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Abstract

Introduction: Women with fibromyalgia (FM) have symptoms of increased muscular fatigue and reduced exercise
tolerance, which may be associated with alterations in muscle microcirculation and oxygen metabolism. This study
used near-infrared diffuse optical spectroscopies to noninvasively evaluate muscle blood flow, blood oxygenation
and oxygen metabolism during leg fatiguing exercise and during arm arterial cuff occlusion in post-menopausal
women with and without FM.

Methods: Fourteen women with FM and twenty-three well-matched healthy controls participated in this study. For the
fatiguing exercise protocol, the subject was instructed to perform 6 sets of 12 isometric contractions of knee extensor
muscles with intensity steadily increasing from 20 to 70% maximal voluntary isometric contraction (MVIC). For the cuff
occlusion protocol, forearm arterial blood flow was occluded via a tourniquet on the upper arm for 3 minutes. Leg or
arm muscle hemodynamics, including relative blood flow (rBF), oxy- and deoxy-hemoglobin concentration ([HbO,] and
[Hb]), total hemoglobin concentration (THC) and blood oxygen saturation (StO,), were continuously monitored
throughout protocols using a custom-built hybrid diffuse optical instrument that combined a commercial near-infrared
oximeter for tissue oxygenation measurements and a custom-designed diffuse correlation spectroscopy (DCS)
flowmeter for tissue blood flow measurements. Relative oxygen extraction fraction (rOEF) and oxygen consumption
rate ('VO,) were calculated from the measured blood flow and oxygenation data. Post-manipulation (fatiguing exercise
or cuff occlusion) recovery in muscle hemodynamics was characterized by the recovery half-time, a time interval from
the end of manipulation to the time that tissue hemodynamics reached a half-maximal value.

Results: Subjects with FM had similar hemodynamic and metabolic response/recovery patterns as healthy controls
during exercise and during arterial occlusion. However, tissue rOEF during exercise in subjects with FM was
significantly lower than in healthy controls, and the half-times of oxygenation recovery (A[HbO-] and A[Hb]) were
significantly longer following fatiguing exercise and cuff occlusion.

Conclusions: Our results suggest an alteration of muscle oxygen utilization in the FM population. This study
demonstrates the potential of using combined diffuse optical spectroscopies (i.e, NIRS/DCS) to comprehensively
evaluate tissue oxygen and flow kinetics in skeletal muscle.

Introduction

Fibromyalgia (FM) is a common chronic widespread pain
syndrome affecting approximately 2 to 5% of the US
population [1,2]. Historically, older women are more sus-
ceptible to FM compared to men or young women [2-4].
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People suffering from FM have symptoms of increased
muscle fatigue and reduced tolerance to exercise, similar to
patients with chronic fatigue syndrome (CFS) [5]. Although
the specific pathogenic mechanisms of FM remain unclear,
studies have suggested that the muscle pain and fatigue of
FM may be associated with mitochondrial dysfunction [6],
lower capillary density [7,8], reduced capillary permeability
[9], or impaired vasodilatory capacity [10,11]. Those
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impairments may consequently affect muscle tissue micro-
circulation and oxygen metabolism. However, previous stu-
dies investigating peripheral/muscle blood flow or oxygen
consumption in populations with FM have reported con-
flicting results [8,11-17]. Some studies have found reduced
skin/muscle blood flow or oxygen consumption in people
with FM [8,11,12,14,15,17], whereas others reported that
muscle blood flow or oxygen metabolism was not signifi-
cantly altered by FM [13,16]. It has also been reported that
subjects with FM have prolonged oxygen level (oxy- and
deoxyhemoglobin concentrations) recovery times following
muscle ischemia [18] or aerobic exercise [19]. The previous
studies provide incomplete information, and simultaneous
measurements of tissue blood flow, blood oxygenation and
oxygen metabolism are required for a more comprehensive
evaluation of dynamic skeletal muscle and circulatory func-
tions in FM.

