
Atypical fractures: what they are and their 

incidence

Th e fi rst case report describing atypical fractures of the 

femur was published in 2005 and reported on nine adults 

receiving bisphosphonate treatment [1]. Since that time, 

the number of case reports has increased markedly, and 

the existence of atypical femoral fractures (AFFs) is now 

widely accepted. Th e incidence remains low, but sub-

stantial mortality is associated with these fractures. Little 

is known regarding their etiology and mechanism. Th e 

measurable factors and individual characteristics contri-

but ing to AFF development in particular individuals 

require further investigation given the large number of 

postmenopausal women on these agents [2].

In 2009, the American Society of Bone and Mineral 

Research (ASBMR) appointed a task force to summarize 

the current state of knowledge and address key questions 

about AFFs. Based on a comprehensive literature review 

and the experiences of clinical experts on the task force, a 

case defi nition was generated (Table 1 of [3]). To defi ne a 

fracture as an AFF, the following fi ve major features must 

be present (Figure 1): 1) location along the femur distal to 

the lesser trochanter and proximal to the supercondylar 

fl are; 2) minimal or no trauma at fracture; 3)  transverse 

or short oblique fracture confi guration; 4) lack of commi-

nu tion; and 5)  complete fractures extend through both 

cortices and may be associated with a medial ‘spike’ or 

incomplete fractures involve only the lateral cortex. An 

additional seven ‘minor features’ are often reported but 

are not required for classifi  cation as an AFF, including a 

lateral periosteal reaction, cortical thickening, prodromal 

symptoms and bilateral incidence. Combined these criteria 

suggest contributing biomechanical factors include whole 

bone geometry and material properties [4,5], as described 

below.

While no direct causation has been established, AFFs 

are often associated with long-term bisphosphonate treat-

ment. In the 310 case reports examined by the ASBMR 

task force, 291 of the published reports (94%) identifi ed 

bisphosphonate use as a comorbidity, with a mean 

treatment duration of 7  years. While this association is 

present in case reports, a similar connection has not been 

established in the phase III clinical trial data ([6] and see 
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discussion in [7]). Th is apparent discrepancy may refl ect 

the strict inclusion criteria for bisphosphonate treatment 

in the phase III trials and characteristics of the clinical 

trials that limited the treatment duration in the placebo-

controlled studies. In addition, Black and colleagues [6] 

did not evaluate fractures radiographically to confi rm the 

location and atypia, as has been the standard method o-

logy for all recent case reports.

Larger population-based studies have drawn conclu-

sions both for and against the association of AFFs with 

bisphosphonate use. In a Danish cohort study based on 

examining only medical records, not radiographs, the 

risk of hip and subtrochanteric or femoral shaft fractures 

was increased in bisphosphonate-treated (alendronate) 

patients [8]. However, individuals with greater cumulative 

bisphosphonate doses did not have greater risk of AFFs 

than individuals exposed to smaller doses, leading the 

authors to conclude that osteoporosis could be the 

underlying cause of the fractures. Risk for subtrochanteric 

or femoral shaft fractures was associated with bisphos-

phonate treatment for more than 5 years in a case control 

study of a large population-based cohort of elderly 

women (aged 68 years or older at initiation of bisphos-

phonates) [9]. Th e risk of typical osteoporotic femoral 

neck or intertrochanteric fractures was reduced in the 

same population with long-term bisphosphonate treat-

ment, as would be expected; 716 AFF patients were 

included, with 3,580 matched controls. All diagnoses 

were medical record-based; no radiographs were exam-

ined in this study.

Bisphosphonates

Bisphosphonates are used to treat osteoporosis by 

targeting bone resorption and reduce fracture rates in the 

spine by 40 to 50%. Two primary mechanisms contribute 

to their effi  cacy: affi  nity for binding to bone mineral and 

inhibition of osteoclast function [10]. Th e coupling of 

bone resorption and formation in remodeling leads to an 

overall reduction in bone turnover with bisphosphonate 

treatment. Quantitatively, reductions in bone turnover 

do not map directly to reduced fracture risk, nor do 

increases in bone mass fully explain reductions in 

fracture incidence with bisphosphonate treatment.

