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Abrogated RANKL expression in properdin-
deficient mice is associated with better outcome
from collagen-antibody-induced arthritis
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Abstract

Introduction: Properdin amplifies the alternative pathway of complement activation. In the present study, we
evaluated its role in the development of collagen antibody-induced arthritis (CAIA).

Methods: Arthritis was induced by intraperitoneal injection of a collagen antibody cocktail into properdin-deficient
(KO) and wild-type (WT) C57BL/6 mice. Symptoms of disease were evaluated daily. The degree of joint damage
was assessed histologically and with immunostaining for bone-resorption markers. Phenotypes of cell populations,
their receptor expression, and intracellular cytokine production were determined with flow cytometry. Osteoclast
differentiation of bone marrow (BM) precursors was evaluated by staining for tartrate-resistant acid phosphatase
(TRAP).

Results: Properdin-deficient mice developed less severe CAIA than did WT mice. They showed significantly
improved clinical scores and downregulated expression of bone-resorption markers in the joints at day 10 of
disease. The frequencies of Ly6G"CD11b* cells were fewer in BM, blood, and synovial fluid (SF) of KO than of WT
CAIA mice. The receptor activator of nuclear factor xB ligand (RANKL) was downregulated on arthritic KO
neutrophils from BM and the periphery. Decreased C5a amounts in KO SF contributed to lower frequencies of
CD5aR*-bearing neutrophils. In blood, surface C5aR was detected on KO Ly6G" cells as a result of low receptor
engagement. Circulating CD4" T cells had an altered ability to produce interleukin (IL)-17 and interferon (IFN)-y and
to express RANKL. In KO CAIA mice, decreased frequencies of CD4™ T cells in the spleen were related to low CD86
expression on Ly6GMI"CD11b* cells. Arthritic KO T cells spontaneously secreted IFN=y but not IL-17 and IL-6, and
responded to restimulation with less-vigorous cytokine production in comparison to WT cells. Fewer TRAP-positive
mature osteoclasts were found in KO BM cell cultures.

Conclusions: Our data show that the active involvement of properdin in arthritis is related to an increased
proinflammatory cytokine production and RANKL expression on immune cells and to a stimulation of the RANKL-
dependent osteoclast differentiation.

Introduction development and to find effective approaches for treat-

Rheumatoid arthritis (RA) is an autoimmune disorder
leading to chronic inflammation of the joints and subse-
quent erosion of cartilage and bone. Because RA is a
complex heterogeneous disease, different animal models
are exploited to understand better its mechanisms of
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ment. In one such model, arthritis is induced by the
injection of antibodies that bind to specific triple helical
epitopes of collagen II [1]. The additional administration
of lipopolysaccharide (LPS) 3 to 5 days after antibody
introduction synchronizes the course and increases the
severity of the disease [2]. Several studies have opti-
mized the doses of antibody cocktail (from 2 to 9 mg
per mouse) and of LPS (25 to 50 pug/mouse) [2-4].
Arthritis develops rapidly within 24 to 72 hours and is
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characterized by massive cellular infiltration, synovitis,
and cartilage/bone erosion. The disease is induced in
collagen-induced arthritis (CIA)-susceptible DBA/1 and
B10.RIII mice with a high incidence and in CIA-resis-
tant BALB/c and C57BL/6 mice [3].

Complement cascade is initiated by three major path-
ways: classic, alternative, and lectin pathways. Alternative
complement pathway (AP) starts with a spontaneous
hydrolysis of native C3 to C3(H,0O) followed by binding
to factor B and formation of AP C3 convertase [C3(H,O)
3b], which generates C3b. C3b quickly attaches to nearby
surfaces and further binds properdin or factor H, forming
AP C5 convertase (C3b),Bb. AP can be triggered by
interaction of properdin with C3b(2)-IgG complexes pre-
sent in serum [5] or by the attachment of properdin to
cell surfaces [6]. Properdin increases the stability of C3
convertase and enhances the assembly of the enzyme on
a target surface, resulting in an increased half-life of the
enzyme and the amplification of AP [7]. The factor is
expressed in peripheral blood T cells [8] and monocytes
[9] and is released from neutrophil granules after stimu-
lation [10]. The latter process is controlled by a particular
C3 fragment in a way that intravascular AP activation is
limited, but AP is augmented at sites of inflammation
[11]. The central role of AP for arthritis development has
been shown in CAIA and CIA [12,13]. The amelioration
of disease activity has been observed in factor B- or C3-
deficient mice with CAIA but not in mice lacking C4,
Clq, mannose-binding lectin (MBL) A, C, or both Clq
and MBL [14]. The injection of collagen antibodies into
C5-deficient mice does not promote disease pathology
[15].

Neutrophils are key players in the pathogenesis of CAIA
because their depletion with anti-Grl antibody abolishes
the severity of the disease to a larger extent [3]. Neutrophil
involvement in the pathologic process is mediated by the
recognition of the immune complexes by Fcy receptors
(FcyRs). Murine neutrophils express three activating
receptors: the high-affinity receptor FcyRI (CD64), the
low-affinity FcyRIII (CD16), and the intermediate-affinity
FcyRIV, and one inhibitory low-affinity receptor, FcyRIIb
(CD32) [16]. The engagement of activating FcyRs induces
calcium mobilization and cytokine production and pro-
motes phagocytosis, degranulation, and reactive oxygen
species generation [17]. Mice with FcRy-chain deficiency
are completely protected from CAIA development; the
disease progression is partially suppressed in FcyRIII-defi-
cient mice [18]; and arthritis was more severe in FcyRIla-
transgenic mice [19]. The FcyRIIb delivers inhibitory
signals after co-ligation with activating receptors and regu-
lates the extent of cell activation [20]. FcyRIIb”~ mice
develop severe joint inflammation and bone destruction
[21,22]. It is considered that the balance between
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activating and inhibitory FcyRs is a mechanism for termi-
nating activation responses in arthritis [23].

