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Abstract

Leflunomide, a potent disease-modifying antirheumatic drug
used in the treatment of rheumatoid arthritis (RA), exhibits anti-
inflammatory, antiproliferative and immunosuppressive effects.
Although most of the beneficial effects of leflunomide have been
attributed to its antimetabolite activity, mainly in T cells, other
targets accounting for its potency might still exist. Because of
mounting evidence for a prominent role of dendritic cells (DCs)
in the initiation and maintenance of the immune response in RA,
we analyzed the effect of the active metabolite of leflunomide
(A77 1726; LEF-M) on phenotype and function of human
myleloid DCs at several stages in their life cycle. Importantly,
DCs differentiated in the presence of LEF-M exhibited an altered
phenotype, with largely reduced surface expression of the
critical co-stimulatory molecules CD40 and CD80. Furthermore,

treatment of DCs during the differentiation or maturation phase
with LEF-M aborted successful DC maturation. Exogenous
addition of uridine revealed that DC modulation by LEF-M was
independent of its proposed ability as an antimetabolite. In
addition, the ability of DCs to initiate T-cell proliferation and to
produce the proinflammatory cytokines IL-12 and tumour
necrosis factor-o. was markedly impaired by LEF-M treatment.
As a molecular mechanism, transactivation of nuclear factor-xB,
an transcription factor essential for proper DC function, was
completely suppressed in DCs treated with LEF-M. These data
indicate that interference with several aspects of DC function
could significantly contribute to the beneficial effects of
leflunomide in inflammatory diseases, including RA.

Introduction

Dendritic cells (DCs) are the most potent antigen-presenting
cells in the immune system [1,2]. They represent a heteroge-
neous population of bone-marrow-derived cells located in lym-
phoid as well as in nonlymphoid organs. In peripheral tissues
these antigen-presenting cells are immature and are function-
ally equipped to capture and process antigens. DCs are acti-
vated by pathogen-associated microbial patterns such as
lipopolysaccharide (LPS) or by proinflammatory cytokines

such as tumour necrosis factor (TNF)-o,, and via the interaction
of CD40 with its ligand (CD154), which is expressed on acti-
vated T cells [3]. Mature DCs possess optimal immunostimu-
latory properties because of maximal expression of their
antigen-presenting and co-stimulatory molecules (i.e. CD40,
CDB80 and CD86) and their increased production of proinflam-
matory cytokines, including IL-12 and TNF-o.. In contrast to the
central role played by mature DCs in the initiation of primary
immune responses, immature DCs stimulate T-cell responses

DC = dendritic cell; DHODH = dihydro-orotate-dehydrogenase; FCS = fetal calf serum; FITC = fluorescein isothiocyanate; GM-CSF = granulocyte—
macrophage colony-stimulating factor; IL = interleukin; LEF-M = active metabolite of leflunomide; LPS = lipopolysaccharide; mAb = monoclonal anti-
body; MHC = major histocompatibility complex; NF-kB = nuclear factor-xB; PE = phycoerythrin; Pl = propidium iodide; RA = rheumatoid arthritis; rh

= recombinant human; TNF = tumour necrosis factor.
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only weakly or they may even induce tolerance to potential
autoantigens [4].

Pharmacological modulation of DC activation has been dem-
onstrated to prevent disease progression in several T-cell-
mediated diseases [5], and it may therefore represent a prom-
ising approach to specific treatment of immunological disor-
ders [6,7]. Notably, corticosteroids and another well known
antirheumatic drug, namely gold thiomalate, significantly inhibit
DC function, which may contribute to their clinical effective-
ness [8,9].

