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Abstract
The intrinsic pathogenetic mechanisms of tendinopathies are
largely unknown and whether inflammation or degeneration has the
prominent role is still a matter of debate. Assuming that there is a
continuum from physiology to pathology, overuse may be
considered as the initial disease factor; in this context, micro-
ruptures of tendon fibers occur and several molecules are
expressed, some of which promote the healing process, while
others, including inflammatory cytokines, act as disease mediators.
Neural in-growth that accompanies the neovessels explains the
occurrence of pain and triggers neurogenic-mediated inflammation.
It is conceivable that inflammation and degeneration are not
mutually exclusive, but work together in the pathogenesis of
tendinopathies.

Introduction
Primary disorders of tendons are common and account for a
high proportion of referrals to rheumatologists and orthopedic
surgeons [1]. The most commonly involved tendons are the
rotator cuff (particularly supraspinatus) and biceps brachii
tendons in the shoulder, the forearm extensor and flexor
tendons in the forearm, the patella tendon in the knee, the
Achilles tendon in the lower leg, and the tibialis posterior
tendon in the ankle and foot.

Historically, the term tendinitis was used to describe chronic
pain referring to a symptomatic tendon, thus implying inflam-
mation as a central pathological process. However, traditional

treatment modalities aimed at modulating inflammation have
limited success [2] and histological studies of surgical
specimens consistently show the presence of degenerative
lesions, with either absent or minimal inflammation [3,4]. As
will be clear in this review, we favor the hypothesis that
inflammation and degenerative changes often coexist in the
course of tendon disorders, and their relative contributions
are difficult to dissect. Therefore, the definition of ‘tendinitis’
has been largely abandoned and the terms ‘tendinosis’ or,
more generically, ‘tendinopathy’ (TP) are now currently
preferred [5].

In this review we summarize recent findings useful for
understanding the pathogenesis of primary tendon diseases.
First, suggestions coming from epidemiology, histopathology
and clinics are reported, then we discuss new data on
biochemical changes that occur in experimental and human
TPs. Finally, we propose a unifying theory, drawn from both
experimental and clinical data.

Anatomy and physiology
The tendons are made up of bundles of collagen fibrils
(primary, secondary and tertiary fibers), each wrapped in
endotenon, which in turn is enveloped by an epitenon,
forming the actual tendon. A true synovial sheath is present
only in some tendons, such as tibialis posterior, peroneal, and
extensor and flexor tendons of the wrist and the hand; other
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tendons do not have a true sheath, with the epitenon instead
surrounded by a paratenon, a layer of thin tissue. The space
between these two layers contains fluids rich in mucopoly-
saccharides that provide lubrication, prevent friction and
protect the tendon [6].

The extracellular matrix of tendons is made up of: collagen
(65 to 80% dry weight), which is mostly composed of type I
collagen and provides the tendons with strength to withstand
high loads; elastin (1 to 2%), which insures flexibility and
elastic properties; and ground substance, which consists of
approximately 60 to 80% water, proteoglycans and glyco-
proteins. The cellular component is represented by tenoblasts
and tenocytes, which are arranged in parallel rows between
the collagen fibers. Tenoblasts are immature spindle-shaped
tendon cells, containing abundant cytoplasmic organelles,
reflecting their high metabolic activity. As they age, tenoblasts
become elongated and transform into tenocytes. Together,
tenoblasts and tenocytes account for 90 to 95% of the
cellular elements of tendons. The remaining cellular elements
consist of chondrocytes, synovial cells and endothelial cells.

The musculotendinous junction is the junction area between
the muscle and tendon. It is a complex area rich in nerve
receptors and subjected to great mechanical stress during
the transmission of muscular contractile force to the tendon.
The osteotendinous junction (insertion of a tendon into bone),
often referred to as an ‘enthesis’, involves a gradual transition
from tendon to cartilage and to lamellar bone.

Tendons are metabolically active tissues requiring vascular
supply but, in some (Achilles tendon, tibialis posterior and
supraspinatus), hypovascular or watershed areas have been
identified. [6]. For example, in the Achilles and supraspinatus
tendons, the mid-portion has been shown to have less blood
supply compared with the proximal and distal insertion
regions [7]. In these hypovascular areas, endostatin, an
endogenous angiogenic inhibiting factor, is overexpressed.
Studies in which cultures of rat tendon cells are exposed to
intermittent hydrostatic pressure and the endostatin content
in the medium measured show that mechanical factors are
involved in the regulation of this anti-angiogenic factor [8].

Innervation of tendons is provided by nerves from the
surrounding muscles and by small fasciculi from cutaneous
nerves [6,9]. According to anatomical and functional differ-
ences, the nerve endings can be classified into four cate-
gories: type I, Ruffini corpuscles; type II, Vater-Pacini
corpuscles; type III, Golgi tendon organs; and type IV, free
nerve endings. The mechanoreceptors (types I to III), found
inside and on the surface of the tendon, convert pressure or
tension stimuli into afferent nervous signals. Ruffini
corpuscles function as pressure sensors and have a relatively
low threshold in reaction to pressure. They are slow adapting
and respond to static conditions of position and stretch.
Vater-Pacini corpuscles are also pressure sensors, but they

adapt quickly and, therefore, can react to dynamic changes
such as velocity and acceleration/deceleration. Golgi tendon
organs, along the muscle spindles, are tension receptors and
signal position. They react slowly to both active contraction
and passive stretch of the involved muscle-tendon units and
inhibit muscle contraction. Finally, free nerve endings,
represented inside the tendons, but mainly in peritendinous
tissue, are pain receptors. The number and location of nerve
fibers and nerve endings varies according to the function of
the tendon, being more represented in the smaller tendons
involved in fine movements.