Recently, it was shown that RA neutrophils upregulate
RANKL in response to different stimuli, like LPS [24].
RANKL is an important factor regulating activation and
differentiation of osteoclasts and, in turn, bone resorp-
tion. Beside neutrophils, B lymphocytes from RA patients
express mRNA for RANKL [25]. RANKL-positive T cells
are detected in gouty arthritis [26]. The expression of
RANKL by different cell populations provides the source
of soluble RANKL in synovial fluid and serum in favor of
osteoclastogenesis and bone resorption. Currently,
RANK/RANKL interaction is a target for immunotherapy
of bone diseases [27].

Previously, we investigated the role of properdin for the
development of zymosan-induced arthritis (ZIA) [28]. At
the initial phase of disease, cell infiltration in the joints,
cartilage proteoglycan loss, synovial TNF-a and soluble
RANKL levels are similar in wild-type and properdin-
deficient mice. The lack of properdin, however, attenu-
ates the local generation of C5a and IL-6 in synovial fluid
and alters IFN-y production, IFN-y receptor expression,
and signal transducer and activator of transcription
(STAT)1 signaling in ZIA splenocytes. Increased proteo-
glycan loss at a late phase of disease (day 30) in proper-
din-deficient mice was observed, along with decreased
serum levels of circulating zymosan-specific IgG antibo-
dies, reduced STAT1 joint expression, and enhanced C5a
receptor (C5aR) staining in cartilage. However, in this
experimental model, arthritis develops via zymosan-
mediated activation of classic and alternative comple-
ment pathways and the engagement of Toll-like receptor
2 (TLR2) on monocytes and neutrophils. To study
further the significance of properdin for the initiation
and progression of arthritis, we used the CAIA model, in
which immune complex formation and the activation of
immune cells through FcyRs contribute to the disease
pathology. In the present study, we evaluated receptor
expression and cytokine production in immune cells
(neutrophils, monocytes, T cells), histopathologic
changes, and the expression of bone-resorption markers
in the joints of properdin-deficient and wild-type mice
with CAIA. We showed that RANKL appears to be an
important factor in the mechanism of properdin action.

Materials and methods

Mice

Properdin-deficient and wild-type mice, 20 to 25 g body
weight, 10- to 12-week-old, male and female, were used
in our experiments. Properdin-deficient mice were
genetically engineered through gene-specific targeting to
be deficient of properdin and were shown to lack proper-
din in their serum [29]. The novel line is designated
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Cfp"™!“™st and homo- and hemizygous mice are termed
KO. Wild-type C57BL/6 mice were from the same fully
backcrossed line. Animals were maintained in a specific
pathogen-free environment and had free access to water
and standard chow. All experiments were conducted in
accordance with the International and National Guide-
lines for the Care and Use of Laboratory Animals and
were approved by the Animal Care Committee at the
Institute of Microbiology, Sofia.

Experimental design

A cocktail of four monoclonal antibodies to type II col-
lagen (ArthritoMab; MD Biosciences, Saint Paul, MN,
USA; 5 mg/100 pl) was injected intraperitoneally at day 0.
The ArtritoMab binds to the epitopes C1% 71, U1, and D3
in the full-length CII fragments (CB8, CB10, and CB11).
The internal control group of mice received equal volume
of sterile phosphate-buffered saline PBS (pH 7.4) (PBS
group). At day 3, all animals were intraperitoneally
injected with LPS (Escherichia coli 055:B5; MD Bios-
ciences; 50 pg/200 pl endotoxin-free water). Mice were
examined for the development of arthritis for 10 days.
Clinical score was done blindly by using a system based on
the number of inflamed joints in front and hind paws,
inflammation being defined by swelling and redness at
the scale from 0 (no redness and swelling) to 3 (severe
swelling with joint rigidity or deformity; maximal score for
four paws, 12).

Collection of synovial fluid and plasma

Synovial fluid was harvested by lavage of the knee cavity
with 25 pl of PBS containing 1 mM ethylenediaminete-
traacetic acid (EDTA; Sigma-Aldrich, Diesenhofen,
Germany). After centrifugation, the cell pellets from all
samples per group were pooled, counted, and used for
flow-cytometry analyses while supernatants were stored at
-70°C and assayed for cytokine and C5a content. Blood
was collected in heparin tubes (10 U heparin/ml). Plasma
was obtained after centrifugation at 350 g for 15 minutes
at 4°C, stored at -70°C, and used for cytokine and C5a
measurements.

Isolation of bone marrow cells

Tibias and femurs of WT and KO mice were collected
in sterile tubes with plastic adapter and then centrifuged
at 350 g for 30 seconds. The cell pellet was washed
twice with PBS containing 1 mM EDTA, resuspended at
concentrations of 1 x 10° cells/ml, and used for flow-
cytometry analyses.

Isolation of blood neutrophils and mononuclear cells

Blood was mixed in an equal volume with 6% Dextran
T-500 sodium salt (Sigma-Aldrich) diluted in 0.9%
NaCl (pH 7.0) and incubated for 40 minutes at room
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temperature. The upper layer was subjected to gradient
centrifugation for 30 minutes at 350 g, 22°C. The layer
enriched with mononuclear cells was carefully collected,
washed with PBS, resuspended at concentrations of 1 x
10° cells/ml, and used for flow-cytometry analyses or for
further purification of CD4" T cells. The erythrocytes in
the pellet were lysed with buffer (155 mM NH,CI,
10 mM KHCOg3, 2 mM EDTA; pH 7.4) for 3 minutes,
neutrophils were washed with PBS, counted, resuspended
at concentrations of 1 x 10° cells/ml, and used for flow-
cytometry analyses. Exclusion dye staining with 0.05%
Trypan blue showed more than 95% viable cells in iso-
lated populations.