Leflunomide is a novel disease-modifying antirheumatic drug
that exerts its effects after metabolic opening of the isoxazole
ring via its active metabolite A77 1726 (LEF-M). lts major tar-
get is supposed to be dihydro-orotate-dehydrogenase
(DHODH) [10], which is a key enzyme in de novo pyrimidine
synthesis. Leflunomide reversibly inhibits DHODH activity with
subsequent depletion of nucleotides, leading to cell cycle
arrest in proliferating lymphocytes [11]. This effect can be
reversed to a certain degree by supplying the product of
DHODH activity (i.e. uridine) to target cells. Other targets of
LEF-M are tyrosine kinases such as Lck or JAK3 in activated T
and B cells [12]. Immunosuppressive effects of leflunomide
have been described including, inhibition of T cells and anti-
body production [13]. Furthermore, it was demonstrated that
leflunomide blocks activation of nuclear factor-kB (NF-xB),
which is a central proinflammatory transcription factor in sev-
eral cell lines [14], and impairs transendothelial migration of
peripheral blood mononuclear cells [15]. Apart from its well
established beneficial effects in the treatment of rheumatoid
arthritis (RA) [16,17], leflunomide is also effective in treatment
against chronic allograft rejection [18,19].

DCs were postulated to play an important role in RA patho-
genesis because they may perpetuate the disease by present-
ing self-antigen(s) [20,21]. Thus, DCs could represent an
interesting target for dampening the disease process in RA.
Moreover, DCs also play a fundamental role in allograft rejec-
tion [22].

Because the effect of leflunomide on DC function has not yet
been investigated, we analyzed the influence of leflunomide on
the complete DC life cycle in vitro. We found that LEF-M
potently altered the phenotype and function of DCs, independ-
ent of its well known antimetabolite activity, revealing a novel
immunomodulatory activity of this agent with potential clinical
implications for the treatment of RA and other immune cell
mediated disorders.

Materials and methods
Media and reagents

RPMI 1640 (GIBCO BRL, Grand lIsland, NY, USA) supple-
mented with 2 mmol/l L-glutamine, 100 pg/ml streptomycin,
100 U/ml penicillin and 10% foetal calf serum (FCS; Hyclone,

Logan, UT, USA) was used as culture medium. LPS
(Escherichia coli 0111:B4) and uridine were purchased from
Sigma Chemie GmbH Co. (Deisenhofen, Germany). Recom-
binant human (rh) granulocyte—macrophage colony-stimulat-
ing factor (GM-CSF) was obtained from Schering-Plough
(Kenilworth, NJ, USA) and rh-IL-4 was from Strathmann Bio-
tech GmbH (Hannover, Germany). Plasma concentrations in
RA patients of A77 1726 (the active metabolite of leflunomide)
achieved with a leflunomide maintenance dose of 20 mg/day
are 46 * 31 ug/ml (approximately 160 + 100 umol/I [23]).
Therefore, we chose concentrations from 75 to 150 umol/| of
A77 1726 (kindly provided by Aventis, Strasbourg, France) for
DC treatment. A77 1726 is referred to as 'LEF-M' throughout
the report. In some experiments uridine was added to test the
reversibility of the observed effects of LEF-M.

Cell preparation and culture

Peripheral blood mononuclear cells were obtained from buffy
coats of healthy blood donors (courtesy of the Austrian Red
Cross) by density gradient centrifugation over Ficoll-Paque
PLUS (Amersham Biosciences, Uppsala, Sweden). For isola-
tion of monocytes, peripheral blood mononuclear cells were
depleted of T cells by sheep erythrocyte-rosetting overnight.

Monocytes (>85% CD14+) were cultured in six-well plates
(Costar, Cambridge, MA, USA) at a cell density of 5 x 105
cells/ml in RPMI 1640/10% FCS medium in a humidified
atmosphere containing 5% carbon dioxide. For induction of
DC differentiation, the culture medium was supplemented for
5 days with 50 ng/ml rh-GM-CSF and 10 ng/ml rh-IL-4. For ini-
tation of maturation, LPS (100 ng/ml) was added for an addi-
tional 48 hours. For the DC differentiation and maturation
experiments, different concentrations of LEF-M, or medium as
control, were added either at the beginning of the culture or 6
hours before the addition of LPS. Cell viability was assessed
by staining with propidium iodide (PI; Sigma, Saint Louis, MO,
USA) and subsequent flow cytometric analysis of the cells.

