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Abstract

Introduction: Microsomal prostaglandin E2 synthase-1 (mPGES-1) is an inducible enzyme that acts downstream of
cyclooxygenase (COX) to specifically catalyze the conversion of prostaglandin (PG) H2 to PGE2. mPGES-1 plays a key
role in inflammation, pain and arthritis; however, the role of mPGES-1 in fibrogenesis is largely unknown. Herein,
we examine the role of mPGES-1 in a mouse model of skin scleroderma using mice deficient in mPGES-1.

Methods: Wild type (WT) and mPGES-1 null mice were subjected to the bleomycin model of cutaneous skin
scleroderma. mPGES-1 expressions in scleroderma fibroblasts and in fibroblasts derived from bleomycin-exposed
mice were assessed by Western blot analysis. Degree of fibrosis, dermal thickness, inflammation, collagen content
and the number of a-smooth muscle actin (a-SMA)-positive cells were determined by histological analyses. The
quantity of the collagen-specific amino acid hydroxyproline was also measured.

Results: Compared to normal skin fibroblasts, mPGES-1 protein expression was elevated in systemic sclerosis (SSc)
fibroblasts and in bleomycin-exposed mice. Compared to WT mice, mPGES-1-null mice were resistant to
bleomycin-induced inflammation, cutaneous thickening, collagen production and myofibroblast formation.

Conclusions: mPGES-1 expression is required for bleomycin-induced skin fibrogenesis. Inhibition of mPGES-1 may
be a viable method to alleviate the development of cutaneous sclerosis and is a potential therapeutic target to
control the onset of fibrogenesis.

Introduction
Scleroderma (systemic sclerosis, or SSc) is a fibrotic dis-
eases for which there is currently no approved treatment
[1]. Although the underlying causes are unknown, fibro-
tic disease is associated with the production and accu-
mulation of excessive fibrous connective tissue and can
be considered to arise because of an inability to appro-
priately terminate the normal wound repair response
[2,3]. SSc is a prototypic multisystem and multistage
fibrotic disease and is considered to be initiated by a
combination of microvascular injury, inflammation, and
autoimmunity, culminating in fibroblast activation and
fibrosis [3]. Histological analysis of the initial stage of

scleroderma reveals perivascular infiltrates of mononuc-
lear cells in the dermis, and these infiltrates are asso-
ciated with increased collagen synthesis in the
surrounding fibroblasts [4,5]. Thus, understanding how
to control the inflammatory stage of SSc may be of ben-
efit in controlling the progression of early-onset disease.
Microsomal prostaglandin E2 synthases (mPGESs) are

enzymes that catalyze the conversion of PGH2 to PGE2
[6]. Thus far, three PGE synthases - namely cytosolic
PGE synthase (cPGES), mPGES-1, and mPGES-2 - have
been characterized [6-8]. cPGES is localized in the cyto-
solic region of cells and tissues under basal conditions
and is most likely to be involved in the homeostatic pro-
duction of PGE2 [8]. mPGES-2 is also constitutively
expressed in a wide variety of tissues and cell types and is
synthesized as a Golgi membrane-associated protein [9].
In contrast, mPGES-1 is induced in response to inflam-
mation and acts downstream of cyclooxygenases [10,11].
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mPGES-1 has been shown to be a critical mediator of
inflammation, pain, angiogenesis, fever, bone metabo-
lism, and tumorgenesis [12-15]. We have previously
shown that mPGES-1 expression is elevated in tissues
and cells of various inflammatory diseases, including
rheumatoid arthritis and osteoarthritis [10,11,16,17].
mPGES-1 null mice are resistant to chronic inflamma-
tion of joints in the models of collagen-induced arthritis
(CIA) and collagen antibody-induced arthritis [12,13].
We recently showed that mPGES-1 is induced during
the skin wound healing process in mice [18]. However,
the expression and role of mPGES-1 in fibrogenesis are
unknown.
There is no perfect mouse model that recapitulates