Isolation of spleen cells

Cell suspensions from KO and WT mice were prepared
from freshly removed spleens and after erythrocyte lysis
[28]. The population was passed through a sterile strainer
with 70-pm nylon mesh pores (BD Falcon; BD Bios-
ciences) and washed with PBS. Splenocytes were resus-
pended at concentrations of 1 x 10° cells/ml and then
used for flow-cytometry analyses and cytokine assays.

Isolation of CD4™ T cells

CD4" T cells were purified by indirect panning of spleen
and blood cell populations. Petri dishes were coated with
Fc specific antibody against rat IgG (10 ug/ml) for
24 hours at 4°C. Cells (1 x 10° cells/ml) in 2% fetal calf
serum (FCS)/PBS were incubated with rat antibodies
against CD14 (rmC5-3), CD16 (clone 2.4G2), CD19 (clone
1D3), and CD8 (clone OX8) (all from BD Pharmingen, BD
Biosciences; 0.2 mg/1 x 10° cells) for 15 minutes at 4°C.
After washing with PBS, cell suspension was resuspended
in 5 ml 5% FCS/PBS, added to the coated Petri dishes, and
incubated for 10 minutes at room temperature. Unbound
cells were eluted carefully, centrifuged, and resuspended in
sterile complete RPMI-1640 medium (Biowhittaker;
Lonza, Basel, Switzerland) containing 5% FCS, 100 U/ml
penicillin, 100 pg/ml streptomycin, 2 mM L-glutamine,
and 25 pM B-mercaptoethanol, and counted. The purity
of the cell population was 85% to 90%. CD4" T cells (1 x
10° cells/ml) were stimulated in 48-well plates with conca-
navalin A (ConA; 2 pg/ml; Sigma-Aldrich) and in the pre-
sence of murine recombinant IL-2 (10 ng/ml; PeproTech
EC, London, UK), or where indicated, with plate-bound
anti-CD3 (10 pg/ml; clone 145-2C11; BD Biosciences) and
soluble anti-CD28 (2 pg/ml; clone 37.51; BD Biosciences)
antibodies. After 48 hours at 5% CO,, 37°C, plates were
centrifuged at 350 g for 10 minutes at 4°C; cells were col-
lected, washed twice, and subjected to flow-cytometry ana-
lyses for intracellular production of IL-17 and IFN-y.
Supernatants from splenic CD4" T cultures were used in
enzyme-linked immunosorbent assay (ELISA) for determi-
nation of IL-6, IFN-y, and IL-17 secretion.
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Assay for detection of cytokines and C5a

The levels of IL-17 in synovial fluid, plasma, and culture
supernatants and of IL-6 and IFN-y in the spleen-culture
supernatants were determined with ELISA by using com-
mercial kits of PeproTech EC (London, UK) with detec-
tion limit of 8 pg/ml and of 20 pg/ml, and of Abcam
(Cambridge, UK; detection limit of 16 pg/ml), respec-
tively. The amount of C5a in synovial fluid was evaluated
as previously described [30]. The samples were assayed in
triplicate. The concentrations of the cytokines and C5a
were calculated from a standard curve of the respective
recombinant mouse protein, by using Gen5 Data Analysis
Software (BioTek Instruments, Bad Friedrichshall,
Germany).

Flow cytometry

Freshly isolated cell populations (1 x 10°/sample) were
washed with 2% FCS/PBS and incubated with antibodies
against CD3 (clone 145-2C11; FITC labeled; BD Phar-
mingen), CD4 (clone L3/T4; PE-labeled; BD Pharmin-
gen), Ly6G (clone 1A8, FITC or APC-labeled; BioLegend,
Uithoorn, Netherlands), CD11b (clone M1-70; Alexa-
Fluor 647-labeled; BioLegend), CD69 (clone H1.2F3;
APC-labeled; BD Pharmingen), CD14 (clone rmC5-3;
PerCP-Cy 5.5-labeled; BD Biosciences), RANKL (clone
IK22/5; PE-labeled; BioLegend), C5aR (clone 20/70; PE
labeled; BD Biosciences or APC-labeled; BioLegend);
C5L2 (human reactivity; clone 1D-M12; PE labeled;
BioLegend); FcyRIII/II (clone 2.4G2; FITC-labeled; BD
Pharmingen), and IgG isotype controls for 15 minutes at
4°C. After washing with 2% FCS/PBS, the samples were
analyzed with flow cytometer (BD LSR II) by using BD
FACSDiva v6.1.2 Software (Becton Dickinson GmbH,
San Jose, CA, USA). In the experiments determining the
expression of C5L2 on mouse peripheral neutrophils,
purified anti-C5L2/GPR77 (clone 468705; R&D System:s,
Wiesbaden-Nordenstadt, Germany) was incubated for
15 minutes at 4°C followed by washing steps and staining
with anti-rat [gG-PE (minimal x reactivity; BioLegend).
The isotype monoclonal rat IgG2b (R&D Systems) was
used to control staining specificity.