Surface marker expression

For evaluation of surface marker expression, cells (50 ul at 5 x
106 cells/ml) were incubated with fluorescein isothiocyanate
(FITC)-conjugated or phycoerythrin (PE)-conjugated mAbs for
45 min at 4°C. For control purposes, nonbinding isotype-
matched FITC-conjugated and PE-conjugated mouse IgG (An
der Grub, Kaumberg, Austria) were employed. After extensive
washing cells were analyzed on a COULTER EPICS XL-MLC
flowcytometer (Beckman Coulter, Fullerton, CA, USA) using
EXPO32 software. All measurements were done using a
three-colour setup, which was established using standard
compensation procedures. FITC-labelled mAbs to CD1a
(IgG,; clone HI149), CD14 (IgG,,; clone M®P9), CD83
(IgGy; clone HB15e) and HLA-DR (IgG.,,; L243), and R-PE-
labelled mAbs to CD80 (IgG,; L307.4), CD86 (IgG,,; clone
IT2.2) and CD206 (mannose receptor; IgG;; clone 19.2) were
obtained from Becton Dickinson (San Diego, CA, USA). FITC-



conjugated anti-CD40 (IgG,; clone LOB7/6) was purchased
from Serotec (Oxford, UK). R-PE-labelled anti-major histocom-
patibility complex (MHC) class | antibody (IgG,,; clone 3F10)
was obtained from Ancell (Bayport, MN, USA).

Morphological cell analysis

Microscopy was performed in parallel to all other analyses to
assess cell morphology by using a light optical microscope
(Olympus Corporation, Tokyo, Japan).

Assessment of T-cell stimulatory capability

Stimulator cells were irradiated (3000 rad, 137Cs source) and
added at increasing cell numbers to 1 x 105 allogeneic T cells
in 96-well culture plates in RPMI 1640 medium supplemented
with 10% FCS (total volume 200 pl/well). After 4-5 days, cells
were pulsed with 1 uCi [3H]thymidine (ICN Pharmaceuticals,
Irvine, CA, USA). After another 18 hours the cells were har-
vested on glass-fibre filters (Packard, Meriden, CT, USA) and
DNA-associated radioactivity was determined using a micro-
plate scintillation counter (Packard, Meriden, CT, USA). DNA
synthesis was expressed as mean counts/min of triplicate
cultures.

Measurement of cytokine production

DCs were differentiated and subsequently activated (100 ng/
ml LPS) in the presence or absence of different concentra-
tions of LEF-M. Cell-free supernatants were harvested 48
hours after cell activation. Cytokines were measured by sand-
wich enzyme-linked immunosorbent assays using matched
pair antibodies. Capture as well as detection antibodies to
human IL-12p40 were obtained from R&D Systems (Minneap-
olis, MN, USA). Antibodies to human TNF-a. were from
PharMingen (San Diego, CA, USA). Standards consisted of
human recombinant material from R&D Systems. Assays were
set up in duplicate and were performed in accordance with
recommendations from the manufacturers. The lower limit of
detection was 20 pg/ml for all cytokines.

Analysis of nuclear factor-«B activation
NF-xB activation was assessed using an electrophoretic
mobility shift assay (EMSA).

Nuclear extracts from DCs were prepared as described pervi-
ously [24]. Oligonucleotides resembling the consensus bind-
ing site for NF-xB (5'-AGTTGAGGGGACTTTCCCAGGC-3")
and activator protein-1 (5'-CGCTTGATGACTCAGCCG-
GAA-3') were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). The double-stranded oligonucleotides
used in all experiments were end-labelled using T4 polynucle-
otide kinase and [y-32P]-ATP. After labelling, 5 1g nuclear
extract was incubated with 120,000 counts/min labelled
probe in the presence of 3 g poly(dl-DCs) at room tempera-
ture for 30 min. This mixture was separated on a 6% polyacr-
ylamide gel in Tris/glycine/EDTA buffer at pH 8.5. Control
experiments were performed as described previously [25].
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The specificity of NF-xB binding was proven using excess,
unlabelled NF-kB probe that competed successfully for NF-xB
binding, whereas an unrelated competitor (activator protein-1
oligonucleotide) did not (data not shown).