every facet of SSc; however, the bleomycin-induced
model of skin scleroderma is often used. In this model,
repeated application of bleomycin, an anti-tumor anti-
biotic originally isolated from the fungus Streptomyces
verticillus [19], is used to induce inflammation and sub-
sequent fibrosis in skin [20]. Thus, the bleomycin model
of skin SSc can be used to evaluate the potential role of
individual genes in the early onset (or inflammatory
phase) of SSc. The aim of the present study was first to
examine whether mPGES-1 shows altered expression in
fibroblasts isolated either from dermal lesions of patients
with SSc or from mouse skin response to bleomycin and
then to assess the potential role of mPGES-1 in the early
phases of SSc by subjecting mice deficient in mPGES-1
to the bleomycin model of skin scleroderma [21].

Materials and methods
mPGES-1 null mice
mPGES-1 heterozygous (Het) male and female mice on
a DBA1 lac/J background were provided by Pfizer Inc
(Groton, CT, USA) [13]. mPGES-1 Het mice were mated
to generate mPGES-1 null, Het, and littermate wild-type
(WT) mice. All of the experiments were performed under
the guidelines of the Institutional Animal Care and Use
Committee. Genotypes were identified by polymerase
chain reaction (PCR) of tail biopsy DNA extract by using
two-primer sets for the mPGES-1 null allele (PGES-
N257R, 5’-TGCTACTTCCATTTGTCACGTC-3’ and
PGES-4407R, 5’-TCCAAGTACTGAGCCAGCTG-3’)
and the WT allele (PGES-WT-F, 5’-TCCCAGGTGTTGG-
GATTTAGAC-3’ and PGES-WT-R, 5’-TAGGTGGCTG-
TACTGT TTGTTGC-3’) (Invitrogen Corporation,
Carlsbad, CA, USA). After initial denaturation at 95°C for
15 minutes, PCR involved 40 cycles of 30 seconds at 95°C,
30 seconds at 56°C, and 45 seconds at 72°C, followed by
elongation for 5 minutes at 72°C. DNA from mPGES-1
WT mice showed one band (412 base pairs [bp]), DNA
from mPGES-1 null mice showed one band (720 bp), and
DNA from mPGES-1 Het mice showed bands of both 412
and 720 bp [22].

Bleomycin treatment
Bleomycin treatment was performed as previously
reported [23,24]. Briefly, bleomycin (Sigma-Aldrich, St.
Louis, MO, USA), diluted to 0.1 U/mL with phosphate-
buffered saline (PBS), was sterilized with filtration. One
hundred microliters of bleomycin or PBS was injected
subcutaneously into a single location on the shaved
back of mPGES-1 WT and null mice once daily for
4 weeks. Mice were killed by CO2 euthanasia after
4 weeks, and skin samples were collected for histology,
immunohistochemistry, hydroxyproline assay, and Wes-
tern blotting.

Histological assessment of collagen content
Sections (0.5 μm) were cut with a microtome (Leica
Microsystems, Wetzlar, Germany) and collected on
Superfrost Plus slides (Fisher Scientific, Pittsburgh, PA,
USA). Sections were then de-waxed in xylene and rehy-
drated by successive immersion in descending concen-
trations of alcohol. To assess the effects of mPGES-1
genetic deletion on collagen synthesis, trichrome col-
lagen stain was employed as previously described
[23,24]. Briefly, collagen content in each section was
assessed by three blinded observers who used the fol-
lowing assessment criteria: 0 signifies no collagen fibres,
1 signifies few collagen fibres, 2 signifies a moderate
amount of collagen fibres, and 3 signifies an excessive
amount of collagen fibres. In addition, Northern Eclipse
(Empix Imaging, Inc., Mississauga, ON, Canada) soft-
ware was used to determine the dermal thickness in
each stained section to account for changes in dermal
thickness in WT and mPGES-1 null mice with or with-
out bleomycin injection.

