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Abstract

Introduction: The interaction between the immune and skeletal systems is evidenced by the bone loss observed in
autoimmune diseases such as rheumatoid arthritis. In this paper we describe a new mechanism by which the immune
cytokine IL-17A directly affects osteoclastogenesis.

Methods: Human CD14+ cells were isolated from healthy donors, cultured on dentine slices and coverslips and
stimulated with IL-17A and/or receptor activator of NF-kB ligand (RANKL). Osteoclast differentiation was evaluated by
gene expression, flow cytometry, tartrate-resistant acid phosphatase staining, fluorescence and electron microscopy.
Physiologic bone remodelling was studied in wild-type (W1t) and IL-17A~-mice using micro-computer tomography and
serum RANKL/osteoprotegerin concentration. Functional osteoclastogenesis assays were performed using bone
marrow macrophages isolated from IL-17A7-and Wt mice.

Results: IL-17A upregulates the receptor activator for NF-kB receptor on human osteoclast precursors in vitro, leading
to increased sensitivity to RANKL signalling, osteoclast differentiation and bone loss. IL-17A7- mice have physiological
bone homeostasis indistinguishable from Wt mice, and bone marrow macrophages isolated from these mice develop
fully functional normal osteoclasts.

Conclusions: Collectively our data demonstrate anti-IL-17A treatment as a selective therapeutic target for bone loss

associated with autoimmune diseases.

Introduction

The pathologic outcome of the activated immune system
interacting with the skeletal system is evidenced by articu-
lar bone erosion and joint loss of function seen in autoim-
mune joint diseases, such as rheumatoid arthritis (RA).
Pathological bone resorption is the result of increased dif-
ferentiation and/or activity of osteoclasts [1]. Osteoclast
precursors are present in the circulating monocyte popula-
tion [2], and these cells differentiate into multinucleated
osteoclasts in the presence of macrophage-colony stimulat-
ing factor (M-CSF) and receptor activator for NF-«xB ligand
(RANKL) produced by osteoblasts [3]. Osteoprotegerin
(OPQ) is a soluble decoy receptor for RANKL that inhibits
osteoclast formation and bone resorption [4]. Terminally
differentiated osteoclasts polarize onto the bone surface by
forming filamentous actin (F-actin) rings associated with
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o, B integrin, acidify the enclosed extracellular space using
a proton pump [5] to solubilize the inorganic calcium phos-
phate, and release organic matrix-degrading enzymes such
as cathepsin K, matrix metalloproteinases and tartrate-resis-
tant acid phosphatase (TRAP) that results in a continuous
series of resorption lacunae on the bone. The receptor acti-
vator for NF-kB (RANK)/RANKL/OPG axis governs
homeostatic bone remodelling, as mice deficient in RANK,
RANKL, or OPG have severe bone phenotypes [3,4,6].

In addition to producing RANKL, activated T cells pro-
duce other proinflammatory factors, such as TNF, which
stimulate osteoclastogenesis in RANK- mice [6] and
induce osteoclastogenesis in vitro by direct stimulation of
murine bone-marrow-derived macrophages exposed to per-
missive levels of RANKL [7]. Haematopoietic precursors
from RANKL--, RANK--, or TRAF67- mice also become
osteoclasts in vitro when they are stimulated with TNFa in
the presence of cofactors such as transforming growth fac-
tor beta [8], and recently TNF was shown to induce osteo-
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clastogenesis from spleen-cell-derived macrophages in the
absence of RANKL [9]. Collectively these data demon-
strate that immune-mediated osteoclastogenesis pathways
can lead to joint pathology in inflammatory arthritis in both
a RANKL-dependent and a RANKL-independent manner
[10-12].