Statistical analysis
Comparisons were performed using two-tailed paired Stu-
dent's t-tests. P<0.05 was considered statistically significant.

Results

LEF-M impairs differentiation of monocyte-derived
dendritic cells

In the first set of experiments we sought to determine whether
leflunomide influences the differentation of freshly isolated
monocytes into immature DCs. Therefore, we added GM-CSF
and IL-4 to freshly isolated monocytes for 5 days to differenti-
ate them to immature DCs in the presence or absence of LEF-
M. Subsequently, we assessed surface marker expression
using fluorescence-activated cell sorting analysis and found
profound phenotypical differences between these differenti-
ated cells. In the absence of LEF-M we found the typical imma-
ture DC phenotype, including high levels of MHC class Il and
high levels of CD1a, and a distinct profile of co-stimulatory
molecules (Fig. 1a); neither the monocyte lineage marker
CD14 nor the typical DC maturation marker CD83 was
expressed. In contrast, LEF-M-treated DCs exhibited a differ-
ent phenotype, with profoundly suppressed surface expres-
sion of CD40 and CD80 (Fig. 1a). Importantly, LEF-M
markedly prevented the induction of the Langerhans cell-asso-
ciated marker CD1a, which is a marker of successful DC dif-
ferentiation, whereas expression of CD86, mannose receptor
and MHC class | and Il molecules remained unaffected by
LEF-M (Fig. 1a). Of note, LEF-M did not interfere with the char-
acteristic disappearance of the monocyte marker CD14. Fur-
thermore, we found no difference in cell viability between LEF-
M-treated and control cells, as determined by Pl staining. As
calculated from eight independent experiments, the percent-
age Pl positivity was 13.8 £ 4.5% in untreated cells versus
14.3 £ 1.4% in cells treated with 150 umol/l LEF-M (mean
percentage * standard error of the mean).

Addition of uridine did not rescue DC differentiation from the
effects of LEF-M, indicating that inhibition of DHODH did not
underlie the observed effects (Fig. 1c).

Finally, LEF-M-modulated DCs were assessed for maturation
sensitivity. Although immature control DCs exposed to LPS
exhibited typical features of mature DCs (Fig. 1b), including
upregulation of CD40, CD80, CD86, MHC class | and Il and
neo-expression of CD83, the maturation program was
arrested in cells that were differentiated and subsequently
activated in the presence of LEF-M. As shown in Fig. 1b, LEF-
M-treated DCs, despite LPS stimulation, continued to exhibit
profoundly inhibited expression of CD40 and CD80, whereas
LEF-M only marginally affected CD86 and MHC expression.
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Figure 1
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LEF-M interferes with DC differentiation. (@) Monocytes were cultured for 5 days with granulocyte—-macrophage colony-stimulating factor (GM-CSF;
50 ng/ml) plus IL-4 (10 ng/ml) in the absence or presence of 150 umol/l of the active metabolite of leflunomide (LEF-M). Subsequently, surface
marker expression was determined using fluorescence-activated cell sorting (FACS) analysis. Open profiles with dotted line represent staining pat-
tern with an isotype control antibody, open profiles with fine line indicate the staining pattern of differentiated control dendritic cells (DCs) stained
with the indicated mAbs, whereas solid grey profiles show staining of DCs differentiated in the presence of LEF-M. (b) Myeloid precursor cells differ-
entiated in the presence of LEF-M are resistant to maturation. Cells were treated as described above and then stimulated with lipopolysaccharide
(LPS; 100 ng/ml) for 48 hours. Open profiles with dotted line represent staining pattern with an isotype control antibody, open profiles with fine line
indicate staining of activated control DCs, and solid grey profiles show staining of DCs differentiated in the presence of LEF-M and subsequently
exposed to LPS. Data are representative of at least four independent experiments. (c,d) The effects of LEF-M on DC differentiation are independent
of pyrimidine depletion. The respective change in mean flourescence intensity (MFI) are shown (c) after the differentiation phase for CD40 and
CD1a and (d) after subsequent maturation with 100 ng/ml LPS for CD40 and CD83 with and without 50 pmol/I uridine. White bars represent con-
trol DCs, and black bars indicate LEF-M-treated cells. Shown are mean percentage control responses * standard error of the mean, calculated from
five to eight independent experiments. Student's t-tests were calculated for control versus LEF-M-treated DCs and for LEF-M-treated DCs versus
without uridine addition, as indicated. *P < 0.05, **P < 0.01.