The metabolic rate of tendons is relatively limited and is lower
than that of skeletal muscle; oxygen consumption is 7.5 times
lower and the turnover time for tendon collagen varies from
50 to 100 days [10]. So, recovery of tendons after injury
takes more time compared to muscles [6].

Biomechanics
It must be emphasized that tendons are ‘engineered’ accor-
ding to the functional demands on them in specific anatomic
locations [11]. Therefore, tendons from different sites have
differences in their structure, composition, cell phenotypes,
and metabolism [12]. There is evidence of different rates of
collagen turnover, which is higher in stressed tendons such
as the supraspinatus in the rotator cuff, and much lower in
tendons that are not under high stress, such as the distal
biceps tendon in the forearm.

It is believed that TPs result from excessive loading and ten-
sile strain. The mechanical behavior of the tendon depends
on its cross-sectional area and length. The greater the cross-
sectional area of a tendon, the larger its capacity to withstand
heavy loads before failure [13]; with longer tendon fibers, the
stiffness decreases and the force to failure remains the same,
but elongation to failure increases [14].

If one neglects viscoelastic properties, a typical stress-strain
curve can be drawn [6]. At rest, the collagen fibers and fibrils
of the tendon are in a wavy or crimped configuration. Crimp
provides a buffer in which slight longitudinal elongation can
occur without fibrous damage, and acts as a shock absorber
along the length of the tissue [15,16]. As the collagen fibers
deform, they respond linearly to increasing tendon loads. At
up to approximately 4% elongation the fibers regain their
original configuration after the tension is released. If the
tendon is stressed beyond 4% of its length, the collagen
fibers start to slide past one another as the intermolecular
cross-links fail, and, at approximately 8% of elongation, a
macroscopic rupture occurs because of tensile failure of the
fibers and interfibrillar shear failure.

Tendon elastin, however, can elongate by up to 70% of its
original length without rupture, and breaks at 150%. An
example is offered by the Achilles tendon. As the Achilles
tendon descends, it spirals up to 90° laterally, so that fibers



that were originally posterior become lateral (medial part of
the gastrocnemius muscle), lateral fibers become anterior
(lateral part of the gastrocnemius muscle) and anterior fibers
become medial (soleus muscle at the distal end). The
significance of this torsion is that a region of concentrated
pressure force may be produced where the tendon bundles
meet (tendon waist). This region is localized 2 to 5 cm above
the calcaneal insertion, and has the poorest blood supply, as
confirmed by the presence of areas of fibrocartilaginous
tissue. Such avascularity can be argued to either directly
cause a decrease in tensile strength or indirectly weaken the
tendon through degenerative changes. An additional example
is offered by the patellar tendon: forces acting through this
tendon are considerable and it has been calculated that a
force of 17 times bodyweight will act on a patella tendon
during competitive weightlifting [17]. The excessive loading,
associated with adverse biomechanics (large quadriceps,
external tibial torsion, femoral anteversion or excessive
pronation of the feet) and a possible impingement of the
inferior pole of the patella against the tendon during flexion,
may explain this TP.

Suggestions from epidemiology and clinics
Several factors have been implicated in TP pathogenesis,
most of which may cause localized inflammatory reactions
and also microdegeneration depending on the strength and
duration of their presence. Genetic background may also play
a role: sequence variation within the type V collagen
(COL5A1) and Tenascin C (TNC) genes [18] have been
shown to be associated with chronic TP [19]. A genetic
component may give rise to abnormal collagen formation
(‘mesenchymal syndrome’): patients affected by this
syndrome are prone to have multiple problems that may
include rotator cuff pathology, epicondilopathy, carpal tunnel
syndrome, triggering of the long finger flexor tendons, and
wrist extensor tendon pathology such as De Quervain’s
disease [20]. Epidemiology is also of great help in under-
standing pathogenesis [21]. The prevalence of rotator cuff TP
increases with age: studies on cadavers show prevalence
ranging from 30 to 50% in individuals aged 70 years and
over, although it is very frequently clinically silent [22,23].

Several etiological factors have been associated with the
development of rotator cuff disorders [24]: traumatic events,
such as anterior glenohumeral dislocation and fracture of the
greater tuberosity, or other insults that may occur in young
athletes, such as swimmers or tennis players; traction,
compression and overload in general, to which the cuff is
exposed throughout life; and age-related degeneration, with
amyloid and calcium crystal deposition.