Bisphosphonates are chemically stable analogues of 

pyrophosphate compounds, fi rst introduced into clinical 

practice 50 years ago in 1962 [11]. All bisphosphonates 

contain non-hydrolysable P-C-P bonds. Th ey can be 

divided into diff erent classes based on structure: those 

with aliphatic chains (etidronate or clodronate) and the 

N-containing bisphosphonates; those containing nitro-

gen as part of the aliphatic chain (neridronate, alendro-

nate and ibandronate); or those containing one or more 

fi ve- or six-membered rings (risedronate, zolendronate 

and mindronate). Th e structures and functions of the 

major bisphosphonates in clinical use were reviewed 

recently [12]. Th e mechanisms of action of the fi rst 

generation, aliphatic chain bisphosphonates and the N-

containing bisphosphonates are very diff erent. Both bind 

with high affi  nity to bone mineral (hydroxyapatite) [13], 

but fi rst generation bisphosphonates, such as etidronate 

and clodronate, bind directly to analogues of ATP 

forming ATP-P-C-P complexes, preventing ATP hydro-

lysis and leading to cell death [11,14]. Th e N-containing 

bisphosphonates, in contrast, inhibit farensyl pyro-

phosphate synthase activity, preventing the prenyla tion 

of proteins required for cell function and survival and 

leading to premature apoptosis in the exposed cells [11]. 

Since the osteoclast is the cell exposed to the majority of 

the bisphosphonates retained in bone, bisphosphonates 

Figure 1. Radiograph of a middiaphyseal atypical femoral 

fra cture (59-year-old female, 7 years of alendronate treatment).
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result in osteoclast cell death, and hence inhibit bone 

remodeling. Th e loss of osteoclasts, in turn, can aff ect 

osteoblast activity as these processes are coupled. 

Osteoclasts can be rescued from the apoptosis-inducing 

eff ects of the bisphosphonates by inducing expression of 

anti-apoptotic factors [14]. Osteoblasts and osteocytes 

can also become apoptotic via a similar mechanism, 

depend ing on the bisphosphonate used, which would 

also impact new bone formation [15].

Zolendronate is the bisphosphonate with the greatest 

in vitro affi  nity for hydroxyapatite, followed by pamidro-

nate, alendronate, ibandronate, risedronate, etidronate 

and clondronate, with clondronate having the least 

affi  nity [13]. Each of these compounds has been used in 

clinical trials to treat osteoporosis [16] and non-skeletal 

diseases [17]. Osteoporosis is a disease characterized by 

increased fracture risk as a result of an imbalance 

between bone formation (by osteoblasts and osteocytes) 

and bone resorption (by osteoclasts). Th e outcome 

assessments most frequently used to judge therapeutic 

effi  cacy are: changes in bone mineral density (BMD; or 

bone quantity as assessed by dual energy X-ray absorptio-

metry (DXA)); bone turnover markers, such as N- and C-

collagen telopeptide cross-link breakdown products, 

bone-specifi c alkaline phosphatase, osteocalcin or 

hydroxyproline; dynamic histomorphometric measures 

of mineral deposition rate (which require a biopsy); and 

fracture incidence in large clinical studies.

Generally, bone turnover markers decrease and BMD 

increases in large clinical trials but diff erences exist by 

specifi c agent, skeletal site and individual response. In 

clinical trials, BMD in patients treated with bisphos-

phonates increased at 1 and 3  years [16]. In general, 

changes are greater at the spine than in the hip or femoral 

neck. BMD increases due to fi lling in of remodeling space 

and continued secondary mineralization of pre-existing 

bone tissue. To complicate the story, diff erent drugs act 

at diff erent rates (for example, zoledronic acid is reported 

to have more rapid eff ects than alendronate [16]), but, on 

average, bisphosphonate therapies eff ectively reduce 

bone turnover. Overall, bisphosphonates can improve 

bone properties and reduce fracture risk [6,18-20] as 

evident from improved histomorphometric parameters 

[21], decreased changes in bone turnover markers [22], 

and increased BMD [23].