Methods previously used to measure muscle blood flow,
oxygenation and oxygen consumption in FM population
all have limitations. Laser Doppler cannot detect blood
flow in deep muscle tissue, and is limited to superficial
layers (such as skin) [8]. The Xe'* technique [12,16,20] or
contrast media-enhanced color ultrasound Doppler [17]
can measure microvasculature blood flow in deep muscle
tissue; however the invasive and complex procedure of
injecting radioactive isotopes or contrast agents limits
their widespread use in the clinic. Partial pressure of oxy-
gen (PO,) electrodes have been used to invasively assess
muscle oxygenation in a tiny spot [21], which may not be
representative of the whole skeletal muscle. Phosphorus
magnetic resonance spectroscopy (P-31 MRS) has been
used to assess muscle oxygen consumption [14], but does
not provide high temporal resolution and requires large
and expensive instrumentation [22].

Near-infrared diffuse optical spectroscopy (NIRS) offers
a noninvasive, rapid, portable, and low-cost alternative for
monitoring tissue blood oxygenation and oxygen con-
sumption in microvasculature, although it does not
directly measure tissue blood flow. Near-infrared light
probes tissue millimeters to centimeters below the skin
surface, allowing for measurement of oxy- and deoxyhe-
moglobin concentrations ([HbO,] and [Hb]), total hemo-
globin concentration (THC) and blood oxygen saturation
(StO,) [23]. NIRS has been broadly used for noninvasive
assessment of tissue oxygenation in clinic. According to a
review paper written by Ferrari et al. [24], approxi-
mately160 articles on the use of NIRS to study muscle
physiology (primarily in upper and lower limb muscles)
were published from 2007 up to the end of 2010 [24].
NIRS has also been used in studies of FM [18,19] and CFS
[5,25] to evaluate tissue hemodynamic responses following
muscle ischemia and aerobic exercise. Near-infrared dif-
fuse correlation spectroscopy (DCS) is an emerging tech-
nique capable of directly and noninvasively measuring
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microvascular blood flow in various tissues, including
human skeletal muscles [23,26-28]. DCS combines several
attractive features for blood flow measurement including
noninvasiveness, high temporal resolution (up to several
milliseconds) [29], portability, and relatively large penetra-
tion depth (up to several centimeters) [30,31]. DCS for
blood flow measurement in various organs and tissues
have been validated to other standards, including laser
Doppler [32,33], Xenon-CT [34], fluorescent microsphere
flow measurement [35], and perfusion magnetic resonance
imaging (perfusion MRI) [36]. Recently, our group has
developed a hybrid diffuse optical instrument which com-
bines a commercial NIRS tissue oximeter (Imagent, ISS
Inc., IL, USA) and a custom-designed DCS tissue flow-
meter for measurements of both tissue blood flow and
blood oxygenation [23]. Simultaneous measurements of
blood flow and oxygenation enable estimation of the oxy-
gen metabolic rate in tissue [27], thus providing compre-
hensive information about dynamic tissue oxygen kinetics.

The present study aims to use the hybrid NIRS/DCS
instrument to evaluate skeletal muscle tissue hemody-
namics (blood flow and oxygenation) and oxygen meta-
bolism in postmenopausal women with and without FM.
Because the abnormality of oxygen kinetics in FM may
not be apparent at rest, leg skeletal muscle hemody-
namics and metabolism were manipulated by isometric
fatiguing exercise. In addition, a protocol of temporary
cuff occlusion was used to create muscle ischemia in the
forearm and to monitor muscle blood flow and oxygen
recovery dynamics during reactive hyperemia. To the
best of our knowledge, this study quantified for the first
time, skeletal muscle hemodynamics and metabolism
simultaneously in subjects with FM and well-matched
healthy controls during exercise and during a muscle
ischemic challenge. We hypothesize that FM affects
muscle hemodynamic/metabolic responses to fatiguing
exercise and ischemic challenge, which can be detected
by our hybrid NIRS/DCS instrument. This study pro-
vided comprehensive and comparative evaluation of
muscle oxygen kinetics to improve the understanding of
the physiological mechanisms of FM.