Sports commonly associated with TP of wrist extensors
include racket sports (tennis elbow) and, more generally,
sports that involve a throwing action resulting in eccentric
loading of the forearm muscles. In golfer’s elbow the pronator
teres and flexor carpi radialis tendons are more frequently

involved. Triceps TP is observed almost exclusively in males
undertaking regular heavy manual work and in throwing
athletes. It results from repetitive resistance of elbow
extension, resulting in a traction injury through the tendon’s
insertion into the olecranon [25]. Insertional patellar TP (at
the proximal end of the patellar tendon) and injuries of the
patellar tendon are common in athletes involved in some type
of repetitive activity, such as jumping (volleyball, basketball,
and so on), kicking (football), quick stops and starts (tennis,
squash), and running (sprinters, endurance running) [26,27].
Tibialis posterior TP occurs frequently in runners and is
associated with valgus flatfoot-pronation deformities.
Ligamentous laxity, articular hypermobility, a shallow retro-
malleolar groove and a tight flexor retinaculum may favor this
TP [28]. Poor vascularization in some areas of this tendon
close to the medial malleolus may also account for it [29].
Achilles TP is an injury that frequently occurs in athletes
performing sport activities that include running or jumping,
even though it has also been demonstrated in physically
inactive individuals [5]. The highest incidence is usually
reported to occur in middle-aged people (30 to 55 years old)
[30]. Malalignment of the lower extremity, which favors
Achilles TP, is proposed to increase forefoot pronation, limit
mobility of the subtalar joint, decrease/increase the range of
motion of the ankle, lead to varus deformity of the forefoot,
and increase hind foot inversion and impingement [31]. All
these factors, independently or together, may affect the
running or walking pattern and, in turn, affect the way the
Achilles tendon is loaded.

On the basis of epidemiological studies [32], several risk
factors have been identified in two large categories: extrinsic
and intrinsic [33]. Among the extrinsic factors, as well as
overuse linked to sports activities, training errors and fatigue
must be considered. For example, in Achilles TP, excessive
distance, intensity, or hill work, erroneous running technique,
as well as changes in playing surface seem to be
predominant in acute injuries. Environmental conditions, such
as cold weather during outdoor training, and faulty footwear
and equipment may also be risk factors. The use of several
drugs has been associated with TPs: the association has
been proven for fluroquinolone antibiotics [34], whereas the
responsibility of statins [35], oral contraceptives and locally
injected corticosteroids [36,37] is debated.

Among the intrinsic factors, several pathological conditions
must be considered. Holmes and Lin [38] evaluated the asso-
ciation between TP and endocrino-metabolic diseases
(obesity, diabetes mellitus, hypertension, increased serum
lipids, hyperuricemia) and found a positive association
between Achilles TP and hormone replacement therapy, oral
contraceptives and obesity. Hypertension was statistically
associated with TP only for women, whereas diabetes
mellitus had a statistical association for men younger than
44 years old. These findings suggest that factors influencing
microvascularity may have importance in the development of
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TP. In diabetes, condensation of glucose with amino groups
results in accumulation of advanced glycation end products
(AGEs) in tendon tissue [39]. Glycated tendons can
withstand more load and tensile stress than non-glycated
tendons, but the tissue becomes stiffer [40,41]. It has been
shown that high amounts of AGEs cause a fusion of collagen
fibrils, which display larger diameters. Finally, AGEs up-
regulate connective tissue growth factor in fibroblasts, which
favors the formation of fibrosis over time in diabetic patients
[42-44]. Other diseases that have been found to be
associated with TP include systemic diseases, neurological
conditions, infectious diseases, chronic renal failure, psoriasis,
systemic lupus erythematosus, hyperparathyroidism and
hyperthyroidism [45]. Finally, aging in itself has a negative
effect on mechanical properties of tendons, which could be
due to reduced arterial blood flow, local hypoxia, free radical
production, impaired metabolism and nutrition and AGEs
[46-48].

The clinical scenario is quite uniform for all TPs. Patients
complain of pain at the site of the tendon affected, which
sometimes arises insidiously during a heavy training session
or from one specific athletic movement and may ease
completely while exercising; with time and continued activity,
however, the pain worsens and limits sporting performance.
Eventually, pain can develop during light activities and can
even be present at rest. A common complaint is a feeling of
stiffness in the morning or after rest. Physical examination
may reveal local tenderness, swelling and reduced articular
range of motion, which are signs of inflammation [49,50]. It is
worth noting that there is no evident relationship between the
extent of the anatomical damage, as shown by ultrasound or
magnetic resonance imaging, and symptoms: such variations
in symptoms and, more specifically, why some patients have
pain and others do not is a question that remains to be
answered.

Tendons are also subjected to sudden ruptures after a single
bout of heavy activity; in some cases this happens in
individuals with a known clinical picture of chronic TP, but
otherwise may be unexpected. This means that TP may
develop asymptomatically.

Findings from histopathology
Inflammatory and degenerative changes are not found in
isolation in histopathological assessments of TP, and very
often coexist in adjacent areas of pathological samples. In
general, the macroscopic intratendinous changes in TP can
be described as poorly demarcated intratendinous regions
with a focal loss of tendon structure. The affected portions of
the tendon lose their normal glistening white appearance and
become grey and amorphous. The thickening can be diffuse,
fusiform, or nodular. Histologically, degenerative changes
(classified as hypoxic, hyaline, mucoid or myxoid, fibrinoid and
fatty degenerations) are found in 90% of biopsy specimens
taken from symptomatic parts of the tendon [51-53].

Calcifications or fibrocartilaginous and osseous metaplasia
can also occasionally be found. The different parts of
degenerated areas of a tendon display great variation in
cellular density. In some areas, an increased number of cells
with high metabolic activity can be seen, whereas in other
areas cells are totally lacking or only few cells with pyknotic
nuclei can be seen. Pathological changes are also frequently
seen in the tendon matrix. Mucoid material with a
simultaneous loss or separation of collagen fibers from each
other is a common finding.