Quantitatively, reductions in bone turnover do not map 

directly to reduced fracture risk, nor do increases in bone 

mass fully explain reductions in fracture incidence with 

bisphosphonate treatment. Antiresorptive treatments 

produce modest increases in areal bone mineral density, 

ranging from 0 to 8%, yet reduce fracture risk by 30 to 

50% [24-26]. Th is disproportionate decrease in fracture 

incidence [27] suggests altered tissue material character-

istics are likely a contributing factor to the effi  cacy of 

these therapies in osteoporotic patients. By preventing 

trabecular plate perforation, bisphosphonates may 

prevent the cancellous microarchitectural deterioration 

that leads to osteoporotic fractures.

Despite these positive eff ects on fracture risk, many 

questions remain concerning bisphosphonate use. Some 

issues are obviously related to patient compliance [16], 

but the more relevant ones concern prescribing of 

bisphosphonates: who are appropriate patients and how 

long should treatment be continued. Is a ‘bone holiday’, in 

which bisphosphonate treatment is suspended for 5 or 

10  years, a good recommendation? Are other drugs as 

eff ective in reducing fracture risk? It is beyond the scope 

of this review and of the basic science authors to make 

recommendations in response to these questions, but a 

few facts can be pointed out. In a meta-analysis of 

patients who discontinued bisphosphonates for 5  years 

after 5 years of treatment, with only three eligible studies, 

fracture risk was not diff erent between the two groups 

[28]. Th is result may refl ect the retention of the bisphos-

phonates within the bone due to their high affi  nity for 

hydroxyapatite. In fact, in patients on 10  mg/day of 

alendronate for 5 years the drug exposure remains at 25% 

of the original dose in the 5  years after treatment is 

stopped [29]. Because AFFs may be associated with 

‘prolonged’ bisphosphonate use, we will consider the 

known eff ects of short- and long-term bisphosphonate 

treatments on bone mechanics and bone quality. Other 

reported complications of bisphosphonate use are re-

viewed elsewhere [30].

Mechanics

From a mechanics perspective, the fi ve major features 

outlined by the ASBMR task force to defi ne AFFs provide 

insights into potential mechanisms contributing to 

fracture [3]. Minimal or no trauma, a required feature, 

suggests that AFFs result from repetitive loading (fatigue 

fracture) rather than a single overload (traumatic frac-

ture). Th is conclusion is further confi rmed by the frequent 

presence of a periosteal reaction and prodromal symp-

toms, both minor features. Characteristics of long bones 

known to contribute to the development of skeletal stress 

fractures (fatigue fractures) are whole bone structure and 

applied loading [31-33]. Once damage has been initiated, 

cracks propagate and coalesce to produce structural 

failure and fracture, a process that depends on cortical 

cross-sectional geometry and tissue material properties.

Th e frequent bilateral incidence of AFFs, a minor 

feature, also suggests a strong mechanical etiology asso-

ciated with individual anatomy. Diff erences in whole 

bone geometry relative to non-fractured controls, such as 

the femoral neck shaft angle and femoral curvature [4], 

can alter the stresses and strains produced in the cortical 

diaphysis with loading and may contribute to fracture 
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incidence. Th e existence of whole bone structural diff er-

ences between individuals with and without AFFs needs 

to be determined and, if present, related to bone tissue 

level strains and stresses and stress fracture development.