Materials and methods

Study protocols

The study was reviewed and approved by the University of
Kentucky Institutional Review Board. Thirty-seven women
between the ages of 51 and 70 years participated in this
study, including 14 women with FM and 23 healthy con-
trols. All subjects gave signed consent prior to the study.
FM was diagnosed in accordance with the 1990 criteria
established by the American College of Rheumatology
[37]. Subjects with FM and healthy controls were matched
in age, height, weight, body mass index (BMI), physical
activity and baseline maximal voluntary isometric
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contractions (MVIC). Physical activity was characterized
by the international physical activity questionnaire (IPAQ)
[38] while baseline MVIC was determined prior to fatigue
exercise (described later in this section). The duration of
FM (that is, the time interval between the diagnosis of FM
and the start of the fatiguing exercise study) was 13.69 +
1.90 years (mean + standard error, SE), ranging from 3 to
24 years. Some subjects with FM were taking medications
such as anti-inflammatory drugs, low-dose aspirin, and
fish oil supplements. These medications were discontinued
at least 3 days prior to exercise to minimize the impact on
muscle hemodynamic responses.

Two experimental protocols were used to investigate
muscle hemodynamic/metabolic responses, including
fatiguing leg isometric contractions and arm cuff occlu-
sion (muscle ischemic challenge). Each subject was
asked to perform fatiguing leg exercise followed by cuff
occlusion in the arm to minimize the potential interfer-
ence between the two protocols in a single muscle, and
to examine responses to both exercise and ischemia. Leg
knee extensor muscles were evaluated for fatiguing exer-
cise since these muscles are primarily used for daily
activities, and the subjects were tolerant to the protocol.
In addition, previous studies in FM [18,19] have utilized
a cuff occlusion protocol using the forearm muscles
(flexor carpi radialis) to investigate oxygen kinetics,
allowing a basis for comparison.

At least 3 days prior to fatiguing exercise, each subject
participated in a session to become familiar with the per-
formance of MVIC on a Biodex multi-joint dynamometer
(System 4, Biodex Medical Systems Inc., NY, USA) as fol-
lows: the subject was seated in an upright position with
the seat tilted at an angle of 85°. The lateral femoral epi-
condyle was aligned to the center of the dynamometer
shaft. Stabilization was provided by two shoulder straps,
and a waist strap was used to minimize the use of skeletal
muscles other than the knee extensor. Each subject’s test-
ing foot was secured by a strap to the dynamometer with a
fixed knee angle of 90°. The subject was then instructed to
perform leg isometric contractions (that is, kicking against
the dynamometer lever arm) held for 3 to 4 seconds, while
the maximal value of the torque generated during the iso-
metric contraction was recorded. During MVIC, an elec-
trical stimulation (ES) was used to noninvasively induce
superimposed force to the muscle via surface electrodes
over the proximal and distal portions of the thigh [39].
When applying ES to the muscle, all motor units are
recruited. Any increment in force from ES would suggest
incomplete activation of the muscle from MVIC. After
performing MVIC measures, the central activation ratio
(CAR) was quantified using the following equation:

CAR = MVIC/total force, where the total force =
MVIC + superimposed twitch [40].
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The isometric fatiguing exercise was performed on the
dynamometer and started with three MVIC trials with a
3-minute rest between MVICs. Following the MVIC tests,
an optical sensor was secured by medical tape over the
vastus lateralis (mid belly) at the mid thigh of the evalu-
ated leg, and a 3-minute baseline measurement was
recorded. Following the baseline measurement, the subject
was instructed to perform six sets of twelve isometric
muscle contractions at a 40% duty cycle (4-second con-
traction, 6-second rest) steadily increasing from an initial
intensity of 20% MVIC and eventually reaching an inten-
sity of 70% of the MVIC with a increment of 10% MVIC
after each set. While performing exercise, the subject
received visual feedback by looking at the targeted inten-
sity level shown on a computer and was encouraged to
achieve each set intensity (20 to 70% MVIC). Between sets
of isometric muscle contractions, a single MVIC was per-
formed as the primary measure of fatigue. There was no
additional rest between sets. In total, 78 muscle contrac-
tions (12 x 6 contractions + 6 MVIC) were performed
during the course of fatiguing exercise. Fatigue and pain
during exercise were evaluated according to the visual ana-
log scale (VAS); the subject was asked to indicate her pain/
fatigue severity on a 100-mm scale. Details about the fati-
gue and pain questionnaires can be found in references
[41] and [42]. A higher VAS score indicates more pain or
fatigue. After completion of the exercise, the subject was
asked to perform one MVIC to evaluate strength recovery
at time points 3, 6, 9 and 12 minutes.