Intracellular flow cytometry

CD4" T cells were restimulated with phorbol-12-myris-
tate-13-acetate (PMA; 10 ng/ml; Sigma-Aldrich) and
ionomycin (2 pM; Sigma-Aldrich) for 4 hours in the pre-
sence of protein-transport inhibitor, monensim (2 uM;
Beckton Dickinson). The cells were centrifuged at 350 g
for 10 minutes, washed twice with PBS, counted, and
resuspended at 2 x 10° cells/ml in PBS. After fixation
and permeabilization (BD Cytofix™ buffer; BD Perm/
Wash™ buffer; Becton Dickinson), the cells were washed
and stained with BD Pharmingen antibodies against mur-
ine IL-17 (clone TC11-18H10; PE-labeled; 0.125 pg/1 x
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10° cells); IL-4 (clone 11B11; APC-labeled; 0.25 5 pg/1 x
10° cells), and IFN-y (clone XMG 1.2; FITC labeled;
0.5 ug/1 x 10° cells), or of isotype controls (APC- or
FITC-labeled R3-34 or unlabeled TC11-18H10 antibo-
dies). The samples were incubated for 30 minutes at
room temperature in the dark, washed, and used for
flow-cytometry analysis.

Osteoclast differentiation

Bone marrow cells were resuspended at 2 x 10°/ml in
10% FCS/MEM medium (Lonza). BM cells were incu-
bated for 1 day with medium containing macrophage col-
ony-stimulating factor (M-CSF; 30 ng/ml; PeproTech).
Osteoclast precursors were generated in cultures with
M-CSF (30 ng/ml) and RANKL (50 ng/ml; PeproTech
EC). After 3 days, fresh medium supplemented with
growth factors (M-CSF and RANKL) was added to the
cultures. In some experiments, blocking anti-RANKL
antibody (5 pg/ml; PeproTech EC) was added at this
time. The cells were allowed to differentiate for 3 days
and the specific tartrate-resistant acid phosphatase
(TRAP) staining was performed, as described [31]. The
number of TRAP-positive cells was determined by light
microscopy (Leica Microsystems, Wetzlar, Germany) by
two independent observers and additionally, by software
analyses (Image] 1.42; Research Services Branch, NIH,
Bethesda, MD, USA) after photo capturing by a DS-Ril
Nikon camera (Nikon Instruments Europe, Amstelveen,
The Netherlands).

Histologic analyses

Paws were fixed in 10% paraformaldehyde/PBS (pH 7.4),
decalcified for 4 days in 5% nitric acid (Sigma-Aldrich),
dehydrated in ethanol series and xylene substitute (Tissue-
Clear, Sakura Finetek, Tokyo, Japan) and embedded in par-
affin. The sections with thickness 6 um were cut by rotary
microtome (Accu-Cut SRM Sacura Finetek). Safranin O
and hematoxylin and eosin (H&E) staining was performed.
The sections were examined with a light microscope by
using 1 x 100 or 1 x 400 lens. Images were captured with a
coupled device camera and exported to Adobe Photoshop
7.0 (Adobe Systems, Munich, Germany).

All histologic assessments were performed in a blinded
protocol. The degree of injury was graded for infiltration
(score 0, normal; score 1, mild infiltration; score 2, mod-
erate infiltration; score 3, marked infiltration; score 4,
severe infiltration). Proteoglycan loss was graded as fol-
lows: score 0, normal; score 1, minimal loss; score 2,
moderate loss; score 3, marked loss; score 4, severe, dif-
fuse loss). Bone erosion was graded as score 0, no
abnormality; score 1, small areas of resorption; score 2,
more numerous areas of resorption, not readily apparent
on low magnification; 3, obvious resorption in trabecular
and cortical bone, and lesions apparent on low
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magnification; score 4, thickness defects in the cortical
bone and trabecular bone loss.

Immunohistochemistry

Immunohistochemistry was used to evaluate the expres-
sion of STAT1, STATS3, transforming growth factor
(TGF)-B3, RANKL, and C5aR in the joints. After blocking
of endogenous peroxidase and unspecific binding, the sec-
tions were incubated for 1 hour with antibodies against
C5aR (1:50 diluted; BD Biosciences), STAT3 (1:100
diluted, Santa-Cruz Biotechnology, Heidelberg, Germany),
STAT1 (1:500 diluted, Santa-Cruz Biotechnology), TGF-
B3 (1:50 diluted; Abcam, Cambridge, UK), and RANKL
(1:50 diluted; PeproTech EC). Isotype antibodies (with rat
or rabbit origin, Abcam) were used as specific controls in
the experiments. The sections were washed, and HRP/
DAB detection kit (Abcam) was used to detect specific
staining.

Statistical analyses

Statistical analysis was accomplished by using InStat3.0
and GraphicPad Prism 5.0 (GraphPad Software, La Jolla,
CA, USA). Data were expressed as mean + standard
deviation (SD). The histologic score and the immunobhis-
tochemistry data were analyzed with the Mann-Whitney
U test. For other data, the differences in the mean values
between groups were analyzed with the two-tailed Stu-
dent ¢ test. Differences were considered significant when
P < 0.05.

Results

Reduced manifestation of CAIA in properdin-deficient
mice

Properdin-deficient mice developed less severe arthritis.
We observed significantly attenuated clinical symptoms of
the disease in KO mice compared with WT mice after day
7 (Figure 1A). At the end of the experiment (day 10), the
clinical score of KO mice decreased by 52.5% in compari-
son with WT mice (clinical score, KO CAIA group, 4.2 +
0.8; WT CAIA group, 8.0 + 1.2; P < 0.001, Mann-Whitney
U test). Histologic examination showed a massive presence
of inflammatory cells in the synovial tissue and cartilage of
WT mice, which was markedly reduced in KO mice (score
for cell infiltration: KO CAIA group, 2.20 + 0.40; WT
CAIA group, 3.00 £ 0.35; n = 5; P < 0.05). Safranin O
staining of joint sections showed weak proteoglycan carti-
lage loss in WT and KO mice with CAIA (score for pro-
teoglycan loss: KO CAIA group, 0.40 + 0.20; WT CAIA
group, 0.60 + 0.25).