Th e transverse fracture confi guration, another major 

feature, suggests that the material properties of bone 

tissue are altered in individuals with AFFs. Th e femur 

experiences high bending and torsional loads that 

normally produce oblique or spiral fracture confi gura-

tions due to the applied loading and well-documented 

mechanical properties of cortical bone [5]. Bone tissue is 

weaker in tension than compression, and this asymmetry 

is refl ected in the morphology of the fracture surface. 

Altered mechanical properties, such as increased tissue 

brittleness, would further alter fracture morphology. Co-

morbidities associated with AFFs, such as bisphos pho-

nate therapy, could contribute to such alterations in 

tissue properties and bone quality.

Limited data are available on the eff ects of bisphos-

phonate treatment on bone tissue properties, particularly 

for cortical bone where AFFs occur. Th e majority of 

preclinical studies examining material properties of 

cortical tissue were performed in canine models without 

estrogen defi ciency and using supraphysiological bis-

phos phonate doses (see review by Allen and Burr [34]). 

In addition, more data are available on cancellous bone 

than on cortical bone, given the osteoporosis emphasis of 

these treatments. In cortical bone, bisphosphonate 

treatment generally does not alter bone material strength 

and stiff ness, but high doses decrease post-yield tough-

ness [35-37]. Post-yield toughness was reduced 28% with 

alendronate (1.0  mg/kg) and 51% with risedronate 

(0.5 mg/kg) in the healthy canine tibia after 1 year [37], 

19% with alendronate in the canine rib after 1 year [38], 

and 34% with alendronate in the canine rib after 3 years 

[36]. However, material property changes were not present 

in the canine femoral diaphysis after 1 and 3  years of 

alendronate treatment. Finally, nanomechanical analysis 

of iliac crest biopsies showed no diff erences in cortical 

modulus in tissue from AFF patients relative to age-

matched and young female controls [39]. Th ese data 

suggest that the tissue elastic behavior is not altered with 

bisphosphonate treatment but cannot measure toughness 

or fatigue properties. Considered in terms of fracture 

mechanics, the transverse fractures seen clinically 

suggest increased damage and reduced deformation 

post-yield that lead to a brittle fracture of the femur.

Bone quality

Bisphosphonates increase the quantity or amount of 

bone (BMD), but tissue quality contributes to fracture 

risk as well. Bone quality, as reviewed recently [40], 

includes properties beyond bone mass that contribute to 

bone mechanical strength, and hence fracture risk. Th ese 

properties include bone geometry (the shape and size of 

bone), architecture (the arrangement of the structures 

within the bone), collagen maturity (collagen cross-links 

and advanced glycation products), the presence of micro-

damage, and the properties of the mineral, including its 

distribution, composition, orientation, crystal size and 

perfection. Each of these characteristics correlates to 

either fracture risk or bone strength, or both.

Cortical geometry

Both whole bone morphology and cross-sectional geo-

metry of the femur determine the mechanical environ-

ment in the cortex and can predispose the hip to fracture 

[4,41]. Military recruits who present with stress fractures 

have smaller cross-sectional geometry than those who do 

not fracture [31]. In addition, bone tissue quality may be 

linked with whole bone morphology. In a small sample, 

the cortical tissue of slender male tibiae was more brittle 

and damage-prone than the cortex of wider bones [33]. 

In the spine, fracture risk was associated with cross-

sectional geometry [42].

Th e ASBMR task force included localized periosteal 

reaction and generalized cortical diaphyseal thickening 

as minor features of AFF [3]. Reports of AFF often do not 

distinguish between cortical thickening and periosteal 

stress reaction. Increased cortical thickness has been 

noted with AFF [3,43].