LEF-M impaires cytokine production and the

Importantly, CD83 expression was abolished in LEF-M pre-
allostimulatory capacity of monocyte-derived dendritic

treated cells (Fig. 1b). Again, addition of uridine did not

reverse the inhibitory effects of LEF-M on DC maturation (Fig.
1d). Again, the effects of LEF-M on DC phenotype were not
simply a consequence of cellular cytotoxicity, as indicated by
unchanged cell morphology and viability (percentage Pl posi-
tivity was 9.0 + 2.9% in untreated cells versus 15.3 + 0.5% in
cells treated with 150 umol/lI LEF-M; data expressed as mean
percentage * standard error of the mean, calculated from
eight independent experiments).

cells

DCs are typically characterized by their ability to produce large
amounts of predominantly T-cell modulatory cytokines [26].
Analyzing cytokine production of cells that were differentiated
and subsequently maturated in the presence of LEF-M, we
found dose-dependent inhibition of IL-12p40 and TNF-o. and
of IL-10 production (Fig. 2).

In addition to the observed distortion in DC phenotype after
differentiation and maturation, we found profound impairment
of the allo-stimulatory function of LEF-M pretreated DCs. As
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LEF-M abrogates cytokine production in DCs. Dendritic cells (DCs)
were differentiated and subsequently activated (100 ng/ml lipopolysac-
charide [LPS]) in the presence or absence of the indicated concentra-
tions of the active metabolite of leflunomide (LEF-M). Cell-free
supernatants were collected 48 hours after addition of LPS and then
analyzed using enzyme-linked immunosorbent assay. Shown are mean
percentage of control responses * standard error of the mean for IL-12,
tumour necrosis factor (TNF)-o. and IL-10, calculated from at least 10
independent experiments. Student's t-tests were calculated for control
DCs versus LEF-M-treated DCs. *P < 0.05, **P < 0.01. Mean cytokine
levels (+ standard deviation) in stimulated control cultures were 793 *+
343 pg/ml (IL-10), 28.6 £ 7.6 ng/ml (IL-12) and 2.9 £ 1.1 ng/ml (TNF-
o).

shown in Fig. 3a, immature control DCs exhibited poor
stimulatory capacity of allogeneic T-cells. DCs differentiated in
the presence of LEF-M were even less potent stimulators in
the mixed leukocyte culture (Fig. 3a). LPS exposure dramati-
cally increased the stimulatory capability of control DCs, but
DCs differentiated in the presence of LEF-M and subsequently
exposed to an activation stimulus were as ineffective as imma-
ture control DCs in supporting T-cell proliferation (Fig. 3b).