The cuff occlusion protocol in the forearm started
approximately 10 minutes after the fatiguing leg exercise.
The participant sat in an upright position and the right
arm was extended resting on a horizontal support. A fast-
inflating automatic tourniquet cuff (ATS 1000, Zimmer
Inc., IN, USA) was placed on the upper arm and an optical
sensor was secured by medical tape over the flexor carpi
radialis muscle. After a 3-minute baseline measurement,
arterial blood flow was occluded via the tourniquet on the
upper arm at a pressure of 230 mmHg for 3 minutes. The
pressure was then released and measurements continued
for an additional 5-minute recovery period.

Hemodynamic/metabolic measurements

The optical sensor was connected to a hybrid diffuse
optical instrument, which combined a commercial NIRS
oximeter (Imagent, ISS Inc., IL, USA) for tissue oxygena-
tion measurement and a custom-designed diffuse correla-
tion spectroscopy (DCS) flowmeter for tissue blood flow
measurement. The principle of the hybrid instrument has
been described elsewhere [23,43]. Briefly, near-infrared
laser light was delivered into the thigh or arm muscle, and
the reflectance light was received by the photon detectors
through source and detector fibers placed on the skin
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surface. The NIRS oximeter measured the amplitudes and
phases of frequency-modulated light (110 MHz) at two
wavelengths (830 and 690 nm) and four source-detector
separations (2.0, 2.5, 3.0 and 3.5 cm) to extract tissue
absorption and scattering coefficients [23,44]. Absolute
values of [HbO,] and [Hb] were extracted from the mea-
sured tissue absorption coefficients at the two wavelengths
[44]. Total hemoglobin concentration (THC) was then
calculated as the sum of [HbO,] and [Hb], while tissue
blood oxygen saturation (StO,) was calculated as 100% x
[HbO,]/THC.

Preliminary data analyses indicated that the measured
time courses of absolute tissue blood oxygenation, deter-
mined by the light amplitudes and phases from all four
source-detector separations were too noisy to determine
reliable time intervals for characterizing oxygen recovery,
due to the unstable phase slopes over time. Thus, to eval-
uate tissue blood oxygenation recovery, we used the mea-
sured light amplitudes at the two wavelengths from a
single source-detector separation (2.5 cm for arm mus-
cles or 3.0 cm for leg muscles) to calculate the changes of
[HbOs,] and [Hb] (that is, A[HbO,] and A[Hb]) relative
to their baselines (before physiological manipulations),
based on the modified Beer-Lambert Law [45].

Blood flow index was extracted by fitting the autocorre-
lation curve determined from the detected temporal fluc-
tuation of light intensity measured by DCS [23,27,30].
The unit of the blood flow index is cm®/s. Although this
unit is different from the classical blood flow unit in bio-
logical tissues (ml/min/100 ml), its percentage changes
have been found to correlate well with the blood flow
changes measured by many other established modalities
[32-36]. The relative blood flow (rBF) was then calculated
by normalizing/dividing the blood flow index to its base-
line. As with the NIRS oximeter, the source-detector
separation used for DCS measurement was 2.5 or 3.0 cm
for arm or leg muscle, respectively. The distal tips of
source and detector fibers for NIRS oximeter and DCS
were embedded in a foam pad to form a hybrid optical
sensor [23,43]. The NIRS oximeter and DCS flowmeter
were operated alternately via triggers controlled by a
computer. For both protocols of fatiguing exercise and
cuff occlusion, muscle blood flow and blood oxygenation
were continuously monitored by the hybrid optical
instrument with a frame sampling time of approximately
3 seconds throughout the experiments.

Relative (normalized to baseline) oxygen extraction
fraction (rOEF) and oxygen consumption rate (rVO,)
during fatiguing exercise were calculated based on Fick’s
law using the measured blood flow and oxygenation
data respectively [27]:

rOEF = 100% x (1-StO5)/(1-StOypaseline) and rVO, =
100% x rBF x rOEF, where StOspaseline represents the
absolute baseline value of tissue blood oxygen saturation
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before exercise. Similar to the rOEF and rVO,, relative
oxygenation changes were calculated by normalizing their
absolute values to baselines respectively, resulting in
r[HbO,], r[Hb], rTHC and rStO,. Throughout this paper,
‘I’ represents the relative value normalized/divided by its
baseline, and ‘A’ (for example, A{HbO,] and A[Hb]) repre-
sents the subtracted difference between the time course
data and its baseline.