Decreased RANKL expression on synovial properdin-
deficient arthritic neutrophils

At day 10 of CAIA, we detected higher numbers of SF
cells in WT than in KO mice (WT CAIA group,
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0.70 x 10° cells/ml + 0.02; KO CAIA group, 0.10 x 10°
+ 0.01 cells/ml; n = 5; P < 0.05). CAIA mice showed
increased numbers of Ly6G*CD11b" (Figure 1B) and
of Ly6G"C5aR" (Figure 1C) neutrophils compared with
PBS-injected control mice. The lack of properdin sig-
nificantly decreased the frequencies of Ly6G*C5aR"
cells (Figure 1C) and Cb5a levels in SF (Figure 1D). The
expression of RANKL was higher on WT CAIA neu-
trophils in comparison with the KO group (Figure 1E).
These data suggest that WT synovial Ly6G™ cells can
participate more actively in RANKL-dependent pro-
cesses of osteoclast activation and differentiation. IL-17
enhances inflammation and osteoclastogenesis. Higher
amounts of synovial IL-17 were observed in arthritic
groups compared with PBS-injected ones (Figure 1F).
IL-17 levels in KO CAIA SF were significantly lower
than those in WT CAIA mice (Figure 1F). CAIA devel-
oped with slightly (nonsignificantly) elevated amounts
of plasma IL-17 in WT compared with KO mice (KO
CAIA group, 358.8 pg/ml + 10.2; WT CAIA group,
401.5 pg/ml + 22.6; n = 5; P = 0.068).

Altered RANKL and C5aR expression on properdin-
deficient bone marrow and blood arthritic neutrophils

At day 10 of CAIA, we observed increased frequencies
of Ly6G'>"CD11b* and Ly6G™8"CD11b* cells in BM
(Figure 2A) and of Ly6G*CD11b" in blood of WT com-
pared with KO CAIA mice (WT PBS group, 5.4% + 0.9;
KO PBS group, 4.2% + 1.0; WT CAIA group, 35.8% +
1.2; KO CAIA group, 14.0% + 5.0; n = 4; P < 0.05). BM
and blood Ly6G"CD11b" cells were stained with antibo-
dies against RANKL (Figure 2B, D) and C5aR (Figure
2C, E). Surface RANKL was detected on BM WT but
not on BM KO CAIA cells (Figure 2B). The molecule
was barely expressed on mouse blood KO cells, and we
found fewer Ly6G'RANKL™ cells in KO CAIA mice
(Figure 2D). BM cells from WT and KO mice expressed
C5aR (Figure 2C) to a similar extent. Interestingly, we
found higher C5aR expression and more C5aR-positive
cells within the Ly6G™ blood population of KO than in
that of WT mice (Figure 2E).

Regarding C5L2, another receptor for C5a, we were not
able to detect its expression on mouse blood Ly6G" in
contrast to human peripheral CD16" cells (Figure 2F). As
CAIA is a FcyR-dependent experimental model, we ana-
lyzed the expression of FcyR on synovial and blood neu-
trophils and on monocytes with flow cytometry (see
Additional file 1). Additional file 1 shows higher FcyR
expression and increased frequencies of Ly6G* FcyR"
cells in WT CAIA mice in comparison to the KO CAIA
group (Additional file 1A). Circulating CD14" KO CAIA
monocytes expressed more FcyR than did those in WT
CAIA mice (Additional file 1B). Synovial Ly6G"CD11b"
cells with elevated FcyR expression were found in WT
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Figure 1 Clinical evaluation of arthritis and flow-cytometry analyses of properdin-deficient and wild-type synovial neutrophils. (A)
Properdin-deficient (KO, n = 15) and wild-type (WT, n = 15) mice were intraperitoneally injected with a collagen antibodies cocktail followed by
administration of LPS at Day 3 (arrow). Photos show the hind-paw swelling of WT and KO mice at Day 10 of arthritis. Clinical score was
calculated for each time point by using the semiquantitative grading system. Data are expressed as the mean + SD. Significant differences of

*P < 0.05; **P < 0.01; and ***P < 0.001 between KO and WT groups are indicated, Mann-Whitney U test. Line segment with *P < 0.05 shows the
statistical significance between WT and KO line curves; Mann-Whitney U test. (B) The frequencies of Ly6G'CD11b™ neutrophils were less in
synovial fluid of properdin-deficient than in wild-type mice at Day 10 of arthritis. The data are representative of three separate experiments and
show the analyses of the synovial cell pool from five mice/group. (C) Lower numbers of Ly6G"C5aR™-bearing cells and (D) decreased amounts
of C5a were found in synovial fluid of properdin-deficient mice with arthritis in comparison with wild-type CAIA mice. Data are expressed as the
mean + SD of two experiments involving five mice/group. *P < 0.05; **P < 0.01; and ***P < 0.001; Student ¢ test. (E) RANKL was expressed on
wild-type synovial CAIA neutrophils but not on properdin-deficient arthritic cells. The data are representative of three separate experiments and
show the analyses of the synovial cell pool from five mice/group. (F) IL-17 production in synovial fluid of wild-type mice was significantly higher
than that of properdin-deficient mice at Day 10 of disease. Data represent the mean + SD of two experiments involving five mice/group.

*P < 0.05 **P < 0.01; Student ¢t test.
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and KO CAIA mice when compared with PBS-injected in both KO and WT spleen populations (Figure 3A). At

control groups (Additional file 1C).