The collagen fibers commonly show unequal and irregular
crimping as well as loss of the transverse bands, separation
and complete rupturing of the fibers, and increased crimping.
The degenerated and degraded type I collagen fibers are
sometimes replaced by calcification or by the accumulation of
lipid cells (tendolipomatosis). Whereas normal tendons
mainly comprise type I collagen, injured tendons have a
higher percentage of type III collagen, which is deficient in
the number of cross-links between and within the tropo-
collagen units [54]. The clinical relevance of these intra-
tendinous degenerative changes is largely unknown: hypoxic
degenerative TP, mucoid degeneration, tendolipomatosis,
and calcifying TP, either alone or in combination, can be seen
in a high percentage of the urban population of healthy,
asymptomatic individuals who are at least 35 years old
[55,56].

With degeneration, some tendons (Achilles, patella, elbow
tendons, fascia plantaris) have shown proliferation of new
vessels inside the tendon [57,58]. Several authors [57-59],
by means of color and power Doppler examinations, have
observed ‘in vivo’ that neovascularization is frequent in
patients symptomatic for pain.

Peritendinous changes are frequently observed: these
changes are more frequent in tendons with a synovial sheath,
such as tibialis posterior, peroneal, and extensor and flexor
tendons of the wrist and hand [49,50]. On histological
examination, in the acute phases of TP, fibrinous exudate is
present, followed by widespread proliferation of fibroblasts.
Again, degenerative changes seem to proceed in parallel with
inflammatory and regenerative phenomena. Later, the
peritendinous tissue appears thickened on macroscopic
examination. Adhesions between the tendon and the
paratenon are frequently seen. Two types of cells have been
identified in the peritendinous tissue in the chronic phase of
TP: fibroblasts and myofibroblasts [60]. During biological
processes that include extensive tissue remodeling, fibro-
blasts may acquire morphological and biochemical features
of contractile cells, and have thus been named myofibro-
blasts. Myofibroblasts have smooth muscle actin in their
cytoplasm and are thus capable of creating forces required
for wound contraction. These cells can induce and maintain a
prolonged contracted state in peritendinous adhesions,
which, in turn, may lead to constriction of vascular channels,
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with further impairment of circulation inside the tendon, where
a proliferation of new microvessels is frequently present.

Insights from experimental studies
Achilles tendon healing after experimental section
Healing studies of Achilles tendon after experimental section
may be useful for understanding what happens in TPs.
Indeed, the microruptures that occur because of excessive
load seem to reproduce, at the microscopic level, the
cascade of events following the macrorupture of a tendon.
Limitations are related to species, the skeletal characteristics
of animals and their peculiar loading modalities [61]. The
most detailed studies have been made in experimental acute
tendon damage. Moreover, important differences between
experimental acute injury and spontaneous rupture in humans
must be acknowledged. First, in experimental situations, the
tendon tissue is normal, whereas it shows chronic
degeneration in humans; and second, in animals the synovial
sheath disruption at the time of injury allows granulation
tissue and tenocytes from surrounding tissue to invade the
repair site, whereas in chronic TPs the ruptures happen
inside the tendon. In spite of these drawbacks, significant
insights have been obtained.

Tendon healing occurs in three distinct but partially over-
lapping phases [62,63]. The acute inflammatory phase lasts
for up to 3 to 7 days after injury. The process starts with a
hematoma and platelet activation. Erythrocytes and inflamma-
tory cells, particularly neutrophils, enter the site of injury. In
the first 24 hours, monocytes and macrophages predominate,
and phagocytosis of necrotic material occurs. Vasoactive and
chemotactic factors are released. The proliferation phase
lasts between 5 and 21 days. Fibroblasts produce collagen,
which gradually increases the mechanical strength of the
tendon, so that loading can lead to elastic deformation, which
allows mechanical signalling to start to influence the process.
Three main phases can be distinguished in collagen fibrillo-
genesis [64]. First, collagen molecules assemble extra-
cellularly in close association with the fibroblasts to form
immature fibrils (collagen fibrillogenesis) [65]. Then, the fibrils
assemble end to end to form longer fibrils (linear growth). In a
third step, fibrils associate laterally to generate large diameter
fibrils (lateral growth) [66]. Fibrils gather into fibers, whose
coalescence finally forms very large fibers, which are
characteristic of the tendon [67]. The large transverse area
compensates for tissue weakness, so that considerable
traction forces can be sustained [68,69]. The last phase is
the maturation and remodeling phase and it can last for up to
a year. The cross-linking among collagen fibers increases and
the tensile strength, elasticity and structure of the tendon are
improved.

Molecular biology studies have made it possible to identify
the factors that promote the healing process [70], which is
primarily mediated by matrix metalloproteinases (MMPs) and
metalloproteinases with thrombospondin motifs (ADAMTs)

[71] and their tissue inhibitors (TIMPs) [72]. The expression
of MMP-9 and MMP-13 increases between days 7 and 14
after surgery, whereas the levels of MMP-2, MMP-3 and
MMP-14 remain high until day 28. These findings suggest
that MMP-9 and MMP-13 participate in collagen degradation
only, whereas MMP-2, MMP-3 and MMP-14 participate in
both collagen degradation and collagen remodeling [71].