Assessment of inflammation
To assess inflammation, the presence of macrophages in
skin sections was detected by immunofluorescence with
MOMA-2 (monocyte + macrophage marker) antibody
(Abcam, Cambridge, UK), a marker for macrophage.
Immunofluorescence was performed as previously
described [25], and the number of macrophages was then
counted. In addition, sections were stained with hema-
toxylin and eosin (H&E) (Fisher Scientific, Ottawa, ON,
Canada). H&E staining was performed in accordance
with the recommendations of the manufacturer. The
effects of mPGES-1 genetic deletion on inflammation
were graded on a scale of 0 to 3 by three separate blinded
observers: 0 signifies no inflammatory cells, 1 signifies
few inflammatory cells, 2 signifies moderate inflamma-
tory cells, and 3 signifies extensive inflammatory cells.

Alpha-smooth muscle actin immunohistochemistry
Sections were cut and processed as described above.
Immunolabeling of alpha-smooth muscle actin (a-SMA)
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was performed with the DakoCytomation LSAB+ Sys-
tem-HRP kit (DakoCytomation, Carpinteria, CA, USA).
Immunohistochemical procedures were performed in
accordance with the recommendations of the manufac-
turer. Briefly, endogenous peroxide was blocked by
using 0.5% H2O2 in methanol for 5 minutes. Non-speci-
fic IgG binding was blocked by incubating sections with
bovine serum albumin (0.1%) in PBS for 1 hour and
then was incubated with primary antibody for a-SMA
(1:1,000) in a humidified chamber and left overnight at
4°C. Next, sections were incubated with a biotinylated
link for 30 minutes followed by incubation with strepta-
vidin for 30 minutes. The chromogen diaminobenzidine
tetrahydrochloride (DAB) was then added until suffi-
cient color developed, and sections were counterstained
with Harris’s hematoxylin.

Hydroxyproline assay
Hydroxyproline assay was performed as a marker of col-
lagen content in bleomycin-treated/untreated skin with
the method previously described [26]. Skin tissues were
homogenized in saline and hydrolyzed with 2N NaOH
for 30 minutes at 120°C, and then we determined
hydroxyproline content by modifying the Neumann and
Logan’s reaction with Chloramine T and Ehrlich’s
reagent with a hydroxyproline standard curve measuring
at 550 nm. Values were expressed as micrograms of
hydroxyproline per milligrams of protein.

Cell culture, immunofluorescence, and Western analysis
Dermal mouse fibroblasts were isolated from explants
(4- to 6-week-old WT and mPGES-1 null mice) as
described [27]. Also, dermal fibroblasts were isolated
from an explant culture of 4-mm punch biopsies from
the forearm of healthy individuals and those with early-
onset (between 3 and 18 months after initial diagnosis)
diffuse cutaneous scleroderma (6 each) in Dulbecco’s
modified Eagle’s medium and 10% fetal bovine serum
(Invitrogen Corporation) as previously described [28].
Donors were age-, site-, and sex-matched. No patients
were on immunosuppressants. Experimental protocols
were approved by the ethics committee of the Royal
Free Hospital (UK), where all participants were recruited
under informed written consent and human experimen-
tation was conducted. Cells were subjected to indirect
immunofluorescence analysis, as previously described
[29], by using anti-mPGES-1 antibody (Cayman Chemi-
cal Company, Ann Arbor, MI, USA) followed by an
appropriate secondary antibody (Jackson ImmunoRe-
search Laboratories Inc., West Grove, PA, USA) and
were photographed with a Zeiss Axiphot camera (Empix
Imaging, Inc.). Alternatively, cells were lysed in 2% SDS,
and proteins were quantified (Pierce, Rockford, IL, USA)
and subjected to Western blot analysis as previously

described [30]. The following primary antibodies were
used for Western blotting: anti-mPGES-1 (Cayman Che-
mical Company, Charlotte, NC, USA), anti-a-SMA
(Sigma-Aldrich), and anti-b-actin (Sigma-Aldrich).

Statistical analysis
Statistical analysis was performed with a two-tailed ana-
lysis-of-variance test in conjunction with a post hoc
Mann-Whitney U test. Results are expressed as the
mean ± standard error. A P value of less than 0.05 was
considered statistically significant (denoted by an
asterisk).