Altered production of proinflammatory cytokines by

splenic CD4™ T cells in properdin-deficient mice with CAIA
In our study, Ly6G™&"CD11b" cells were between 1%
and 2%, whereas Ly6G™8"CD11b" cells were 5% to 6%

day 10 of CAIA, the frequencies of Ly6GM8"CD11b*
cells increased two times, and fewer Ly6G'°*CD11b*
cells were detected in the spleen (Figure 3A). Interest-
ingly, Ly6GM€"CD11b" cells upregulated CD86 expres-
sion only in the WT CAIA group but not in KO CAIA
mice (Figure 3B). CD86 is an important costimulatory
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molecule for T cells. Flow-cytometry analyses of the
splenocyte population demonstrated an increased percen-
tage of CD4" T cells in WT CAIA mice compared with
the KO CAIA group at day 10 of disease (Figure 3C). Acti-
vation marker CD69 was barely expressed on the arthritic
WT and KO CD4" T splenic population (Figure 3D). WT
CAIA cells spontaneously release higher amounts of [FN-y
(Figure 3E), IL-6 (Figure 3F), and IL-17 (Figure 3Q),
whereas KO CAIA cells secrete IFN-y but not IL-17 and
IL-6 (Figure 3F, G). Both WT and KO cells responded to
anti-CD3/anti-CD28 stimulation with markedly increased
cytokine production. However, the amounts of secreted
cytokines by WT CAIA cells were higher than those of the
KO CAIA ones. Of note, ConA induced vigorous IL-17
and IL-6 production by WT CAIA but not by KO CAIA
cells (Figure 3F, G).

Altered phenotype of blood CD4" T cells in properdin-
deficient mice with CAIA

The initial inflammatory process involving complement
and blood neutrophils and monocytes results in the acti-
vation of peripheral CD4" T cells. Blood CD4" T cells
expressing the early activation marker CD69 were fewer
in KO CAIA mice in comparison with the WT group
(Figure 4A). The lack of properdin resulted in markedly
inhibited RANKL expression on CD4" T cells and
reduced numbers of CD4" T RANKL" cells in the per-
iphery (Figure 4B).

In RA patients, CD4" T cells in the periphery are prone
to produce proinflammatory cytokines. Thus, we deter-
mined the intracellular level of IFN-y and IL-17 in blood
CD4" T cells (Figure 4C). Nonstimulated CD4" T cells
from control KO and WT mice showed a low production
of IFN-y and IL-17 that was upregulated by Con A stimu-
lation (Figure 4C). However, no significant difference in
the frequencies of single IFN-y- and IL-17-producing cells
between Con A-stimulated control KO and WT cells was
observed. Nonstimulated control CD4" T lymphocytes
showed weaker IFN-y and IL-17 production than did non-
stimulated arthritic cells (Figure 4C). CAIA WT CD4"
T cells were more sensitive to Con A stimulation than
were those from KO mice, because they had significantly
higher intracellular levels of IFN-y and IL-17 (as shown
on Figure 4C and in one representative experiment in
Figure 4D).

Concerning Th2 cytokine IL-4, its intracellular level
was low in nonstimulated and ConA-stimulated CD4"
T KO and WT mice (Figure 4D).

Abrogated RANKL-dependent osteoclast differentiation of
properdin-deficient BM precursors

Our data showed that RANKL is expressed to a lesser
extent by populations in BM (Ly6G" cells) and in the
blood of KO mice (neutrophils and CD4" T cells),
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suggesting altered RANKL-dependent processes in con-
ditions of properdin deficiency. Thus, we next evaluated
the RANKL-mediated osteoclastogenesis of BM cells
isolated from control and KO and WT CAIA mice. The
specific TRAP staining showed similar numbers of gen-
erated osteoclasts in control KO and WT cultures
(Figure 5A). Osteoclast differentiation of properdin-defi-
cient BM CAIA cells was inhibited, and fewer TRAP-
positive cells were detected in these cultures. We
suggest that BM precursors from properdin-deficient
CAIA KO mice were less sensitive to the action of
RANKL.

We set up an experiment in which WT and KO CAIA
BM cells were differentiated in the presence or the absence
of a blocking antibody against RANKL (Figure 5B). We
observed a reduced number of TRAP-positive cells in WT
CAIA cell cultures, similar to that in the KO CAIA group.
Osteoclast differentiation of properdin-deficient CAIA BM
cells was not changed by blocking RANKL (Figure 5B).

Immunohistochemical profiling of bone-related markers
in arthritic joints

At day 10 of CAIA, the joint sections were analyzed for
the expression of C5aR and several markers of bone
destruction (Figure 6). The molecule associated with
bone resorption RANKL was expressed approximately
threefold higher in the cartilage of WT arthritic mice
than of KO CAIA mice (Figure 6A). C5aR-positive cells
were observed in the infiltration area and cartilage of
CAIA groups, with no significant difference between WT
and KO animals (Figure 6B). STAT1-positive staining
was strong in the WT infiltration areas and cartilage and
less obvious in KO joints (Figure 6C). STAT3 expression
was similar in the infiltration zones of WT and KO mice,
whereas in cartilage, its staining intensity was inhibited in
the CAIA KO group (Figure 6D). CAIA development in
KO mice was accompanied with suppressed TGF-f§
expression in the joints (Figure 6E).

Discussion

In the present study, we evaluated the role of properdin,
the regulator of AP, in the development of CAIA. Arthri-
tis was induced by injecting properdin-deficient and WT
mice with a monoclonal antibodies cocktail optimized for
the use in C57BL/6 animals. At day 10 of CAIA, we
observed marked cellular infiltration in the synovium and
moderate cartilage damage in WT mice. Immune com-
plexes in CAIA activate metalloproteinases that cleave
collagen and, in turn, induce cartilage matrix loss. We
were not able to detect a significant PG depletion in WT
and KO mice, but the CAIA model was followed up for
10 days, which, however, cannot exclude more severe PG
degradation at later stages of disease. Cartilage loss dur-
ing the progression of arthritis is accompanied by a
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process of cartilage repair. TGF-B is a factor that stimu-
lates collagen II and PG synthesis and inhibits cartilage-
degrading enzymes [32]. In the long term, decreased
expression of TGF-B in KO CAIA joints may affect
osteophyte formation and joint deformation. The pro-
gression of arthritis in KO mice is related to the downre-
gulation of STAT1 in the joints. The role of the
transcription factor for the inhibition of inflammation
has been shown in STAT-17" mice with exacerbated ZIA
[33] and in mice with established arthritis treated with
nanoparticles encapsulating STAT1-targeted siRNAs
[34].