Wounding and inflammation also provoke the release of
growth factors and cytokines from platelets, polymorpho-
nuclear leukocytes, macrophages and other inflammatory
cells. These growth factors induce neovascularization and
stimulate fibroblasts and tenocyte proliferation and synthesis
of collagen [73]. The most well documented of these factors
are growth and differentiation factors (GDFs) and Scleraxis
(Scx). GDFs are a subgroup of the tumor growth factor-β and
bone morphogenetic protein superfamily [74]. These factors
are secreted as mature peptides: some of them (GDF5,
GDF6 and GDF7) play a role in osteogenesis, but there is
evidence that they may also be involved in tendon morpho-
genesis [75]. Studies in GDF5-deficient mice have shown
some anomalies in tendon formation, mainly due to altered
collagen structure and excessive death through apoptosis of
mesenchymal cells [76]. In addition, in studies in adult animal
models of tendon neoformation, GDFs showed the ability to
induce ectopic formation of connective tissue rich in collagen I
in a fashion that resembles neoformation of tendon and
ligaments [77].

In Molloy and colleagues’ study [78], performed on a model of
supraspinatus TP in the rat, genes encoding tumor growth
factor-β, fibroblast growth factors (FGFs) and their receptors
were also significantly up-regulated. These molecules likely
coordinate growth and proliferation of both endogenous
fibroblasts and inflammatory cells in the affected area [79].
Numerous studies have implicated the FGFs as key molecules
during the various steps of tendon healing. Basic FGF has
been detected in normal tendon fibroblasts and its expression
increases at injured sites in various animal models [64].

Scx is the best characterized marker of tendon morpho-
genesis [80], and there is some evidence that Scx activation
can induce tendon neoformation. Léjard and colleagues [81]
reported that Scx regulates the expression of the gene
COL1A1 in tendon fibroblasts. Severely disrupted tendon
differentiation and formation have been observed in mutant
mice homozygous for a null Scx allele (Sck-/- mice) [82].

Mesenchymal stem cells (MSCs) have been identified as
candidates for tendon neoformation [83]: mouse dental
follicle cells, when implanted in vivo, generate periodontal
ligament-ike tissue [84]; and MSCs implanted under the skin
of mice together with different carriers (Gelfoam, Matrigel or
hydroxyl-apatite/tricalcium phosphate) form tendon-like
tissues with tendon-specific parallel alignments of collagen
fibers [85]. Tendon tissue-engineered constructs seeded
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with human umbilical vein MSCs were significantly stronger
and stiffer compared with constructs composed of cellular
collagen gel alone [86].

Nitric oxide (NO) is also involved in the healing process. This
substance is synthesized by a family of enzymes, the nitric
oxide synthases (NOSs). Different isoforms of NOS have been
identified: eNOS (found in endothelial cells) and bNOS (found
in brain and neuronal tissue) are constitutive and important in
blood pressure regulation and memory; iNOS is an isoform
that can be induced by pro-inflammatory cytokines and is
important in host defense [87,88]. Murrell [89], in experimental
rat models developed to evaluate Achilles tendon and rotator
cuff healing, found remarkably increased expression of all
three NOS isoforms after surgical excision (iNOS at days 4
and 7, eNOS at day 7 and bNOS at day 21). It is likely that
NO favors the healing process by increasing collagen
synthesis, as shown by in vitro experiments in which cultured
tendon cells were exposed to exogenous NO and to the NO
inhibitor flurbiprofen. When flurbiprofen was administered, the
healing of injured tendons was significantly reduced, as shown
by the reduction in their cross-sectional area and mechanical
properties [90,91].

Other experimental models
The mechanisms of tendon healing have also been investi-
gated using other experimental procedures [92]. In rabbits,
tendon damage has been induced by an excessive
mechanical load. When the damage is induced acutely
(6 hours after a single exercise session), an inflammatory cell
infiltrate is seen within the Achilles tendon. However, when a
more chronic loading program is used (over 11 weeks), only
degenerative histological changes are seen [93,94]. The
timing of observation differs, so an early phase of low level
inflammation cannot be ruled out.

In a similar fashion, studies performed on the overloaded
equine superficial digital flexor tendon [95,96] show an early
inflammatory reaction that is followed by degenerative altera-
tions. These experimental findings suggest that acute inflam-
mation may be involved from the start [94] and that a
degenerative process soon supercedes it, but the relation-
ship between the two phenomena is unclear.

Experimental studies in the rat, performed with the aim of
investigating the mechanisms of pain [78], demonstrated the
up-regulation of genes encoding the glutamate signaling
machinery (metabotropic glutamate receptors 5 to 6). Forsgren
and colleagues [97] and Andersson and colleagues [98]
have also observed the over-expression of the genes
encoding N-methyl-D-aspartic acid receptor-like 1 as well as
Substance P (SP), Neurokinin-1 receptor, Calcitonin gene
related peptide (CGRP) and α-1 adrenoreceptors. Further-
more, it has been demonstrated that, when glutamate extra-
cellular concentration reaches a certain threshold, rapid tendon
cell swelling occurs, followed by lysis and apoptosis [78].

Studies on animals show evidence of oxidative damage and
increased amounts of apoptosis when tendons are
submitted to high dose cyclic strain. Two pathways could be
associated with oxidative stress: activation of c-Jun amino-
terminal kinase and increase of cytochrome c-related
activation of caspase-3 [99].

Finally, studies in rabbits show that mast cells close to neural
elements release neuropeptides (SP and CGRP) and mast
cell mediators (histamine, prostaglandins and leukotrienes),
influencing both fibroblast activity and vascular permeability.
Estrogen and progesterone receptors are present in tendon
tissue and modulate transcript levels for Cyclooxygenase-2,
MMP-1, MMP-3, iNOS and tumor necrosis factor [100,101].