The IL-23/IL-17A axis has recently been implicated in
joint pathology and autoimmune diseases. The proinflam-
matory cytokine IL-23 promotes the differentiation of a
novel memory T-cell subset (Th17) in mice characterized
by the production of the signature cytokine IL-17A. IL-23
is comprised of the IL-23p19 subunit and the IL-12p40 sub-
unit, (shared with IL-12), and IL-23p197 mice have
reduced IL-17A*-Thl17 cells, are resistant to collagen-
induced arthritis induction, and have no joint or bone
pathology [13]. Th17 cells stimulate local inflammation
and express RANKL as well as inducing RANKL expres-
sion in osteoblasts [14,15].

Since both Th17 cells and osteoclast precursors are pres-
ent in the peripheral blood of healthy adults and both are
elevated in the synovial fluid of RA patients [2,14,16], we
studied the role of IL-17A in the direct differentiation and
activation of osteoclast precursors [17]. Specifically, we
analysed the in vitro mechanisms by which IL-17A affects
osteoclastogenesis, using mice deficient for IL-17A, and
treating human peripheral blood monocytes with exogenous
cytokines. We confirm that IL-17A does not play a role in
physiological bone homeostasis, and show that IL-17A sen-
sitizes osteoclast precursors to the key osteoclast factor
RANKL by increasing RANK expression on osteoclast pre-
cursors [18]. These data provide a direct mechanism of IL-
17A action on osteoclast precursors that is distinct from IL-
17A's known action on osteoblasts [14], thereby providing
an additional link between the immune and skeletal sys-
tems. Furthermore, the induction of RANK and RANKL
expression make IL-17A a potent inducer of bone erosion
under inflammatory conditions and its blockade may be
used to combat disabling conditions such as RA.

Materials and methods

Reagents and antibodies

All cell incubations were performed in culture medium con-
sisting of o-minimal essential medium (Invitrogen, San
Francisco, CA, USA), 2 mM glutamine, 10% heat-inacti-
vated foetal bovine serum (Invitrogen), 100 IU/ml penicil-
lin, and 100 pg/ml streptomycin. Human soluble RANKL
was detected in the conditioned medium using a sandwich
ELISA (Biovendor, Candler, NC, USA), and mouse
RANKL and OPG was measured in the serum of 8-week-
old mice using ELISA from R&D Systems (San Francisco,
CA, USA).
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Mice and mouse osteoclast cultures

All animal protocols were approved by Schering-Plough
Biopharma's Institutional Animal Care and Use Committee.
IL-17A-- mice have been previously described [19]. The
mice were sacrificed by carbon dioxide exposure and blood
was collected by cardiac puncture. Whole bone marrow
was extracted from the tibia and femurs of 6-week-old to 8-
week-old wild-type (Wt) C57B1/6 and IL-17A~-mice. Cells
were plated in culture medium containing 25 ng/ml M-CSF.
Osteoclasts were generated in 5-day cultures of bone mar-
row macrophages with 25 ng/ml M-CSF and 50 ng/ml solu-
ble RANKL.

Micro-computer tomography
Mouse femurs were stored in 10% neutral buffered forma-
lin at 2 to 8°C until processing. Samples were scanned at
Numira (Salt Lake City, UT, USA) using a high-resolution,
volumetric pCT40 scanner (Scanco Medical AG, Basser-
dorf, Switzerland). The image data were acquired at 6 um
isometric voxel resolution with 300 ms exposure time,
2,000 views, and five frames per view. The micro-computer
tomography-generated DICOM files were used to analyse
the samples and to create volume renderings of the region
of interest. The raw data files were viewed using
Microview (GE Healthcare, Milwaukee, WI, USA).
Utilizing ScanCo Medical software, bone density mea-
surements were obtained for the distal end of the femur and
the midshaft. For distal femur analysis, a three-dimensional
trabecular volume was selected 0.5 mm below the growth
plate and 0.5 mm thick. For midshaft analysis, the length of
the entire femur was measured and a 1 mm thick mid-corti-
cal section was used for analysis. A threshold of 20% of the
16-bit total grey-scale values between 0 and 32,000 was
used. Three-dimensional image rendering were generated
through original volumetric reconstructed images using
Microview software (GE Healthcare, Piscataway, NIJ,
USA).