CAIA progression in KO mice is retarded, with milder
clinical symptoms and weaker synovial cell infiltration,
than that in WT mice. Similarly, properdin-deficient
transgene Cfp”’~ mice develop less-severe K/BxN arthri-
tis [35]. In this study, BM chimeras between WT and
Cfp”~ mice were generated. The authors found lower
Cfp mRNA levels in BM Cfp” /WT chimeras than in
WT/WT ones and suggest that the major source of
plasma properdin is BM-derived CD11b" cells.

In our study, Ly6G™"CD11b* KO and WT neutrophils
expressed C5aR, and thus showed the ability to respond to
Cbha after their mobilization from the BM. At day 10 of
CAIA in the BM KO population, we observed significantly
decreased frequencies of mature Ly6G™€"CD11b* cells
and of maturing Ly6G'°“CD11b* neutrophils. These data
indicate an abnormal generation of Ly6G™ cells that, in
turn, resulted in lower frequencies of Ly6G" circulating
cells in blood and synovial fluid of properdin-deficient
mice. Therefore, Ly6G"CD11b" neutrophils can be consid-
ered a cellular phenotype related to properdin deficiency.
In support of this notion, the studies show that neutro-
phils (a) secrete properdin from the intracellular depot
[36,37], (b) bind the secreted properdin [38], enhancing
the assembly of AP C5-convertase on the cell membrane
generating C5a fragments [38]. These activities of neutro-
phils are regulated by TNF-a,, and probably by other cyto-
kines and factors in the microenvironment.

Cba, as a chemoattractant, regulates the infiltration and
accumulation of neutrophils in the synovial fluid and
maintains inflammation [39]. In CAIA KO mice
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decreased amounts of C5a in synovial fluid resulted in
reduced numbers of C5aR"-bearing neutrophils. In the
joints, C5a can bind its receptor expressed on synovial
fibroblasts and chondrocytes. In the CAIA model, the
lack of properdin did not change cartilaginous C5aR
expression. However, our previous observations in ZIA
showed that KO mice were able to upregulate C5aR
expression in the joints at a later stage of disease (day 30)
[28]. C5a binds to two receptors on neutrophils: C5aR
(CD88) and C5L2 receptors [40]. In contrast to human
CD16" cells, Ly6G'CD11b" blood neutrophils showed
nonsignificant surface expression of C5L2 when com-
pared with the isotype control. However, arthritic blood
Ly6G*CD11b" KO cells expressed more C5aR. Reduced
serum Cb5a levels have been observed in naive KO mice
and in KO mice with acute inflammation and zymosan-
induced arthritis [28,30]. Thus, increased C5aR expres-
sion is more likely due to insufficient engagement of C5a
by blood neutrophils. We observed similar C5aR expres-
sion on WT and KO BM arthritic cells, which also indi-
cates a modulation of receptor expression by C5a
amounts in the periphery. The binding of C5aR to the
ligand can modulate disease pathogenesis by regulating
the balance of activating and inhibitory FcyR receptors
[41,42]. In blood, the lack of properdin resulted in a sig-
nificantly decreased FcyR expression on KO neutrophils
and an increased surface FcyR on circulating CD14™" cells
(shown in Additional file 1). In our experiments the anti-
body clone 2.4G2 can recognize both FcyRIII and FcyRII
receptors on KO neutrophils and monocytes. Thus, we
could not exclude altered expression of the FcyRII iso-
form versus the FcyRIII on the same cells or a difference
in the inhibitory FcyRIIb expression on the particular cell
type, as shown by Bruhns et al. [43]. CAIA induction also
involves antibodies of different IgG isotypes that can be
recognized by specific FcyR receptors. Our data presume
a complex interplay of activating and inhibitory FcyR
receptors in condition of properdin deficiency and give a
background for future investigations in this direction.
RANKTL is responsible for osteoclast differentiation,
activation, and survival, and drives bone resorption and
bone erosion. In CAIA mice, we found retarded disease
progression and decreased RANKL in cartilage. More-
over, BM precursor cells from CAIA KO mice differen-
tiated poorly to mature osteoclasts in the presence of
RANKL. In contrast to CAIA WT cultures, the blocking
RANKL antibody did not affect the numbers of TRAP-
positive CAIA KO cells, indicating a decreased sensitiv-
ity of KO BM precursors to RANKL signaling. RANKL
interactions during osteoclast formation in IL-18 condi-
tions can be regulated by C3a and Cb5a [44], because
BM cells express C3aR and C5aR [45]. Recently, it was
shown that C37" BM cells exhibit lower RANKL/osteo-
protegerin expression ratios, produce less M-CSF and
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IL-6, and generate fewer osteoclasts than wild-type BM
cells [46]. Both this study and our results suggest that
the process of osteoclast differentiation is sensitive to
the abrogation of complement AP. In vivo, this process
is complex and can involve BM precursors of osteo-
clasts, cells that produce, express, and secrete RANKL
and cytokines. In CAIA WT mice, Ly6G'CD11b" BM
cells expressed RANKL and, together with other BM
precursors, can migrate and accumulate in the synovium
in response to generated C3a, C5a, and IL-17. Moreover,
IL-17 can mobilize stem cells in mice with short- and
long-term reconstituting capacity [47]. Osteoclastogen-
esis can be initiated by these RANKL-positive cells,
which enrich the microenvironment. In the present
study, we found CAIA WT synovial neutrophils expres-
sing RANKL. This is in line with the observations show-
ing the RANKL expression on synovial neutrophils in
RA patients [24]. Contradictory results were obtained by
Yeo et al. [25] demonstrating that synovial RA neutro-
phils do not express significant RANKL mRNA levels
compared with B and T cells. This discrepancy can be
due to the generally restricted transcription in neutro-
phils compared with other cell types. In synovial fluid,
activated neutrophils produce proteases that can cleave
membrane RANKL on them or on infiltrating T cells,
which in turn, can maintain a high level of soluble
RANKL.