Studies in humans
Although more relevant, the study of etiopathogenesis of TP
in humans is hampered by several limitations. One of the
major limitations is represented by the fact that human
tendons are usually studied only when they become
symptomatic and information is obtained from patients with
advanced disease who undergo surgery while less sympto-
matic subjects are treated conservatively; the early phase of
disease is thus not available for study.

Using microdialysis techniques, it has been possible to
obtain, by means of continuous perfusion, samples of fluids
from inside the Achilles tendon, and to evaluate different sub-
stances of biological interest in these samples. In subjects
with chronic TPs, Alfredson and colleagues [4] reported that
prostaglandin E2 (PGE2) concentrations were similar to
those found in normal tendons, thus excluding the
participation of so-called chemical inflammation in the later
phases of disease. However, this conclusion is challenged by
Yang and colleagues [102], who observed that repetitive
mechanical stretching increases PGE2 production in human
patellar tendon fibroblasts. PGE2 is a potent inhibitor of type I
collagen synthesis [103-105] and it has recently been shown
that PGE2 has catabolic effects on tendon structure,
decreasing proliferation and collagen production in human
patellar tendon fibroblasts [106].

Moreover, lactate levels were significantly higher in patho-
logical Achilles tendons compared with normal tendons. This
finding indicates that there are anaerobic conditions in the
tendon, possibly due to insufficient vascular supply [107,108].
Extending these experiments, Pufe and colleagues [109,110]
have shown in degenerate Achilles human tendon tissue that
hypoxia induces the production of the transcription factor
hypoxia inducible factor, which, in turn, leads to subsequent
expression of vascular endothelial growth factor (VEGF). Four
important VEGF isoforms with 121, 165, 189, and 205 amino
acids, respectively, can be generated as a result of alternative
splicing from the VEGF gene. Splice variants VEGF121 and
VEGF165 have the highest angiogenic potency [111,112].
VEGF promotes angiogenesis in vivo and renders the micro-
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vasculature hyper-permeable to circulating macromolecules
[113]. Besides its angiogenic properties, VEGF might
influence the course of degenerative tendon disease in
another way. VEGF is able to up-regulate the expression of
MMPs, which increase the degradation of the extracellular
matrix, and to down-regulate TIMP-3, so altering the material
properties of tendons [6,114,115]. This might predispose the
tendon to recurrent microdamage and, in the long term,
spontaneous rupture. Inflammatory cytokines such as endo-
thelial growth factor or platelet derived growth factor, which
are expressed during the healing process, and hypoxia have a
synergistic effect on VEGF expression in tendon tissue
[109,110].

These observations in human TPs further support the entan-
gled roles of inflammation and subsequent degeneration
within tendons, which are substantiated by biochemical
changes revealed by microdialysis studies.

When neo-angiogenesis occurs, nerves usually ‘travel with’
neovessels inside the tendon [97]. This has been proven by
both histopathology (tendon biopsies performed in areas with
TP) and immunohistochemical studies [9]. These data favor
the hypothesis that neovascularization is associated with the
clinical symptomatology and, in particular, with pain. Other
microdialysis studies, performed by Alfredson and colleagues
[3,4], have shown that intratendinous glutamate levels are
significantly higher in painful tendons than in normal pain-free
tendons. The chain of events leading to pain furthermore may
increase neo-angiogenesis and nerve proliferation in a vicious
circle. In fact, SP and CGRP can induce vasodilation and
neurogenic inflammation [116,117], although this is obviously
a different inflammatory entity and not due to the biochemical
mediators of ‘leukocyte’-driven inflammation.

The ‘iceberg’ theory
In order to give an organic explanation to all the data
collected, as suggested by Fredberg and colleagues [118], a
comprehensive pathogenetic theory may be proposed.

It is well known that well-structured, long-term exercise, well
within a physiological range, does not harm the tendon but
actually reinforces it, stimulating the production of new
collagen fibers. Studies on collagen turnover performed in
humans by means of microdialysis techniques show that,
after different types of exercise, both synthesis and degrada-
tion of collagen are increased, but collagen synthesis prevails
and persists longer than collagen degradation [119-121].
The tendon tissue becomes larger, stronger and more
resistant to injury, with increases in tensile strength and
elastic stiffness [122]. During exercise, both isometric and
dynamic, blood flow increases in the tendon and periten-
dinous area. The biochemical adaptation to exercise is
characterized by the release of inflammatory and growth
substances, both in the general circulation and locally in
tendons: among them is interleukin-1β, which in turn results

in the increased expression of Cyclooxygenase-2, MMPs and
ADAMTS [123]. These enzymes are important in regulating
cell activity as well as matrix degradation, and they have roles
in fiber growth and development.

However, epidemiological observations clearly show that the
initial culprit of TP is represented by the overuse of the
tendon [52]. Indeed, TPs are conditions that affect mainly
athletes and active people who are involved in activities that
stress a specific tendon. When the tendon is overloaded and
submitted to repetitive strain, the collagen fibers begin to
slide past one another, breaking their cross-links and causing
tissue denaturation. This cumulative microtrauma is thought
not only to weaken collagen cross-linking but also to affect
the non-collagenous matrix as well as the vascular elements
of the tendon [124-126].

Moreover, when the tendon is submitted to strenuous exercise,
very high temperatures develop inside. Failure to control
exercise-induced hyperthermia can result in tendon cell
death. Peaks of 43 to 45°C can be reached inside the tendon
and experimental studies show that temperatures above
42.5°C result in fibroblast death. This might predispose the
tissue for degeneration mainly when, in hypovascular areas,
its capability to regulate its inner temperature is hampered.
Therefore, there is the possibility that exercise-induced
localized hyperthermia may be detrimental to tendon cell
survival rather than vascular compromise itself [127].