Data analysis

Since the optical signals during exercise were easily con-
taminated by the muscle fiber motion during leg con-
tractions [26], hemodynamic/metabolic responses during
fatiguing exercise were estimated by averaging the opti-
cal data over the 6 seconds immediately after fatiguing
exercise. This very short post-exercise measurement per-
iod was selected as the most accurate reflection of the
exercise state since rapid hemodynamic changes occur in
muscle immediately after exercise [46,47]. Approximately
one minute after exercise, most hemodynamic data
became stable, allowing us to average a longer period of
data acquisition to obtain a better signal-to-noise ratio.
Therefore, hemodynamic data at the time points 3, 6, 9
and 12 minutes after exercise were quantified by aver-
aging 30 seconds of data immediately preceding each
time point. These data were then normalized to their
pre-exercise baselines to evaluate responses during and
post-exercise.

Hemodynamic recovery (that is, rBF, A[HbO,], A[Hb])
after fatiguing exercise or cuff occlusion was characterized
by the recovery half-time [18,19,48], which was defined as
the time interval from the end of occlusion/exercise to the
time by which tissue hemodynamics had recovered to the
half-maximal value. We used A[HbO,] and A[Hb] from
one single source-detector separation (2.5 cm for arm
muscles or 3.0 cm for leg muscles) to determine the half-
times of oxygenation recovery. Note that the rOEF and
rVO, data had similar noise levels as the absolute blood
oxygenation data because they were calculated from the
absolute StO,. Thus, the recovery half-times for THC,
StO,, rOEF and rVO, are not reported in this study.

Average hemodynamic/metabolic responses by group
are presented as means + SE (error bars) in figures. The
Student’s t-test was used to compare differences in
hemodynamic/metabolic data between the FM and
healthy control groups. Linear regression was used to
investigate the correlations among demographic, physical
activity, strength and optical data.

Results

During the familiarization MVIC test, the CAR was found
to be very high and was not different between the subjects
with FM and healthy controls (0.99 + 0.01 vs. 0.99 + 0.02,
P = 0.90), indicating that both groups exerted full effort to
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perform the MVICs. There were no differences between
the two groups in age, height, weight, BMI, IPAQ, or base-
line MVIC (Table 1). Overall, the subjects lost an average
of 28.9% strength after exercise, and there was no signifi-
cant difference (P > 0.05) between groups in the percen-
tage of strength loss. However, subjects with FM reported
significantly more fatigue and pain during exercise (P <
0.001) compared to healthy controls (Table 1), according
to the VAS.

Among the thirty-seven subjects (twenty-three healthy
controls and fourteen subjects with FM), five subjects
(three healthy controls and two subjects with FM) did
not have oxygenation measurements due to NIRS oxi-
meter instrument failure. Thus, all subjects were
included for relative blood flow (rBF) analysis, whereas
only 32 subjects (20 healthy controls and 12 subjects
with FM) were included for analysis of blood oxygena-
tion/oxygen metabolism. None of the baseline hemody-
namic/metabolic variables were correlated with subject
demographic data (age, height, weight, BMI), IPAQ, or
baseline MVIC.

Hemodynamic/metabolic changes following leg fatiguing
exercise

Figure 1 ([HbO,], [Hb], THC, StO,) and Figure 2 (rBF,
rOEF, rVO,) illustrate hemodynamic and metabolic
responses in the knee extensor muscle of a subject with
FM (Figure 1a, Figure 2a) and a healthy control (Figure 1b,
Figure 2b) throughout fatiguing exercise. Subjects with FM
and healthy controls had similar hemodynamic and meta-
bolic response patterns. During exercise, rBF increased
to meet the increase in oxygen demand (rVO,). The
increased blood flow brought a greater volume of blood to
the exercising muscles, thus elevating THC. Oxygen con-
sumption in an exercising muscle resulted in an increase

Table 1 Subject characteristics
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in [Hb] and decreases in [HbO,] and StO,. Once the exer-
cise was stopped, all variables recovered towards their
baseline values, which was mainly due to the rapidly
decreased oxygen demand post-exercise. Notice that
because muscle fiber motion artifacts during exercise
affected optical measures, data were averaged over 6 sec-
onds immediately following exercise (see the arrows in
Figure 1 and Figure 2) to represent hemodynamic/meta-
bolic responses during exercise.