Whether bisphosphonates alter cortical geometry is 

unclear. At corticocancellous sites, the cortical shell 

thickness and area increases in osteoporotic women with 

bisphosphonate treatment [44,45]. For example, risedro-

nate increased the cross-sectional moment of inertia and 

cross-sectional area of the femur in osteoporotic and 

osteopenic women and men after 4, 8, and 12 months of 

treatment [44]. In a recent report, however, cortical 

thick ness of the femoral diaphysis was not increased with 

alendronate treatment for at least 5 years when measured 

by DXA [46], but DXA has limitations for measuring 

cortical thickness [47]. Th us, the eff ects of bisphos-

phonates on cortical architecture remain to be elucidated, 

and if present, geometric eff ects may also be accom-

panied by alterations of other tissue properties.

Collagen

Th ree fundamental properties of the collagen network 

infl uence mechanical properties [48]: the amount of 

collagen; the fi bril orientation [49]; and its maturity 

(post-translational modifi cation of the collagen). 

Collagen fi brils are formed from triple-helical collagen 

molecules. With age, the stability of the collagen fi brils 

increased by forming intra- and inter-fi brillar cross-links. 

Some cross-links are derived by enzymatic pathways 

through which collagen lysyl and hydroxylysyl groups 

form fi ve- and six-membered rings with other amino 
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acids; these enzymatic cross-links may be non-reducible 

(more stable) or reducible. A second type of cross-link is 

derived by non-enzymatic glycosylations [50]. Th e 

presence of both types of cross-links can be determined 

biochemically or inferred from spectroscopic correlates.

Mechanical properties have been correlated with the 

number of non-enzymatic glycosylations [50] and enzy-

matic cross-links [51]. In animal models with chemically 

altered collagen cross-links and in osteoporotic human 

specimens higher ratios of non-reducible/reducible 

cross-links are associated with increased bone stiff ness 

and strength [52,53]. In contrast, increased concentration 

of non-enzymatic cross-links with aging correlated with 

decreased bone strength [53].

Bisphosphonates have been reported to increase the 

amount of non-enzymatic cross-links without changing 

the number of enzymatic cross-links. Compared to 

placebo, risedronate retained baseline values of collagen 

cross-links, measured by infrared imaging, in active 

bone-forming areas, returning to premenopausal values 

after 5  years of treatment [54]. In a preclinical healthy 

canine model, reductions in post-yield toughness of 

cortical tissue with high doses of bisphosphonates were 

associated with increased non-enzymatic collagen 

glycation [37].

Microdamage

Loading of bone creates damage in the form of cracks. 

Fracture resistance partially depends on the ability of 

bone to remodel and repair microscopic cracks or micro-

damage before they lead to failure. Longer cracks are 

associated with weaker bone [55]. Reducing bone turn-

over could aff ect damage repair and damage accumu-

lation, particularly given that AFFs are likely fatigue 

fractures. Increased crack lengths and density accom-

panied reductions in post-yield toughness of cortical 

bone with high dose bisphosphonate treatment [36,38]. 

Clinically, however, the number of microcracks and their 

frequency was low in postmenopausal osteoporotic 

women and not altered in iliac crest biopsies from 

women on bisphosphonates relative to untreated control 

biopsies [56]. Th ese clinical data are for cancellous tissue, 

however, and data are needed for the cortex. Th e question 

of whether microcrack initiation and repair is suppressed 

by bisphosphonates remains open, especially in cortical 

bone.

Mineralization

Th e amount of mineral present and its alignment, 

distribution and characteristics, such as chemical com-

po sition, and crystal size and orientation, contribute to 

the mechanical function of the mineralized tissue and 

fracture risk, and may in part help explain the AFF 

phenotype. In mice of diff erent ages, signifi cant positive 

correlations were observed between the elastic modulus 

and the compositional properties determined by infrared 

imaging, including mineral/matrix ratio and crystallinity 

[57]. In multiple linear regressions of mineral properties 

from 52 individuals with and without fracture, increases 

in three parameters were signifi cantly associated with 

increased fracture risk: cortical and cancellous collagen 

maturity; cortical mineral/matrix ratio; and cancellous 

crystallinity [58].