LEF-M interferes directly with maturation of dendritic
cells

We then analyzed whether LEF-M affects DC maturation when
the drug was added to immature DCs (i.e. after completion of
DC differentiation). Although immature control DCs
responded readily, with increased expression of co-stimulatory
and antigen-presenting molecules, LEF-M markedly interfered
with the activation-induced upregulation of CD40 and CD86
but not that of CD80 (Fig. 4a). Importantly, neo-expression of
CD83 - an indicator of proper DC maturation [27] — was sig-
nificantly impaired in LEF-M-treated DCs (Fig. 4a). A further
striking feature of mature DCs is the development of promi-
nent cell clusters a few hours after addition of the maturation
stimulus. On analyzing LEF-M-treated DCs, we detected com-
plete abrogation of this clustering response (Fig. 4b,c).
Another typical hallmark of mature DCs is their exceptional T-
cell stimulatory capacity. As shown in Fig. 5, mature DCs
exhibited optimal T-cell stimulatory capability. In contrast, the
presence LEF-M solely during the maturation period of already
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DCs differentiated in the presence of LEF-M exhibit reduced T-cell stim-
ulatory capacity. (@) Monocytes were cultured for 5 days with granulo-
cyte—-macrophage colony-stimulating factor (GM-CSF; 50 ng/ml) plus
IL-4 (10 ng/ml) in the presence or absence of the indicated concentra-
tions of LEF-M. Dendritic cells (DCs) differentiated in the presence of
the active metabolite of leflunomide (LEF-M) are labelled 'LEF-M DCs'
in the figure. The cells were extensively washed, irradiated (3000 rad)
and subsequently co-cultured with 1 x 105 purified allogeneic T cells at
the indicated ratios. (b) To determine maturation sensitivity, DCs differ-
entiated in the presence or absence of LEF-M were exposed to 100 ng/
ml lipopolysaccharide for an additional 48 hours. Then, the cells were
employed as allogeneic stimulators, as described above. DNA synthe-
sis was assessed at day 5. The standard deviation of the counts/min
(cpm) for the respective triplicates was generally below 20%. Shown
are the means of at least eight independent experiments.

differentiated DCs abrogated their stimulatory capacity in a
concentration-dependent manner.

Effect of LEF-M on nuclear factor-xB activation in
dendritic cells

Activation of the transcription factor NF-xB is essential for DC
function [28,29]. DCs readily respond to diverse stimuli such
as microbial products, cytokines and tissue damage, all of
which converge on the NF-xB pathway [30]. Our findings of
an impaired DC function in LEF-M-treated cells prompted us
to analyze the effect of LEF-M on the activation of this central
transcription factor in DCs. As shown in Fig. 6, employment of
electrophoretic mobility shift assays revealed a clear time-
dependent increase in nuclear binding of the NF-xB consen-
sus site upon LPS stimulation in DCs. The specificity of NF-xB
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Figure 4
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Treatment with LEF-M during maturation of immature DCs leads to a differentially affected phenotype. Monocytes were cultured for 5 days with gran-
ulocyte—-macrophage colony-stimulating factor (GM-CSF; 50 ng/ml) plus IL-4 (10 ng/ml). (@) On day 5 these immature dendritic cells (DCs; 5 x
105/ml) were activated with lipopolysaccharide (LPS; 100 ng/ml) in the absence or presence of 150 pumol/l of the active metabolite of leflunomide
(LEF-M) for 48 hours. Surface marker expression was determined by fluorescence-activated cell sorting analysis. Open profiles with dotted line rep-
resent the staining pattern with an isotype control, open profiles with fine line indicate the staining pattern of DC exposed to LPS with the indicated
monoclonal antibodies, and solid grey profiles show staining of DCs matured in the presence of LEF-M. The results shown are representative of five
independent experiments. (b,c) Effect of LEF-M on maturation-associated clustering of DCs; immature DCs were stimulated with LPS in the (panel
b) absence or (panel c) presence of 150 umol/l LEF-M. After 8 hours of cultivation, cells were analyzed by inspecting photomicrographs obtained by
light microscopy. Similar results were obtained in four additional experiments. MHC, major histocompatibility complex.

binding was indicated by competition with unlabelled probe
and an unrelated competitor (activator protein-1 oligonucle-
otide; data not shown). Strikingly, treatment of immature DCs
with LEF-M profoundly suppressed nuclear translocation of
NF-kB in LPS-stimulated DCs after both 40 and 70 min (Fig.
6).