Human osteoclast cultures

Buffy coats were obtained from normal healthy human vol-
unteers participating in the Stanford Medical School Blood
Center blood donation programme, with the permission of
the institution and volunteers, in accordance with the Dec-
laration of Helsinki. Human protocols were approved by
the Schering Plough Institutional Biosafety Committee,
which acts as an ethical committee for the approval of stud-
ies involving the use of human tissue.

Peripheral blood mononuclear cells were isolated by gra-
dient density centrifugation with Histopaque-1077 (Sigma-
Aldrich, St Louis, MO, USA) as previously described [20].
CD14* cells were isolated with the MACS monocyte isola-
tion Kit (Miltenyi Biotech Auburn, CA, USA). The purity
of the isolated CD14* cells was >95% as assessed by flow
cytometry at day 1. Peripheral blood mononuclear cells
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(PBMCs) or CD14"cells were added to 96-well tissue cul-
ture plates containing dentine slices (Nordic Bioscience
Diagnostics, Herlev, Denmark) or coverslips (Electron
Microscopy Sciences, Hatfield, PA, USA) as previously
described [20]. PBMC cultures were maintained in the
presence of 30 ng/ml soluble RANKL and 25 ng/ml M-CSF
as positive control. PBMC cultures were maintained with
M-CSF alone as a negative control. All PBMC cultures
were incubated for up to 21 days, during which time the
entire culture medium containing all factors was replen-
ished every 2 or 3 days.

Cytochemical and functional assessment of osteoclast
formation

Tartrate-resistant acid phosphatase

The cells cultured on plastic dishes were stained for TRAP
using a commercial kit (387-A; Sigma) according to the
manufacturer's instructions.

F-actin ring

To detect the F-actin ring structure [21], dentine slices were
fixed with 4% formaldehyde for 5 minutes and then perme-
abilized for 6 minutes in 0.5% Triton X-100 (in PBS) and
rinsed with PBS. The cells on dentine slices were then incu-
bated with 0.1 pM TRITC-conjugated phalloidin (Sigma-
Aldrich, St Louis, MO, USA) for 30 minutes, washed and
rinsed with PBS before mounting with DAPI (Vectashield,
Vector Peterborough, UK), and were observed using a fluo-
rescence microscope (Nikon, Melville, NY, USA).
Resorption assay

Functional evidence of osteoclast formation was deter-
mined by a lacunar resorption assay system using cell cul-
tures on dentine slices as previously described [20]. Cells
were removed from the dentine slices by treatment with 0.1
M ammonium hydroxide. The dentine slices were washed
in distilled water and ultrasonicated to remove adherent
cells, then stained with 0.5% (v/v) toluidine blue to reveal
areas of lacunar resorption and examined by light micros-

copy.

Scanning electron microscopy

Cells on dentine were fixed in 4% glutaraldehyde, dehy-
drated by passing through graded alcohols and then through
graded (50 to 100%) hexamethyl-disilazane solution
(Sigma-Aldrich) before being air-dried. Dentine slices were
then mounted onto aluminium stubs (EMS, Hatfield, PA,
USA), sputtered with gold, and examined using a Philips
SEM 505 scanning electron microscope.

RNA extraction and real-time quantitative PCR

Total RNA was purified from different stages of osteoclast
cultures using the RNeasy Mini Kit (QIAGEN, Valencia,
CA, USA). Gene expression was calculated using the A-
ACt method (using the mean cycle threshold Ct value for
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ubiquitin and the gene of interest for each sample). The
equation used to obtain the normalized values was:

1.8e (Ct ubiquitin — Ct gene of interest) x 10%.

