
not detected in the diseased spinal cords, this might have
been due to insufficient sensitivity of the assays. In an
immunocompetent host, as in these mice, virus-infected
cells are instantly removed and only the telltale viral
antigen-specific T cells remain as proof of what has
happened.

C. pneumoniae was used to infect mice (intraperitoneally)
on day 7 of EAE induction. C. pneumoniae, but not C.
trachomatis, resulted in more severe neurological disease
[6]. C. pneumoniae, usually present only in spleen and
lungs, was found in the central nervous system by reverse
transcriptase PCR and by immunohistochemical staining
associated with perivascular lymphocytic infiltrates. In
conclusion, several animal models, using herpesviruses or
Chlamydiae, support our hypothesis.

Mechanisms of amplification of
autoimmunity
Imported infection as described above can theoretically
have one of three effects: first, it can exacerbate ongoing
disease leading to greater severity and duration; second, it
can induce a relapse; or third, it can lead to chronic
progressive disease. In the KxN arthritis model using the γ-
herpesvirus MHV-68 [4], exacerbation of transient arthritis
was observed in immunocompetent mice. Disease was
also exacerbated in Cytoxan-treated immunodeficient
mice, and in severely immunocompromised RAG1–/– mice
a relapse due to lytic viral infection in the synovia was

observed. In EAE the same virus (MHV-68) exacerbated
disease [5]. Only immunocompetent mice were examined
and the observation period was not long enough to assess
relapse or chronicity. These authors did not find lytic viral
infection in the central nervous system by viral plaque
assays or by PCR. For C. pneumoniae and EAE [6],
exacerbation was also noted in immunocompetent mice,
but relapse or chronicity was not examined. In that paper,
in vitro responses to myelin basic protein, such as T cell
proliferation and γ-IFN production, were measured. Mice
with EAE plus C. pneumoniae infection had larger
responses to myelin basic protein than mice with EAE
alone, suggesting that autoimmune responses were
amplified by the infection.

Our data from immune-suppressed mice showed
extensive viral infection, with MHV-68 in the synovium
involving all cell types including fibroblasts and synovial
lining cells [4]. By electron microscopy many of these cells
were lytically destroyed, extracellular free viral particles
were abundant and polymorphonuclear cells ingesting
viral particles were seen. This picture suggests lytic viral
infection. In an immunocompetent mouse, this infection
would presumably be contained by a cellular and a
humoral immune response. A local antiviral immune
response would no doubt contribute to autoimmune
inflammation. Cytotoxic tissue damage, whether induced
by cytotoxic T cells or due to lytic viral infection, would
result in a proinflammatory milieu. Cytokines and
chemokines could contribute to inflammation in a non-
specific way. However, infection might also release
sequestered autoantigens and thus spread the repertoire
of targeted autoantigens.

Indeed, Horwitz and colleagues have demonstrated
bystander tissue destruction by Coxsackie virus in
autoimmune diabetes [105]. As a result, sequestered
autoantigen was released, which re-stimulated resting
auto-reactive T cells in TCR transgenic mice, containing
an overabundance of such T cells specific for an islet
autoantigen. Both Coxsackie virus and the drug
streptozotocin, an islet-damaging agent, had this effect
[106]. Coxsackie virus is not a persistent or latent virus of
hematopoietic cells. Mechanisms pertaining to the
amplification of autoimmunity by MHV-68 or Chlamydiae
might therefore differ and have not yet been rigorously
examined.

In RA, studies need to be performed to examine whether
viral infection with herpesviruses contributes to the
emergence of new autoimmune responses. Of interest are
responses to the following: collagen type II, proteoglycans
and chondrocyte glycoprotein 39; nuclear lamins,
topoisomerase II and RA33 antigen (heterogeneous
nuclear ribonucleoprotein A2); cytoplasmic antigens such
as anti-neutrophil cytoplasmic antibodies; extracellular
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antigens such as keratin and IgG, the target of typical
rheumatoid factors; and apoptosis-related proteins such
as annexin V, calpastatin, vimentin and filaggrin
[107–115]. For the last two antigens, arginine is replaced
by citrulline, a process that occurs during apoptosis and is
catalyzed by peptidyl arginine deiminase [110]. One
indication that immunosuppressive therapy, with potential
reactivation of endogenous herpesviruses, is associated
with the emergence of new antibody specificities, has
been published. In patients with RA (726 paired samples),
initial drug therapy (often methotrexate) was associated
with a change from a negative to a positive antinuclear
antibody test in 12.5% [116].

Antimicrobials for autoimmunity?
The implication from these studies is that it may be time to
design trials of antimicrobial drugs for selected patients
with autoimmune diseases such as RA. It is already
common practice to treat transplant patients and cancer
patients receiving strong immunosuppressive drugs with
acyclovir or valacyclovir, to prevent the reactivation of
CMV and EBV. Whether patients with autoimmune
diseases, such as RA and systemic lupus erythematosus
(SLE), on immunosuppressive drugs such as metho-
trexate, azathioprine or cytoxan could also benefit from
antiviral drugs need to evaluated. The occurrence of EBV-
related lymphomas in methotrexate-treated patients with
RA [117,118] suggests that EBV-specific immuno-
surveillance is deficient [119]. EBV genomic DNA,
measured by real-time PCR, was increased in the
peripheral blood mononuclear cells of patients with RA by
about 1 log over controls [120]. However, fluctuations of
EBV DNA in the blood mononuclear cells were not
correlated with immunosuppressive therapy (either metho-
trexate alone or methotrexate plus anti-TNF-α) in small
groups of patients. EBV DNA in the affected joints was
not measured. Whether those patients with higher viral
load did worse than others was also not reported.

The use of antimicrobials for autoimmunity is not without
precedent, and successes have been reported. In most
cases antibiotics have been used for their non-
antimicrobial effects. Dapsone (which inhibits neutrophil
function), tetracyclines (which block collagenase) and
chloroquine (which blocks antigen presentation and
cytokine secretion) have all been used in treating RA and
SLE [121]. However, organisms like Chlamydiae are
susceptible to antibiotics including tetracyclines, raising
the possibility that some of these drugs might have been
beneficial as a result of antimicrobial activity.

To optimize chances of therapeutic success, we suggest
that patients first be screened for reactivated herpes-
viruses, parvovirus B12 and persistent Chlamydiae.
Screening for CMV or EBV reactivation by quantitative
PCR is standard practice in bone marrow transplant

patients. This helps to guide the clinical use of antiviral
drugs, which are now often used for prophylaxis [122-
125]. These include acyclovir, gancyclovir and the oral
prodrugs valacyclovir and valgancyclovir. We propose the
same approach for autoimmunity. Depending on the
organism(s) present in the analyzed autoimmune tissues,
antiviral drugs for EBV or CMV, tetracycline or other
antibiotics for Chlamydiae, or intravenous immunoglobulin
for parvovirus could be tried. Note that there are few data
on the efficacy of antibiotics for chronic Chlamydia
infections [126]. Careful monitoring for the presence of
the microbial organism in the relevant tissue (synovial fluid
in RA) will be desirable to monitor the effectiveness of the
drug. For example, quantitative PCR assays for
herpesviruses, parvovirus and Chlamydiae could be used.
Cultures might also be helpful. Finally, prophylactic
antiviral therapy in patients receiving immunosuppressive
drugs such as low-dose methotrexate in RA should be
considered.
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