In these conditions, the mechanisms of healing and damage
are simultaneously activated. The healing mechanisms
include the over-expression of some MMPs, ADAMTs, NOS,
GDFs and Scx [63,77]; the damage mechanisms are
represented by increased MMP-3 expression, which favors
the degradation of extracellular matrix, and by the over-
production of inflammatory cytokines, such as endothelial
growth factor, platelet derived growth factor, leukotrienes,
and PGE2 [6,128].

Given the low metabolic rate of tendons, the optimal
conditions for good healing are: adequate recovery time;
absence of further overloading; and suitable metabolism and
blood supply. When these conditions are not satisfied, the
healing mechanisms fail. Unfavorable situations may be
represented by predisposing factors (genetic and reduced
physiological blood supply in specific areas), or by several
risk factors, both extrinsic (heavy sport activities, environ-
mental conditions, training errors in athletes) and intrinsic
(age, osteoarticular pathologies, and systemic diseases affect-
ing microcirculation or collagen metabolism). This explains
why subjects respond differently to overloading, such that the
threshold for repair may vary largely from one subject to another.

Hypoxia induces the production of hypoxia inducible factor,
which, in turn, leads to subsequent VEGF expression
[109,110], which promotes angiogenesis, is able to up-
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regulate the expression of MMPs, and down-regulates
TIMP-3, so altering the material properties of tendon. The
invasion of vessels into a region hypovascularized under
physiological conditions and MMP expression leads to a
weakening of the normal tendon structure. In this phase the
subject, albeit showing signs of degeneration and neo-
vascularization at ultrasound evaluation, is usually asympto-
matic, even if pain may arise as the result of peritendinitis,
which is exquisitely inflammatory in nature (Figure 1). When
the overload overcomes the thresholds of repair or the
tendon is submitted to further loads without adequate
recovery time, the healing process fails and the pathogenetic
cascade leading to tendinopathy occurs.

The transition to the symptomatic phase is usually marked by
characteristic histological changes: the invasion of vessels is
followed by nerve proliferation, and glutamate levels increase
and are responsible for pain during the course of the disease
(Figure 2). Neo-angiogenesis and nerve proliferation lead to
pain when the production of algogenic substances reaches a
critical threshold. These substance may further damage the
tendon.

In summary, the pathogenesis of TP is a continuum from
physiology to overt clinical presentation. This sequence of
events can be compared with an iceberg, having several

thresholds, pain being the tip of the iceberg (Figure 3). The
base of the ‘iceberg’ represents what happens under
physiological conditions. When damage develops, two
phases may be recognized: the asymptomatic and
symptomatic phases. This definition implies that pain is the
alarm symptom: indeed, it is uncommon, with the exception of
professional top-level athletes, that tendon abnormalities can
be detected earlier by systematic ultrasound evaluation [45].
It should be noted, however, that the timing of these events
may vary considerably due to several individual factors. 

Under physiological conditions, exercise increases the
strength of the tendon, but when the individual threshold is
overcome, microdamage may occur. If the tendon is given
adequate time to recover, in good local conditions of blood
flow and nutrition, the healing machinery will prevail with
complete repair. However, if the recovery time is too short
and blood flow is inadequate, the repetitive strain will lead to
microdamage inside the tendon (the first phase of TP): a very
thin line, indeed, divides healthy and non-healthy physical
exercise. Therefore, TP appears to result from an imbalance
between protective and regenerative changes and the
pathological responses to tendon overuse.

In the second phase, a pathogenetic cascade involving the
production of pro-inflammatory cytokines, vascular growth
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Mechanisms of damage. EGF, epidermal growth factor; HIF, hypoxia inducible factor; MMP, matrix metalloproteinase; PDGF, platelet-derived
growth factor; TIMP, tissue inhibitor of metalloproteinase; VEGF, vascular endothelial growth factor.



factors, and oxygen free radicals will take place, resulting in
degradation of the tendon, neovascularization and possibly
nerve proliferation. However, in this phase the subject is still
asymptomatic until a new threshold in neovascularization and
neural in-growth is reached and pain occurs.

The ‘iceberg theory’ can thus explain the frequent relapse of
symptoms when athletes resume sport activities after too
short a rehabilitation period, during which pain recedes to just
below the detection threshold while most of the intra-
tendinous abnormalities still exist. Moreover, this theory
explains how a complete rupture with evident degeneration
may occur in a tendon but still be painless [129].

Therapeutic perspectives
Coming back to the title of this review, inflammation and
degeneration are not mutually exclusive, but work together in
the pathogenetic cascade of TP [130-133]. This can explain
why the response to therapy may be different from one case
to another [134].

Non-steroidal anti-inflammatory drugs [135] and steroids
[136,137] may be beneficial for pain and function in the early
phases of disease, but are usually ineffective later [135,138].
In the advanced phases, sclerosing therapy, destroying new
vessels and nerves, reduces pain and restores function
[139-143]. Eccentric training, which stops blood flow when
the ankle joint is in dorsal flexion, may act with a mechanism

similar to sclerosing therapy, that is, through reducing neo-
angiogenesis [139,144,145]. Maffulli and colleagues,
however, claim that tendons respond to mechanical forces by
adapting both their metabolism and by altering gene
expression, so that eccentric training could work both
metabolically and mechanically [49,144].