Results
mPGES-1 is overexpressed in human dermal SSc
fibroblasts and in bleomycin-induced skin sclerosis in
mice
To begin to assess whether mPGES-1 plays a role in
fibrogenesis in SSc, we first examined whether mPGES-1
protein showed an altered expression pattern in dermal
fibroblasts isolated from fibrotic lesions of early-onset dif-
fuse SSc patients compared with those isolated from
identical areas of healthy skin (termed normal fibroblast,
or NF) (Figure 1a). Our results clearly showed that
mPGES-1 protein was significantly upregulated in fibrotic
fibroblasts from the skin of SSc patients compared with
NFs isolated from healthy skin (Figure 1b). To continue
our studies, we then evaluated whether mPGES-1 was
induced in vivo in response to bleomycin-induced skin
sclerosis. To do this, we injected WT mice subcuta-
neously for 4 weeks with bleomycin or PBS and skin
biopsies were isolated 4 weeks post bleomycin or PBS
treatment. From these, protein extracts were prepared
and subjected to Western blotting with anti-mPGES-1
antibody (Figure 1c). Results showed that mPGES-1 was
significantly induced in the skin in response to bleomycin
as compared with PBS. Collectively, these results revealed
that mPGES-1 is induced during fibrosis and may play a
role in fibrogenesis.

mPGES-1 genetic deletion results in reduced
inflammation in response to bleomycin
After having demonstrated that mPGES-1 is overex-
pressed in fibrosis, we sought to assess whether
mPGES-1 is required for fibrogenesis. Accordingly, we
subjected WT and mPGES-1 null mice to the bleomycin
model of skin scleroderma. Mice harboring a deletion of
the mPGES-1 gene were detected by PCR analysis of tail
DNA as previously described [22,30,31] and by subject-
ing dermal fibroblasts cultured from skin explants
derived from WT and mPGES-1 null mice to Western
blot and immunofluorescence analyses using an anti-
mPGES-1 antibody (Figure 2a). Since mPGES-1 med-
iates inflammation in vitro as well as in vivo [22,30,31]
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and inflammation is involved with the onset of fibrogen-
esis [3,4,32], we employed indirect immunofluorescence
analysis with an anti-MOMA-2 antibody (a marker of
macrophages) to examine the effect of loss of mPGES-1
on the ability of bleomycin to induce the appearance of

macrophages. As anticipated, we observed a marked
increase in the number of macrophages in WT mice
exposed to bleomycin compared with WT mice exposed
to PBS (Figure 3a). However, compared with WT con-
trol mice, mPGES-1 null mice possessed markedly

Figure 1 mPGES-1 is induced in human systemic sclerosis (SSc) fibroblasts and in response to bleomycin-induced skin sclerosis. (a, b)
Western blot analysis showing upregulation in the expression of mPGES-1 in fibroblasts from the scars of SSc patients compared with fibroblasts
from normal human skin (NF). Representative data from six separate cell lines per group are shown. (c) Western blot analysis showing induction
of mPGES-1 in the skin of wild-type (WT) mice in response to 4-week treatment with bleomycin. Representative data from four separate animals
per group are shown. mPGES-1, microsomal prostaglandin E2 sythnase-1.

Figure 2 Characterization of mPGES-1 genetic deletion. (a) Western blot showing loss of mPGES-1 expression in dermal fibroblasts isolated
from mPGES-1 null mice. Representative data from four separate cell lines per group are shown. (b) Dermal fibroblasts isolated from wild-type
(WT) and mPGES-1 null mice were tested for the presence of the mPGES-1 by indirect immunofluorescence of cells with an anti-mPGES-1
antibody. Cells were counterstained with 4’-6-diamidino-2-phenylindole (DAPI) (blue) to detect nuclei. Representative data from four separate cell
lines per group are shown. mPGES-1, microsomal prostaglandin E2 sythnase-1.
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reduced numbers of macrophages in response to bleo-
mycin (Figure 3a). Furthermore, semiquantitative
blinded histological analysis of H&E-stained sections
showed that bleomycin exposure resulted in a signifi-
cantly lower inflammation score in mPGES-1 null mice
compared with their WT counterparts (Figure 3c).
Thus, loss of mPGES-1 resulted in a resistance to bleo-
mycin-induced inflammation.