In our study, downregulated RANKL expression was
observed on synovial, peripheral neutrophils, and on
blood CD4" T cells from CAIA KO mice. The cytokine
microenvironment is likely to reduce the surface RANKL
on KO immune cells. Proinflammatory cytokine IL-17 is
present in the synovium and serum of RA patients [48].
IL-17 regulates osteoclast differentiation and favors the
activation of synovial fibroblasts and neutrophils. In our
study, we found diminished IL-17 levels along with
decreased numbers of RANKL-positive Ly6G"CD11b"
cells in the synovial fluid of properdin-deficient mice. In
both strains, WT and KO, synovial arthritic neutrophils
were able to express FcyR when IL-17 was present in the
fluid. It has been shown that IL-17 can enhance cartilage
destruction in immune-complex-mediated arthritis by
increasing the local numbers of FcyR-bearing neutrophils
[49].

The lack of properdin slightly reduced the amounts of
plasma IL-17 in CAIA mice. Peripheral CD4" T lym-
phocytes showed a decreased ability to produce IL-17
and IFN-y in response to Con A stimulation in vitro.
Concerning Th2 cytokine IL-4, its intracellular level was
low in nonstimulated and ConA-stimulated CD4" T
cells from KO and WT CAIA mice. However, IL-4 can
have both a detrimental and a protective role in CAIA,
because IL-4-deficient mice are protected from the dis-
ease [50].
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Several reports have shown enhanced T-cell activation
and differentiation as a result of a direct interaction
between blood neutrophils and T cells [51,52]. In CAIA
KO mice, we found fewer Ly6G'CD11b" cells in the
blood and a decreased ability of CD4" T cells to pro-
duce IL-17. CAIA KO neutrophils also showed upregu-
lated C5aR compared with WT cells. More recently, the
essential role of C5aR for Th17 cells was described [53].
In this study, C5aR deficiency in SKG mice inhibited the
expansion of Th17 cells. Th17 cell differentiation, how-
ever, requires TLR4, IL-6, and complement interactions
[54]. The complement effect on Th17 cells is dependent
on Cbha-receptor expression and physiologically relevant
levels of C5a [54]. In KO mice, C5a levels are reduced
during arthritis progression [28] that can contribute (a)
to limited engagement of C5aR on Ly6G™ neutrophils,
and/or (b) a failure in Th17 differentiation. When neu-
trophils are in more-dense contact with CD4" T cells, as
in the spleen, they can provide co-stimulatory signals
promoting T-cell differentiation. Co-stimulation can be
enhanced by complement fragments. Impaired activation
of naive CD4" T cells by CD80”", CD86"", and CD40™"
antigen-presenting cells is reconstituted by locally pre-
sented C5a or C3a [55]. CAIA developed with increased
frequencies of Ly6G™€" cells in the WT and KO spleen.
In contrast to KO CAIA cells, arthritic Ly6Ghigh WwWT
neutrophils expressed CD86 that can promote T-cell
activation and proliferation and contribute to the
increased numbers of splenic CD4" T and the sponta-
neous secretion of pro-inflammatory cytokines IL-17,
IFN-y, and IL-6. KO CAIA CD4" T cells may receive
fewer co-stimulatory signals from Ly6G"€" neutrophils,
sufficient for IFN-y production, but not for IL-17 and
IL-6 secretion. This altered T-cell function in KO mice
can be sustained during arthritis progression, inducing
changes in the phosphorylation of transcription factors
or further responsiveness to restimulation.

Conclusions

In the present study, the deficiency of properdin caused
functional changes in both neutrophils and CD4"
T cells that prevent the development of inflammatory
processes and joint alterations. The lack of this regulator
of the alternative complement pathway resulted in (a) a
decreased RANKL expression on immune cells, (b) a
reduced ability of blood and splenic CD4" T cells to
produce pro-inflammatory cytokines, and (c) abrogated
RANKL-dependent differentiation of bone marrow pre-
cursors to mature osteoclasts. Taken together, these
results point on a new role of properdin in immune
complex-induced arthritis and give more ideas for the
design of novel therapeutic approaches in rheumatic
diseases.
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Additional material

Additional file 1: FcyR expression on synovial and blood neutrophils
and on monocytes in properdin-deficient mice with CAIA. (A) FcyR
was expressed on blood wild-type Ly6G* cells but not on properdin-
deficient cells, as shown in one individual experiment. Frequencies of
Ly6G" FcyR" in blood at day 10 of disease are presented on the graph.
Data are expressed as the mean + SD of the positive cells from three
experiments involving four mice/group; *P < 0.05; ***P < 0.001; Student t
test. (B) Elevated numbers of CD14" FcyR™ cells in blood of KO CAIA
mice are shown on the graph. Data represent the mean + SD of positive
cells from three experiments involving five mice/group. *P < 0.05; **P <
0.07; and ***P < 0.001; Student ¢ test. (C) FcyR expression was found on
synovial neutrophils from arthritic properdin-deficient and wild-type
mice. The histograms are representative of three separate experiments
and show the analyses of the synovial cell pool from five mice/group.

Abbreviations
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