Flow cytometry of isolated bone marrow macrophages,
PBMCs and CD14+ cells

Bone marrow cells were flushed from the femurs and tibia
of C57BL/6 AnN mice (Taconic, Oxnard, CA, USA) and
IL-17A-- mice and were dispersed to single-cell suspen-
sions. Nonspecific binding was blocked by pretreating cells
with rat anti-mouse CD16/32 mAb (BD Biosciences, San
Jose, CA, USA) for 10 minutes at room temperature. Alexa
Fluor® 647-conjugated rat anti-mouse CDI11b mAb, PE-
conjugated rat anti-mouse Gr-1 mAb and isotype controls
were all obtained from BD Biosciences. Cells were stained
using predetermined optimized mAb concentration, and
cell surface phenotyping was done using a BD FACS Cali-
ber flow cytometer (BD Biosciences) and analysed using
FlowJo software (Tree Star, Ashland, OR, USA).

PBMCs were analysed for the expression of c-fms and
RANK receptors on CD14* cells. Briefly, cells were resus-
pended in PBS, incubated with mouse anti-human antibody
for 30 minutes at 4°C, washed with PBS, and fixed with 1%
formaldehyde. Expression of receptors was determined by
staining cells with anti-human CD14-APC and c-fms-Bio-
tin and/or RANK-PE. Gated events (100,000) were col-
lected using the FACScan system and were analysed with
CELLQuest software (Becton Dickinson, Franklin Lakes,
NJ, USA).

Statistical analysis

Human data were analysed by Kruskal-Wallis test with
Dunn's multiple-comparison after test. One-way or two-
way analysis of variance with Bonferroni after test was
used where appropriate. P < 0.05 was considered statisti-
cally significant (n = 3, unless otherwise indicated).

Results

IL-17A induces human osteoclast formation

Exogenous IL-17A stimulation of human osteoclast precur-
sors within the PBMC population stimulated the formation
of large, TRAP*, multinucleated cells in the absence of
exogenous RANKL stimulation (Figure la). Very low IL-
17A concentrations were needed to induce TRAP* cells (0.1
to 1 ng/ml) - concentrations much lower than needed to
drive maximal proinflammatory cytokine and chemokine
expression by endothelial and mesenchymal cells (unpub-
lished data). The TRAP* multinucleated cells (30 to 40 pm)
formed by culturing human osteoclast precursors with IL-
17A did form F-actin rings and showed an uncommon low-
grade dentine resorption (Figure 1b, ¢). Low-grade resorp-
tion was also associated with smaller (<20 um) mononu-
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Figure 1 IL-17A induces low-grade resorption. (a) Tartrate-resistant acid phosphatase (TRAP) staining of peripheral blood mononuclear cells iso-
lated from healthy volunteers cultured for 14 days in the presence of macrophage colony-stimulating factor (MCSF) and increasing IL-17A concentra-
tions. Data pooled from three individual experiments performed in triplicate. (b) Phaloidin and DAPI staining of CD14+ cells treated with IL-17A (1 ng/
ml). (c) Scanning electron photomicrographs of CD14+ cells cultured for 21 days treated with IL-17A (1 ng/ml) on dentine slices in the presence of
MCSF (25 ng/ml). Bars: left, 20 um; right, 40 um. Representative data of three individual experiments.
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clear cells in the IL-17A-treated cultures, but these cells
also failed to form lacunar resorption formation typically
seen by fully mature RANKL-derived osteoclasts. IL-17A
stimulation increased cell fusion giving rise to multinucle-
ated cells in the culture, but the cell fusion did not give rise
to the same distinctive multinucleated giant cell that arise in
RANKL-treated cultures (Figure 2a, upper panel). These
data above address whether IL-17A drives osteoclastogene-
sis independently of RANKL but in the presence of M-CSF.

We next addressed whether IL-17A had a synergistic
effect with RANKL in driving osteoclastogenesis. Human
osteoclast precursors cultured with RANKL differentiate
into multinucleated osteoclasts capable of forming F-actin
rings and lacunar resorption (Figure 2a, lower panel). The
addition of 1 ng/ml IL-17A to the RANKL-treated cultures
increased the mean area of dentine resorbed by as much as
30% more (Figure 2b).