The averaged percentage changes during exercise are
shown by group in Figure 3. On average, subjects with FM
tended to have smaller changes (assigned baseline to be
100%) in all measured variables during exercise than
healthy controls, although most of the differences between
the two groups were not significant. The increases in rBF
and rVO, during exercise were much larger than those in
r[HbO,], r[Hb], rTHC, rStO, and rOEF, leading to rela-
tively larger variations (error bars) in rBF and rVO, The
rOEF during exercise was significantly less in subjects with
FM compared to healthy controls (99.7 + 2.6 vs. 107.4 +
2.0; P = 0.03). No significant differences in any hemody-
namic/metabolic variables were found between the two
groups at time points 3, 6, 9 and 12 minutes after exercise
(data not shown).

Recovery half-time following leg fatiguing exercise

Figure 4 illustrates hemodynamic recovery response of
a subject with FM (Figure 4a) and a healthy control
(Figure 4b) following the fatiguing exercise. Although
large individual variation existed, subjects with FM and
healthy controls showed similar hemodynamic recovery
patterns; rBF and A[Hb] decreased, whereas A[HbO,]
increased following the fatiguing exercise. The recovery
half-time of rBF was shorter than oxygenation recovery for
both the FM and control groups. On average (Figure 5),

Parameters Women with fibromyalgia (FM)(n = 14) Healthy controls(HC) (n = 23) P-value
Age (years) 600+ 1.8 568 =10 0.09
Height (cm) 1628 £ 1.5 1634 £ 13 0.75
Weight (kg) 685 + 43 69.1 + 20 0.88
Body mass index (kg m?) 257 +13 259 + 08 0.87
FM duration (year) 137 +19 N/A N/A
IPAQ (MET minute week ") 7574 + 1882 5928 + 864 0.37
Baseline MVIC (N m) 1136 £ 53 1284 + 56 0.08
% Loss in MVIC immediately post-exercise 314£13 274 £ 24 0.23
% Loss in MVIC at 12 minutes post-exercise 211+ 25 175 £ 20 0.28
VAS pain score pre-exercise (mm) 524 + 65 69 + 2.1 < 0.001
VAS pain score post-exercise (mm) 562+ 70 174 + 45 < 0.001
VAS pain score after 12 minutes recovery (mm) 53667 10.1 £33 < 0.001
VAS fatigue score post-exercise (mm) 610+ 70 228 £42 < 0.001

Results are presented as mean + standard error. 1 MET (metabolic equivalent of task), 1 kilocalorie kg™ hour™; IPAQ, International Physical Activity Questionnaire;

MVIC, maximal voluntary isometric contraction; VAS, visual analog scale.
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Figure 1 lllustrative thigh muscle oxygenation responses throughout fatiguing exercise in (a) a subject with fibromyalgia (FM) and
(b) a healthy control. The oxygenation responses include oxy- and deoxyhemoglobin concentration ([HbO,] and [Hb]), total hemoglobin
concentration (THC) and oxygen saturation (StO,), all presented in absolute values. The first two vertical lines indicate the beginning and the
end of fatiguing exercise respectively, and the last four vertical lines indicate the time points 3, 6, 9 and 12 minutes after exercise. The arrow
indicates the time points immediately post-exercise (over 6 seconds). Note that the muscle motion artifacts during exercise and during maximal
voluntary isometric contraction (MVIC) tests at time points 3, 6, 9 and 12 minute post-exercise may contaminate optical measurements, as seen
from the peaks in the figure.
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Figure 2 lllustrative relative blood flow (rBF), oxygen extraction fraction (rOEF) and oxygen consumption rate (rVO;) throughout
fatiguing exercise in (a) a subject with firoromyalgia (FM) and (b) a healthy control, all presented in percentage relative to baseline
(%). The first two vertical lines indicate the beginning and the end of fatiguing exercise respectively, and the last four vertical lines indicate the
time points 3, 6, 9 and 12 minutes after exercise. The arrow indicates the time points immediately post-exercise (over 6 seconds). Note that the
muscle motion artifacts during exercise and during maximal voluntary isometric contraction (MVIC) tests at time points 3, 6, 9 and 12 minute
post-exercise may contaminate optical measurements, as seen from the peaks in the figure.
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Figure 4 lllustrative recovery half-times of relative blood flow (rBF), change in oxyhemoglobin concentration (A[HbO,]) and change in
deoxyhemoglobin concentration (A[Hb]) following fatiguing exercise in (a) a subject with fibromyalgia (FM) and (b) a healthy control.
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example, A[HbO,]) between individuals (Figure 4) may
not agree with those between groups (Figure 5).