Deletion of mPGES-1 results in resistance to bleomycin-
induced collagen production and skin thickness
To probe whether, in mPGES-1 null mice, reduced bleo-
mycin-induced inflammation corresponded with reduced
fibrosis, we then investigated whether loss of mPGES-1
resulted in a resistance to bleomycin-induced matrix
deposition. To perform this analysis, we subjected

bleomcyin-exposed skin of WT and mPGES-1 null mice
to histological and biochemical analyses. As anticipated,
as visualized by H&E and trichrome staining and hydro-
xyproline/praline analyses, bleomycin treatment in WT
mice resulted in significant increases in extracellular
matrix (ECM) deposition, dermal thickness, collagen
score, and collagen content (Figure 4a-c and 5a). How-
ever, mPGES-1 null mice were relatively resistant to
bleomycin-induced dermal thickness, ECM deposition,
collagen score, and collagen content (Figure 4a-c and
5a). We did not observe any significant difference in
ECM deposition between WT and mPGES-1 null mice
in response to PBS. Thus, mirroring the effect observed
on bleomycin-induced inflammation, loss of mPGES-1
resulted in a resistance to bleomycin-induced ECM
deposition.

Figure 3 mPGES-1 null mice exhibit reduced inflammation in response to bleomycin treatment. (a) Immunofluorescence staining was
performed with MOMA-2 antibody (a marker of macrophages) to account for inflammation in response to bleomycin treatment (4-week
bleomycin treatment). (b) mPGES-1 null mice showed a marked reduction in the number of macrophages compared with the control mice in
response to bleomycin. *P < 0.05; bleomycin-treated wild-type (WT) and mPGES-1 null mice compared with phosphate-buffered saline (PBS)-
treated mice. +P < 0.05, bleomycin-treated mPGES-1 null mice compared with bleomycin-treated WT mice. Representative data from four
separate animals per group are shown. (c) Hematoxylin and eosin (H&E)-stained sections were further scored in a blinded fashion to account for
inflammation as described in Materials and methods. mPGES-1 null mice showed a reduced inflammation score compared with WT mice in
response to bleomycin. *P < 0.05; bleomycin-treated WT and mPGES-1 null mice compared with PBS-treated mice. +P < 0.05; bleomycin-treated
mPGES-1 null mice compared with bleomycin-treated WT mice. Representative data from four separate animals per group are shown. MOMA-2,
monocyte + macrophage marker; mPGES-1, microsomal prostaglandin E2 sythnase-1.
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mPGES-1 genetic deletion results in reduced a-SMA
expression in response to bleomycin
As a-SMA-expressing myofibroblasts are a hallmark of
both SSc and bleomycin-induced skin fibrosis [23,24],
we then continued our studies by determining the effect
of loss of mPGES-1 on the induction of a-SMA-expres-
sing myofibroblasts in response to bleomycin injection.
To begin to perform these analyses, we first subjected
skin sections of bleomycin- or PBS-exposed WT or
mPGES-1 null mice to immunohistochemical analysis
with an anti-a-SMA antibody. Compared with skin of
WT mice injected with PBS, skin of WT mice injected
with bleomycin possessed markedly elevated numbers of
myofibroblasts (Figure 5b, c), and this is consistent with
previously published data [23,24]. Conversely, mPGES-1
null mice were relatively resistant to the ability of

bleomycin to induce a-SMA-expressing myofibroblasts
(Figure 5b, c). Confirming these data, Western blot analy-
sis on protein samples derived from WT and mPGES-1
null mice treated with PBS or bleomycin showed that
bleomycin resulted in elevated a-SMA protein produc-
tion in WT mice but not in mPGES-1 null mice (Figure
5d). Collectively, our data are consistent with the notion
that loss of mPGES-1 expression confers resistance to
bleomycin-induced skin fibrosis and that mPGES-1 may
play a key role in inflammation-induced fibrogenesis.