Discussion

This study reveals a novel aspect of the immunomodulatory
action of leflunomide, namely the profound interference of
LEF-M (A77 1726) with DC function. Using human monocyte-
derived DCs as a model system, we demonstrated that LEF-M
disrupts differentiation of DCs from uncommitted monocytic
precursor cells, resulting in maturation-insensitive DCs. Fur-
thermore, we showed that the maturation process of uncom-
mitted immature DCs was markedly impaired by LEF-M. The
metabolite LEF-M differentially affected the expression of
critical surface molecules, inhibited the production of proin-
flammatory cytokines and, at the functional level, profoundly

impaired the T-cell stimulatory capacity of DCs. As a molecular
basis for the ability of LEF-M to interfere with several aspects
of DC function, the activation-driven nuclear transmigration of
the essential transcription factor NF-xB was markedly
impaired by LEF-M. These findings have substantial implica-
tions for our understanding of the effects of leflunomide as a
disease-modifying antirheumatic drug, because the initiation
of an immune response critically depends on proper DC func-
tion. Furthermore, interference with DC maturation and func-
tion could also be involved in the beneficial effects of
leflunomide on chronic allograft rejection [18], which is not
shared by most other currently used immunosuppressive
drugs such as calcineurin inhibitors.

The observation that DCs could play a pivotal role in the for-
mation and maintenance of joint inflammation in RA [31] was
confirmed by the finding reported by Balanescu and cowork-
ers [32] of a correlation between co-stimulatory molecule
expression of synovial DCs and disease activity in RA patients.
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Functional impairment of DCs matured in the presence of LEF-M. Imma-
ture dendritic cells (iDCs) were exposed to lipopolysaccharide (LPS;
100 ng/ml) in the absence or presence of the indicated concentrations
of the active metabolite of leflunomide (LEF-M). Then, the cells were
extensively washed, irradiated (3000 rad) and subsequently co-cultured
with 1 x 105 purified allogeneic T cells at the indicated ratios. DNA syn-
thesis was assessed after 5 days and was measured in triplicate. The
standard deviation of triplicates was generally below 20%. The data
shown are expressed as mean counts/min (cpm) of four independent
experiments.

Moreover, mature DCs might be central in the development of
perivascular aggregates in synovial inflammation areas, the
formation of organized lymphoid structures, and in the perpet-
uation of inflammatory and erosive activity [20,21]. Although
there is sufficient evidence for an impact of leflunomide on
synoviocytes, chondrocytes and osteoclasts [33-36], our data
suggest that the potent inhibition of DC function by LEF-M
might contribute to the beneficial effects of leflunomide treat-
ment in patients with RA.

Exposure of DCs to LEF-M led to an alteration in the surface
marker profile. Our findings concerning the impact of LEF-M
on critical co-stimulatory molecules might be especially
important in RA because the expression level of co-stimulatory
molecules on DCs correlates with disease activity in patients
with RA [32]. Another important finding in the present study
was the observed disruption by LEF-M of the DC
differentiation process. Interestingly, neo-expression of CD1a
— the classic Langerhans cell-associated marker — was
strongly inhibited in LEF-M-treated DCs. This finding is
accordance with observations of significant efficacy of lefluno-
mide in psoriasis [37], in which CD1a is highly overexpressed
in involved skin [38]. Importantly, CD14 — a classic monocyte/
macrophage marker — was downregulated, indicating that
LEF-M does not subvert the DC differentiation programme
toward macrophages as has been shown for IL-6, IL-10 and
corticosteroids [39,40].

LEF-M suppresses LPS-induced NF-xB activation in DCs. Immature
dendritic cells (DCs) were cultured for 2 hours with or without the
active metabolite of leflunomide (LEF-M; 150 umol/l), followed by addi-
tion of lipopolysaccharide (LPS; 100 ng/ml) or medium as control. After
40 and 70 min total nucleoprotein was extracted and nuclear factor-xB
(NF-xB) activity was detected using electrophoretic mobility shoft
assay. Similar results were obtained in two independent experiments.
(Nonspecific bands are labelled NS.)