Recovery half-time following arm cuff occlusion

Figure 6 illustrates hemodynamic recovery responses of
a subject with FM (Figure 6a) and a healthy control
(Figure 6b) following arm cuff occlusion. Similar to the
fatiguing exercise, healthy controls showed a similar
hemodynamic recovery pattern to FM subjects. Following
the release of the cuff, rBF and A[HbO,] increased,
whereas A[Hb] decreased. The recovery half-time of rBF
was shorter than oxygenation recovery for both groups.
However, the recovery times of A[HbO,] and A[Hb] fol-
lowing cuff occlusion differed significantly between the
two groups (Figure 7); FM demonstrated a longer recovery
half-time (s) than healthy controls in A[HbO,] (19.4 + 2.3
vs. 12.2 £ 0.9; P = 0.002) and A[Hb] (20.4 + 1.8 vs. 16.3 +
1.1; P = 0.04), but not in rBF (7.5 £ 0.3 vs. 7.6 + 0.2; P =
0.86). These results mirror the data for fatiguing exercise.

Discussion

Although previous studies have individually measured
skeletal muscle blood flow [8,12,16,17,20], oxygenation
[18,19,21] or oxygen consumption [14] in the FM popu-
lation, none have investigated all these variables simulta-
neously in a single study. While NIRS and DCS have
provided a great deal of hemodynamic data individually,
both must be used in order to evaluate rOEF and rVO,.
The present study reports the first results using the
novel hybrid diffuse optical instrument for simultaneous
monitoring of muscle blood flow, oxygenation during
fatiguing leg exercise and during arm cuff occlusion,
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from which muscle oxygen extraction and consumption
rate were derived. Both protocols, cuff occlusion and
fatiguing exercise, created an imbalance between tissue
oxygen supply (blood flow) and oxygen consumption for
challenging muscle function. Cuff occlusion is a static
protocol which creates tissue ischemia during occlusion
and reactive hyperemia after release of occlusion. Fati-
guing exercise is a dynamic exercise protocol which
tests muscle regulatory and metabolic responses to sti-
mulus (that is, exercise). Both protocols have been
widely used to assess a variety of diseases affecting ske-
letal muscle, including peripheral arterial disease [27],
CFS [5], and FM [18,19]. We adopted both protocols in
the present study to extensively evaluate muscle oxygen
and flow kinetics in both healthy and FM populations.
We demonstrated in this study that the hybrid instru-
ment has high sensitivity in detecting hemodynamic and
metabolic responses to muscle ischemia/reperfusion and
fatiguing exercise.

Subjects with FM had similar hemodynamic and meta-
bolic response/recovery patterns to healthy controls dur-
ing exercise and during arterial occlusion, and most
measured variables did not show significant differences
between the two groups. However, we observed that rOEF
during exercise in subjects with FM were significantly
lower than those in healthy controls (see Figure 3),
and the half-times of oxygenation recovery (A[HbO,]
and A[Hb]) were significantly longer (see Figure 5 and
Figure 7).

Both lower rOEF and longer oxygenation recovery time
indicate an impairment of oxygen utilization in subjects
with FM. Although not tested in this study, these findings

60
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Figure 5 Average recovery half-times of relative blood flow (rBF) (nyc = 23, ngy = 14), change in oxyhemoglobin concentration
(A[HbO,]) and change in deoxyhemoglobin concentration (A[Hb]) (nyc = 20, ngy = 12) in subjects with fibromyalgia (FM) and healthy
controls (HC) following fatiguing exercise. The Student’s t-test was used to compare the half-times between FM and healthy subjects. *P < 0.05.
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deoxyhemoglobin concentration (A[Hb]) following arm cuff occlusion in (a) a subject with fibromyalgia (FM) and (b) a healthy control.
The two solid vertical lines indicate the beginning and ending of cuff occlusion. The horizontal dashed and dotted lines indicate the maximal
and half-maximal recovery values of hemodynamic variables, respectively. The vertical dotted lines indicate the recovery half-times.