Discussion
Since its discovery in 1999 [6], mPGES-1 has been a tar-
get of anti-inflammatory drug therapy. mPGES-1 is
induced in human synovial tissue in osteoarthritis
patients and in animal models of inflammation such as

Figure 4 mPGES-1 null mice show resistance to bleomycin-induced fibrosis in vivo. (a) Trichrome staining was performed to account for
collagen content (degree of fibrosis) and dermal thickness in response to bleomycin treatment (4-week bleomycin treatment). (b) mPGES-1 null
mice exhibited reduced dermal thickness compared with wild-type (WT) mice in response to bleomycin treatment. (c) Blind histological analysis
in trichrome-stained sections showed that bleomycin-treated mPGES-1 null mice exhibited reduced collagen score compared with bleomycin-
treated WT mice. *P < 0.05; bleomycin-treated WT and mPGES-1 null mice compared with phosphate-buffered saline (PBS)-treated mice. +P <
0.05; bleomycin-treated mPGES-1 null mice compared with bleomycin-treated WT mice. Representative data from four separate animals per
group are shown. mPGES-1, microsomal prostaglandin E2 sythnase-1.
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full-thickness incisional models of wound healing [18],
CIA [22], lipopolysaccharide (LPS)-induced pyresis, and
adjuvant-induced arthritis [33,34]. Moreover, in a variety
of mesenchymal cell types (including fibroblasts),
mPGES-1 is induced by proinflammatory stimuli,
including LPS, interleukin-1-beta (IL-1b), and tumor
necrosis factor-alpha (TNF-a) [6,10,11,17,30,31,35].
These results suggest that mPGES-1 plays a key role in
driving inflammation. Although a role for inflammation
in fibrogenesis is well established, the in vivo role for
mPGES-1 in fibrosis has not been reported thus far.
A potent and selective inhibitor for mPGES-1 is not

yet commercially available; however, mice with genetic

deletion for mPGES-1 do exist, and these mice have
been useful to define the in vivo role of mPGES-1. Our
present study uses the bleomycin-induced model of skin
fibrosis to assess whether mPGES-1 is essential for the
onset of fibrosis. To provide a clinical context for our
studies, we first showed that mPGES-1 protein expres-
sion was elevated in SSc skin fibroblasts. We then
showed that mPGES-1 was induced in response to bleo-
mycin in mouse skin fibroblasts in vivo.
It is largely believed that enhanced inflammatory

response is necessary for fibrogenesis [32]. Accumulat-
ing evidence indicates a critical involvement of infiltrat-
ing macrophages and T cells in the pathogenesis of SSc.

Figure 5 mPGES-1 genetic deletion results in reduced collagen content and myofibroblast formation in vivo. (a) Hydroxyproline analysis
showed reduced collagen content in mPGES-1 null mice compared with wild-type (WT) mice in response to bleomycin treatment. Data from
four separate mice per group are shown. (b, c) Immunohistochemistry using anti-a-SMA antibody was performed. mPGES-1 null mice showed a
reduced number of a-SMA-expressing myofibroblasts compared with WT mice in response to bleomycin treatment (4-week treatment).
Representative data from four separate animals per group are shown. *P < 0.05; bleomycin-treated WT and mPGES-1 null mice compared with
phosphate-buffered saline (PBS)-treated mice. +P < 0.05; bleomycin-treated mPGES-1 null mice compared with bleomycin-treated WT mice. (d)
Protein extracts from skin tissue after 4 weeks of bleomycin or PBS treatment were subjected to Western blot analysis with an anti-a-SMA
antibody. mPGES-1 null mice treated with bleomycin showed reduced a-SMA expression compared with bleomycin-treated WT mice.
Representative blot from four separate animals per group is shown. a-SMA, alpha-smooth muscle actin; mPGES-1, microsomal prostaglandin E2
sythnase-1.
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High numbers of infiltrating activated macrophages and
T cells have been detected in skin of patients with SSc
[36,37] and these cells are key producers of a variety of
pro-fibrotic cytokines such as transforming growth fac-
tor-beta (TGF-b), CC-chemokine ligand 2, and IL-4 and
IL-17 [38-40]. Therefore, we investigated the effect of
mPGES-1 genetic deletion on inflammatory response by
detecting macrophage infiltration in response to bleomy-
cin treatment. mPGES-1 null mice showed marked
reduction in the number of macrophages (inflammation)
in response to bleomycin treatment, supporting our pre-
vious findings that mPGES-1 is a critical mediator of
inflammation [22]. In future studies, it would be very
interesting to determine the different subsets of infiltrat-
ing macrophages regulated by mPGES-1 during SSc dis-
ease. In addition, it should be investigated whether and
how T cells are regulated by mPGES-1 during SSc.
Since this is beyond the scope of the present study,
future studies need to be directed toward understanding
these concepts.
After determining the effect of mPGES-1 on inflam-