IL-17A upregulates RANK and c-fms on osteoclast
precursors

It was unexpected that IL-17A could synergize with
RANKL under inflammatory conditions to drive increased
bone resorption. Forty osteoclast-related genes were evalu-
ated by quantitative PCR to uncover the mechanism by
which IL-17A synergizes with RANKL to induce osteo-
clastogenesis. The increased bone resorption, correlated
with increased TRAP expression (data not shown), as well
as with increased RANK and c-fis expression in cultured
cells (Figure 3a). An increase in TRAP expression was
expected, but did not provide a mechanistic clue of how IL-
17A synergized with RANKL. Elevated RANK message
was confirmed by flow cytometry of osteoclast precursors
showing increased surface RANK protein expression fol-
lowing addition of IL-17A to the differentiation culture
(Figure 3b). Surface expression of the M-CSF receptor c-
fms could not be confirmed by flow cytometry (data not
shown), suggesting either that the extensive trypsin treat-
ment to suspend cells degraded the molecule to a form no
longer recognized by the detection antibody or that the
expression was below the limits detected by flow cytome-
try.

IL-17A-elevated c-fms and RANK expression on human
osteoclast precursors was hypothesized to sensitize the
osteoclasts precursors to M-CSF and RANKL signalling,
resulting in greater osteoclast number and bone resorption
under limiting M-CSF or limiting RANKL conditions. By
keeping optimal M-CSF levels constant and decreasing the
RANKL concentration (and vice versa) while stimulating
with IL-17A, we demonstrated that IL-17A stimulation
resulted in an increase of multinucleated TRAP* cell forma-
tion under limiting M-CSF and RANKL conditions (Figure
3c¢).

Page 5 of 11

IL-17A-- mice have normal bone homeostasis and develop
normal, fully functional osteoclasts

The bone mineral density of cortical and trabecular bone
was not significantly different between Wt mice and IL-
17A--mice (Figure 4a). Serum OPG and RANKL levels in
IL-17A-- mice were similar to Wt mice (Figure 4b). The
bone marrow isolated from IL-17A-- mice had equal num-
bers of CD11b* cells (osteoclast precursors) (Figure 4c),
and when macrophages were stimulated with M-CSF and
RANKL they differentiated into multinucleated TRAP*
cells capable of F-actin ring formation and dentine resorp-
tion (Figure 4d, e) - thus fulfilling the functional character-
istics of osteoclasts. No differences were observed in any
stage of osteoclast differentiation, nor in the function or
activity of mature cells, and quantitative gene expression
analysis confirmed that all osteoclast-related genes were
similarly upregulated in in vitro differentiation cultures
from IL-17A-- mice compared with Wt mice (data not
shown).

These in vivo and in vitro data support the notion that IL-
17A is not required for normal skeletal development and
physiological osteoclast activity. IL-17A would only be
expressed in the bone microenvironment during times of
host defence in the bone (for example, septic arthritis) or
during an autoimmune joint disease (for example, RA).

Discussion
IL-17A is the signature cytokine of the recently discovered
Th17 memory T-cell subset. Th17 cells are the only T-cell
subtype that express RANKL [15], which is the main osteo-
clast differentiation factor leading to the differentiation of
osteoclast precursors to mature bone resorbing osteoclasts
[3]. IL-17A-producing Th17 cells are present in the joints
of RA patients [22,23] and synovial membrane IL-17A
gene expression was one factor that was predictive for sub-
sequent bone erosion and joint damage [24]. IL-17A is
present in RA synovial fluid [14], and RA synovial fluid
macrophages can differentiate to fully functional osteo-
clasts [16]. In the collagen-induced arthritis model, IL-17A-
- mice are protected from joint disease with less TRAP*
cells correlating with reduced bone resorption, suggesting
that IL-17A plays a role in osteoclastogenesis [25,26]. IL-
17A can act independently of TNF under arthritic condi-
tions [27] and stimulates cartilage destruction in the IL-1-
deficient mice [28], supporting the hypothesis that IL-17A
can act independently of IL-1 [29]. Moreover, the combina-
tion of IL-17A with IL-1 and TNF shows a marked increase
in inflammation and bone destruction [30,31]. Collectively
the above experiments elegantly show that IL-17A acts
independently of IL-1 and TNF but can also synergize with
those factors.