A central observation in our study was the functional alteration
of DCs differentiated in the presence of LEF-M; these cells
exhibited a marked reduction in their T-cell stimulatory capac-
ity upon activation. These data indicate that LEF-M, by block-
ing the differentiation of monocytic precursors into mature
DCs, potentially impairs proper DC function and might
therefore modulate immune responsiveness against potential
autoantigens and other antigens. Our finding of markedly
decreased production of TNF-a and IL-12 by LEF-M-treated
DCs, in conjunction with insufficient co-stimulatory molecule
expression of DCs, may be of interest for further DC studies
with LEF-M, because recent reports demonstrated this pheno-
type to be potentially tolerogenic [41,42].

Interestingly, we found the effects of LEF-M on DCs to be
mediated independent of its inhibition of DHODH. As shown
for several other leflunomide-mediated effects on other cell
types, such as osteoclasts in the RA joint [43], memory T-cell
lines in an autoimmune encephalomyelitis model [44] and in
articular chondrocytes [34], or on functional effects such as
repression of viral replication [45,46], the inhibitory effects of
LEF-M in the present study are clearly independent of pyrimi-
dine synthesis.
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The transcription factor NF-xB plays a decisive role in proper
DC function. NF-kB translocation is essential to the ability of
mature DC to present antigen to naive T cells [28,29].
Recently reported data demonstrate that LEF-M inhibits TNF-
a-induced NF-kB activation in several cell lines [14,47]. Inter-
estingly, we found a profound suppression of NF-xB transac-
tivation in activated DCs by LEF-M. These results are in
accordance with our findings showing impaired expression of
maturation markers and reduced allo-stimulatory capacity of
leflunomide-treated DCs, because selective inhibition of NF-
kB activity has been shown to impair maturation of DCs [48].
Our findings concerning cytokine production are also consist-
ent with NF-xB inhibition, because the human IL-12 promoter
contains crucial NF-xB binding sites and TNF-a. production is
also NF-xB dependent [49]. Although the mechanisms under-
lying this profound NF-xB inhibitory activity of LEF-M on DCs
are currently unknown, it is tempting to speculate that lefluno-
mide may interfere with phosphorylation/dephosphorylation
events in the LPS-triggered signalling program. Apart from the
possibility that LEF-M might directly induce the transcription of
distinct 1xB family members, LEF-M could also induce particu-
lar phosphatases to inhibit the IxB-inactivating kinase IKK. Fur-
thermore, recent studies have shown that leflunomide acts at
the level of IkB-a. phosphorylation via interference with IKK-o.
activation, ultimately leading to defective 1xB-o. phosphoryla-
ton. Although further studies are required to unravel the
detailed molecular mechanisms of suppressed NF-xB transac-
tivation in LEF-M-treated DCs, our findings indicate that NF-
kB inhibition is a central feature of the molecular actions of
LEF-M on DCs.

Importantly, the results from the present study were obtained
with  monocyte-derived DCs generated from healthy
volunteers. Hence, further studies will be necessary to clarify
the effects of LEF-M on peripheral and synovial DCs in exper-
imental models of arthritis and on DCs obtained from RA
patients. Nevertheless, our finding of DC inhibition induced by
LEF-M reveals a novel view of the disease-modifying effects of
this drug, which appear to act on both T cells and DCs. In fact,
the involvement of DC-T cell interactions in the pathways
leading to and perpetuating RA and the effects of inhibiting
this process are supported by recent findings on the signifi-
cant clinical effects of interference with CD80/86-CD28 co-
stimulation [50].

Conclusion

The present study shows that monocyte-derived DCs are sen-
sitive targets of LEF-M, possibly by inhibitory effects on NF-xB.
DCs are affected by LEF-M at all major stages in their life
cycle, ultimately leading to an impairment in DC function. In
addition to a direct inhibitory action on specific T-cell
responses, modulation of the immune system may therefore
also be explained through the effects of leflunomide on DCs
rendering these cells less able to support immunoinflammatory
responses. Thus, the versatile role played by leflunomide as an

immunomodulatory agent in vitro and in vivo is further sup-
ported by its effect on DCs. These findings reveal a novel
mode of action of the active leflunomide metabolite during
induction of cellular immune responses, which may contribute
to the clinical effectiveness of leflunomide in diseases that
involve exaggerated immune responsiveness.
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