mation, we further investigated the effect of mPGES-1
deletion on the degree of skin fibrosis. mPGES-1 null
mice showed a resistance to bleomycin-induced skin
fibrosis, as visualized by reduced dermal thickness and
collagen production. The myofibroblast is the major cell
type believed to be responsible for fibrogenesis, includ-
ing in SSc [27,41,42]. Compared with WT mice,
mPGES-1 null mice had fewer myofibroblasts in
response to bleomycin injection. Our results collectively
suggest that genetic deletion of mPGES-1 suppresses
fibrogenesis in vivo.
Bleomycin-induced fibrosis is an inflammation-driven

model and it is well established that PGE2, the product
of mPGES-1, is one of the major proinflammatory med-
iators upregulated during inflammation. Given the
known role of mPGES-1 in driving inflammatory
responses, our results strongly suggest that mPGES-1
may play a key role in the initial, inflammatory stages of
SSc. Our present study demonstrates that mice lacking
mPGES-1 show resistance to bleomycin-induced fibro-
genesis and is consistent with the notion that inflamma-
tion is involved with the onset of fibrosis, including SSc
[32,43,44]. However, it is well established that inflamma-
tion plays a biphasic role in fibrosis; for example, the
inflammatory protein TNF-a plays a biphasic role in
fibrogenesis by promoting the initiation/inflammatory
stage of fibrogenesis but suppressing the later, fibrotic
stage of fibrosis [45-49]. As a specific illustration, TNF-
a suppresses the ability of TGF-b to induce connective
growth factor (CTGF/CCN2) in dermal fibroblasts [45].
In this regard, it is interesting to note that PGE2 (the
only known product of mPGES-1) and iloprost (a syn-
thetic version of prostacyclin, or PGI2) have been

repeatedly shown to exhibit antifibrotic effects in experi-
mental models of established fibrosis, including reducing
CCN2 and collagen production in normal and fibrotic
dermal fibroblasts, at least in part, acting through a
cAMP-mediated suppression of ERK (extracellular sig-
nal-regulated kinase) activation [50-55]. Indeed, it has
been hypothesized that prostacyclins limit the activation
of fibroblasts following tissue injury but, in response to
the original injury, may promote recruitment of inflam-
matory cells and lead to secondary activation of fibro-
blasts [56]. Moreover, given these concerns (and
consistent with our data showing that SSc fibroblasts
overexpress mPGES-1), it is interesting to note that
prostanoid (including PGE2) production was greatly ele-
vated in scleroderma cells compared with control cells
and, given that excess added prostenoids reduced col-
lagen and CCN2 overexpression in SSc fibroblasts, may
act to limit further increases in collagen and CCN2
levels in these cells [50]. Given these considerations, it is
likely that although mPGES-1 may contribute to the
initiation of fibrogenesis through its ability to promote
inflammation, mPGES-1 may actually act to control the
overexpression of profibrotic genes in established lesions
[56]. Investigation of the role of mPGES-1 in established
fibrosis (for example, using the tight skin [Tsk] mouse
[57]) is beyond the scope of the present study.

Conclusions
Identification of new targets to counteract fibrosis is cri-
tical as currently no satisfactory antifibrotic treatment is
available. Our new data strongly suggest that, likely
based on its essential role in driving inflammation,
mPGES-1 may be considered a novel target that might
be useful in slowing the initial, rapidly progressing,
inflammatory phase of SSc that is required for the sub-
sequent development of fibrosis and therefore may be
useful in a stage-specific modulation of the pathogenesis
of SSc.
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