Indeed, the succession of events is very complex, involving
the release of many substances that may heal the injured
tendon but also act as disease mediators. Therefore, new
therapeutic approaches may be envisaged. Preliminary
studies utilizing adalimumab (a tumor necrosis factor-alpha
blocker), anakinra (an interleukin-1 antagonist) [146] or apro-
nitin (a MMP-inhibitor) [147] or tropisetron (a 5-HT3 receptor
antagonist with anti-inflammatory properties) have produced
encouraging results [89]. Local NO delivery, by means of
glycerol tri-nitrate patches, has been proven to be beneficial
by some authors, with reduction of pain and increases in
strength in subjects with tennis elbow, Achilles TP and
supraspinatus tendinosis [148], but other studies have failed
to support its efficacy in Achilles TP [149,150]. A variety of
materials have also been used in the formation of scaffolds,
including natural components, such as collagen [151], as
well as copolymers [152]. Several preliminary studies
suggest adding exogenous growth factors to injured tendons
in order to enhance healing and repair, but it is unclear
whether there is a role for these factors in the treatment of TP
in humans [153,154]. Platelet rich plasma has recently
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Figure 2

From neovascularization to neurogenic inflammation. CGRP, Calcitonin gene related peptide; NMDA-R, N-methyl-D-aspartic acid receptor.



emerged as a potential biological tool to treat tendon
disorders based on the release of growth factors that occurs
with platelet rupture [155]. For example, injection of FGF
recombinant proteins in injured rat patellar tendons increases
cell proliferation and type 3 collagen expression [156].

Finally, there is now evidence of a population of regenerating
stem cells within tendons [99]. There is increasing interest in
the biology of MSCs isolated from bone marrow aspirates,
adipose tissue, umbilical cord and various other tissues for
their potential clinical use [157]. Tendons and ligaments
regenerate and repair slowly and inefficiently in vivo after
injury due to low proliferation rate and poor vascularization.
There are many similarities between the weight-bearing
tendons of the horse and human tendons, as well as in the
nature of strain-induced injuries to them. The use of stem
cells within veterinary medicine has been reviewed elsewhere
[158,159]. Tissue engineering approaches have been investi-
gated to improve tendon rupture healing by transplantation of
in vitro cultured tenocytes, obtained from tendons, seeded in
matrices [160], but limited proliferative capacity and matrix
production represent strong limitations. MSCs preferentially
home to damaged tissues where they exert their therapeutic
potential. A striking feature of the MSCs is their low inherent
immunogenicity as they induce little reaction from host
immune cells, perhaps due to intrinsic immunosuppressive

activity [161]. MSCs, with appropriate stimulation and/or
gene transfer, represent an opportunity to produce in vitro
tenocytes able to promote tendon healing [156,162].

Applying stem cell technology to the treatment of
degenerative conditions of the musculoskeletal system such
as TP is very appealing and early work suggests that this
technology may have a role in tendon repair [163,164].
Genetically engineered autologous cells as gene carriers
[165] have been shown to lead to quicker recovery and
improved biomechanical properties of Achilles tendons. In
addition, molecules that selectively activate Scx or its target
genes also might be beneficial [75,156,163]. Recent reports
of the potential involvement of matrix remodeling and Wnt
signaling during tenogenesis of human MSCs in a dynamic
mechanoactive environmental model provide insights into the
mechanisms of tenogenesis and support the potential of
adult stem cells in tendon injuries [165,166]. The use of stem
cells to repair damage, either through direct application or in
conjunction with scaffolding, has been reviewed recently with
regard to applicability to human tendon, scaffolding for in
vitro tendon generation, and chemical/molecular approaches
to both induce efficient stem cell differentiation into tenocytes
and maintain their proliferation in vitro [167,168]. Various
studies in animal models have shown the feasibility of gene
transfer into tendons, using the reporter gene LacZ with
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retroviral, adenoviral, and liposomal vector delivery methods
[169].

Conclusion
TPs are very common disorders in professional athletes and
in people practicing leisure sport activities. Epidemiological
and clinical observations emphasize the role of repetitive
mechanical overloading, but the intrinsic mechanisms of the
disease are largely unknown: in particular, it is debated
whether inflammation or degeneration has the prominent
pathogenetic role. Recently, a large amount of experimental
data has been generated, and on this basis we propose a
comprehensive pathogenetic theory.

Overuse is the initial disease factor, with microdisruption of
tendon fibers. A complex process then takes place, mainly in
areas with poor blood supply. GDFs are produced, and the
expression of Scx, a protein that activates the gene encoding
collagen type I-α1 in tendon fibroblasts, is enhanced and the
healing of the tendon is supported by specific cellular
lineages. At the same time, however, noxious mechanisms are
activated, with increased expression of inflammatory
mediators and VEGF. This factor stimulates the synthesis of
MMPs, enzymes that increase the degradation of the
extracellular matrix, and promotes neo-angiogenesis in vivo.
The result is degeneration and weakening of the normal
tendon structure. Neural in-growth accompanying the neo-
vessels, on the other hand, leads to overexpression of gluta-
mate, SP and CGRP: this explains the occurrence of pain
and, possibly, triggers neurogenic-mediated inflammation.

In conclusion, it is conceivable that inflammation and
degeneration are not mutually exclusive, but work together in
the pathogenetic cascade of TPs.
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