The direct link of IL-17A to osteoclastogenesis, however,
remained unknown. In this manuscript we focused on IL-
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Figure 2 IL-17A increases bone resorption in synergy with receptor activator of NF-kB ligand. CD14+ cells cultured on dentine slices for 18 days
in the presence of macrophage colony-stimulating factor (MCSF) and receptor activator of NF-kB ligand (RANKL) and/or IL-17A showing (a) increased
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17A's direct role in the regulation of osteoclastogenesis in
inflammatory arthritis. To investigate how pathologic IL-
17A expression could impact bone remodelling we studied
the effects of exogenously added IL-17A on PBMCs and
CD14" cells. As mentioned previously IL-17A acts on
stromal cells to induce the expression of RANKL. To elimi-
nate this component of IL-17A biology we employed a cul-
ture system where there are no stromal cells but only
CD14* cells. Moreover, no RANKL was detected in the
conditioned medium of CD14* cells stimulated with 1, 10,
50 and 100 ng/ml IL-17A after 1 to 24 hours.

IL-17A stimulated the formation of multinucleated
TRAP* from PBMC cultures at concentrations as low as 1
ng/ml (Figure 1a). In order to study the direct effect of these
cytokines on osteoclast precursors, we used the CD14+ frac-
tion of PBMCs and confirmed that IL-17A induced
TRAP*multinucleated cells. The use of TRAP* cells as an
osteoclast marker has been overrated in recent literature,
especially since macrophage polykaryons, immature den-
dritic cells, and mononuclear macrophages all stain positive
for TRAP [15,16,32-34]. Osteoclast functional assays were
therefore performed to validate the findings. IL-17A-treated
CD14* cells formed F-actin rings and induced low-grade
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Figure 4 IL17A-mice have normal bone mineral densities and osteoclast formation. (a) High-resolution micro-computer tomography analysis
of 8-week-old male mouse femur midshaft and distal trabecular bone from IL-17A and wild-type (Wt) mice. (b) Serum receptor activator of NF-kB li-
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resistant acid phosphatase (TRAP)* cells. Bars: 50 um. Lower: Phalloidin, DAPI staining, and merged image of both stains of bone marrow macrophages
isolated from IL-17A7-mice and control mice cultured for 6 days in the presence of MCSF and RANKL showing F-actin ring formation. Bars: 25 um. (d)
Scanning electron photomicrographs of BMM cultures showing mature osteoclast resorbing activity (resorbed dentine has a rough, lighter colour ap-
pearance). Bars: 50 um. Representative data of three experiments performed in triplicate. () Mean percentage area of dentine resorption of IL-17A
and Wt mice.
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resorption, but notably did not induce lacunar excavation as
in the RANKL-treated cultures (Figure 1b, c).

Cell morphology was studied by scanning electron
microscopy. Cultures treated with IL-17A contained numer-
ous small cells (<30 pm) rounded or flattened and spread
over the dentine surface, to which they were attached by
fine microvilli. Some cells had cytoplasmic processes that
extended up to 20 pm over the dentine surface. These cells
had numerous surface ruffles and were able to perform low-
grade resorption (Figure 1c). The area of low-grade resorp-
tion was not similar to the lacunar excavation observed in
RANKIL-treated cultures and was generally small, discrete,
round or ovoid areas that did not possess a well-defined
margin and did not coalesce to form large areas of lacunar
excavation (Figure 1c¢).