Bisphosphonate treatment has multiple eff ects on 

mineral properties. Risedronate for 3 and 5 years main-

tained material properties in iliac crest biopsies of treated 

postmenopausal women, while mineral content and 

crystallinity increased in placebo groups [54]. Th ese 

matrix material changes were thought to contribute to 

risedronate’s rapid and sustained antifracture effi  cacy in 

osteoporotic patients [54]. Similarly, based on Raman 

spectroscopic analysis, a study of biopsies from women 

treated with zolendronate once yearly over a 3-year 

period showed an increased mineral/matrix ratio com-

pared with placebo and resulted in smaller mineral 

crystallites that are characteristic of younger bone [59].

Tissue heterogeneity is reduced with bisphosphonate 

treatment as measured by Fourier transform infrared 

spectroscopy imaging. Following short-term treat ment 

with alendronate, iliac crest biopsies from peri-

menopausal woman had decreased compositional para-

meter distributions (heterogeneity) relative to untreated 

controls [60]. Similar results were found in a normal, 

non-osteopenic animal model treated with either risedro-

nate or alendronate [61]. In biopsies obtained adjacent to 

hip fracture site in bisphosphonate-treated women, 

includ ing some with AFFs, the heterogeneity of the com-

po sitional parameters also decreased compared to bis-

phosphonate-naïve women, while the mean property 

values were similar [49]. Interestingly, the cortical 

mineral/matrix ratio was 8% greater in tissue from 

patients with atypical subtrochanteric fractures than that 

of patients with typical fractures. Th e reduced mineral 

and matrix heterogeneity may diminish tissue-level 

tough en ing mechanisms that normally inhibit crack 

propa gation. Altered tissue mineralization has been 

impli cated in bisphosphonate treatment [62,63] and 

needs to be related to tissue mechanical performance.

Conclusion

Th e concern of whether long-term bisphosphonate use 

oversuppresses bone turnover contributing to AFF 

remains open. Th ose patients who suff er AFF appear to 

have unique compositional characteristics, which could 

indicate pre-existing qualities prior to the initiation of 

bisphosphonate therapy or a property that occurs in a 

limited number of patients as a result of bisphosponate 

treatment. Th e suggestion of a bisphosphonate holiday in 
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which treatment is stopped for short periods of time to 

avoid AFF formation is controversial because the 

successful return to ‘normal’ remodeling needs to be 

demonstrated. Retention of bisphosphonates in the bone 

matrix may result in residual release for more than 

7 years [13,64].

Evidence is mixed regarding the contribution of over-

suppression of bone turnover with bisphosphonate 

treatment to AFF initiation. Limited histological analyses 

have been performed on tissue from individuals with 

AFFs to support the mechanisms suggested above. 

Severely suppressed bone turnover was evident based on 

the absence of double fl uorochrome labels in iliac crest 

biopsies from patients with AFFs [1,65]. In a case report, 

tissue from the femur and iliac crest demonstrated 

increased resorption and decreased formation in a 

76-year-old woman with a femoral fracture [66]. In tissue 

removed at the fracture site during intramedullary nail 

insertion in a 57-year-old woman, evidence of bone 

remodeling was present; however, a great number of 

empty osteocytic lacunae were evident, as was necrotic 

and damaged tissue at the fracture site [67]. In all cases, 

the presence of a clear fracture callus and radiolucency at 

the site of fracture initiation suggests that bone tissue can 

still be actively formed and resorbed in these individuals, 

although local demineralization is also a possible 

mechanism.

In conclusion, insuffi  cient evidence exists on the 

specifi c eff ects of bisphosphonates on cortical bone 

quality and tissue properties, and their eff ects on the 

mechanical performance of the skeleton. Based on 

current knowledge, bisphosphonates remain a safe and 

eff ective therapy to prevent fractures in osteoporotic 

individuals. Further investigation into the origin of AFFs 

is required, along with better methods to detect those 

few patients at risk for developing this major 

complication.
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