Moreover, IL-17A-stimulated CD14+ cell fusion was dis-
tinct from the cell fusion observed in RANKL-treated cul-
tures, which formed uniform multinucleated giant cells
(Figure 2a). Cell fusion in IL-17A-treated cultures was
incomplete, with cell membranes only partly coalesced
together and individual cells being distinguishable (Figure
2a). The exact mechanism of IL-17A on cell fusion remains
to be elucidated; however, it is noteworthy that IL-17A
induces dendritic cell fusion [35]. IL-17A addition to
monocyte-derived dendritic cells induced a semi-mature,
mixed monocyte-macrophage-dendritic cell phenotype with
cells expressing CD14, CD68, CDla, MHC II and CCR6
and induced dendritic cell fusion. The dendritic cell fusion
was characterized as less efficient and the number and size
of nuclei was smaller (four to eight nuclei) when compared
with the previously described M-CSF and RANKL fusion
pathway [35]. We confirm the above data and show that cell
fusion occurred in IL-17A-stimulated CD14* cells cultured
for 18 days, and also also show that cells contained more
than 20 nuclei as evidenced by DAPI staining (Figure 1b)
and that complexes of partially fused cells were as large as
60 um (Figures 2a).

We initially reasoned that IL-17A's low-grade resorption
was due to the upregulation of matrix metalloproteinase-9
[36]; however, no significant increase in matrix metallopro-
teinase-9 message was detected (data not shown). More
importantly IL-17A synergized with RANKL-treated cul-
tures to increase bone resorption by 30% (Figure 2b, c). IL-
17A could not synergize with TNF to increase osteoclasto-
genesis and its synergy with RANKL was blocked by OPG,
further confirming the fact that it is a RANKL-mediated
effect (Figure 2c). The only osteoclast-related genes (out of
a panel of 60 genes) that were significantly upregulated
were TRAP (data not shown), c-fms and RANK (Figure
3a).

RANKL addition to IL-17A-treated CDI14*cultures
showed increased bone resorption that correlated with
increased RANK, as shown by flow cytometry (Figure 3b).
To measure the osteoclastogenic potential of IL-17A on the
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c-fms and RANK receptors, we performed a quantitative
TRAP assay where cells were cultured under standard con-
centrations of MCSF (Figure 3c, left) or RANKL (Figure
3¢, right) and the addition of increasing dose of RANKL or
MCSF, respectively, was tested in the presence or absence
of 1 ng/ml IL-17A. Addition of IL-17A sensitized the pre-
osteoclasts to both MCSF and RANKL, leading to
increased osteoclastogenesis (Figure 3c¢).

Bone marrow macrophages from Wt mice and IL-17A"-
mice were not statistically different under homeostatic con-
ditions and the osteoclasts that develop in in vitro cultures
function normally in their ability to form multinucleated
TRAP™ cells capable of actin ring formation and lacunar
resorption (Figure 4). Moreover, there was no detectable
modulation of physiologic bone remodelling in IL-17A-
deficient mice; serum RANKL and OPG levels were simi-
lar to control mice, and no differences in cortical or trabecu-
lar bone mineral density were observed (Figure 4). These
data are in agreement with previous studies where using 40
um resolution dual-energy X-ray absorptiometry revealed
no obvious abnormality in skeletal development and bone
morphometric analyses, concluding that bone resorption
and formation was normal in IL-17A~-mice [15].

Our findings confirm the in vitro observations and sug-
gest that IL-17A has a dual effect on RANKL-induced
osteoclastogenesis: firstly, IL-17A upregulates RANKL on
osteoclastogenesis supporting cells; and, secondly, IL-17A
upregulates RANK on pre-osteoclasts, making them hyper-
sensitive to the RANKL signal. To the best of our knowl-
edge the present report is the first that highlights a direct
mechanism of osteoclastogenesis by IL-17A via the upreg-
ulation of RANK in osteoclast precursors.

Conclusions

IL-17A does not play a role in physiological bone remodel-
ling as shown by our IL-17A---deficient mice studies; how-
ever, IL-17A is secreted by Th17 cells under inflammatory
conditions. We have shown that IL-17A upregulates RANK
in osteoclast precursors, sensitizing them to RANKL-
induced bone resorption. We therefore propose IL-17A as a
suitable target to combat bone loss in inflammatory arthritis
and autoimmune diseases such as RA.
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