(b)

N e half-time = 7.2 seciir. - T
< 300y \ W _
.| ﬁ -“\_“""'\-
(2 100m-f'?\ cuff occlusion  ~ |4
0 e ol : .
rest 0 50 100
—~ 15¢ - i . .
= half-time = 9.0 sec —
= 10 | p
§. i _:: _
=) 0F s 4
< 5 L L
0 50 100
10
e .|
% 5 [ ..l ‘ -t
—_ - e
S L L |
e half-time = 13.6 sec™ :'gjf
T st — et
0 50 100
Time (sec)

could reflect altered mitochondrial function. The pain and
fatigue in subjects with FM have been found by others to
be associated with mitochondrial dysfunction [6], as evi-
denced by decreased coenzyme Qo (CoQy), increased oxi-
dative stress, as well as increased reactive oxygen species
(ROS) production [6]. Mitochondrial dysfunction could

also cause abnormal synthesis of adenosine-triphosphate
(ATP), resulting in insufficient energy supply and muscle
fatigue [6]. Accordingly, FM may impact mitochondrial
oxidation to meet the increased metabolic demand during
exercise, which would lead to a lower rOEF as observed in
the present study.

25

20
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Figure 7 Average recovery half-times of relative blood flow (rBF) (nyc = 23, ngy = 14), change in oxyhemoglobin concentration
(A[HbO,]) and change in deoxyhemoglobin concentration (A[Hb]) (nyc = 20, ngy = 12) in subjects with fibromyalgia (FM) and healthy
controls (HC) following arm cuff occlusion. The Student’s t-test was used to compare the half-times between FM and healthy subjects. *P <

0.05; **P < 0.005.
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On the other hand, following fatiguing exercise and
cuff occlusion, extra oxygen is needed to compensate the
oxygen loss in hemoglobin during exercise, and to oxidize
lactate generated from anaerobic respiration [49]. This
process is termed ‘repaying the oxygen debt’ [50]. Here,
oxygen debt represents the oxygen deficit due to the
imbalance between oxygen consumed by the tissue and
that supplied via blood during exercise or muscle ische-
mia. Oxygenation recovery is dependent on the restoration
of tissue microcirculation (that is, blood flow recovery) as
well as the amount of oxygen debt to be repaid. We found
in both exercise and occlusion protocols that the half-
times of A[HbO,] and A[Hb] in subjects with FM were
significantly longer than those in healthy controls (see
Figure 5 and Figure 7), which is consistent with previous
study findings using a cuff occlusion protocol or treadmill
exercise [18,19]. The prolonged oxygenation recovery has
been attributed to the imbalance between the oxygen sup-
ply and demand [18], although blood flow was not mea-
sured in those studies. In the present study, the FM group
did not show a significant deficit in rBF recovery, so
the prolonged oxygen recovery was independent of reac-
tive hyperemia, but rather due to a higher oxygen debt.
A higher oxygen debt in FM subjects was also observed in
other studies [4,11,51,52], where subjects with FM were
found to have a higher concentration of muscle lactate
during anaerobic respiration. Fatiguing exercise [53] and
muscle ischemic challenge [54] as used in the present
study could induce extra muscle blood lactate in FM sub-
jects. Lactate accumulation was recently proposed to be
associated with muscle pain in FM subjects [55], although
controversy remains [56]. Our findings suggest a future
direction to explore the FM-induced alterations in mito-
chondrial function and lactate accumulation. An investiga-
tion of the relationships among oxygen kinetics,
mitochondrial function and lactate dynamics are needed
to further explore the origin of pain and fatigue in FM.

The present study is limited to the relative measure-
ments of muscle blood flow, oxygen extraction fraction
and oxygen consumption rate. However, some clinical
outcomes, such as muscle capillary density, are found to
be closely associated with the absolute values of muscle
blood flow and oxygen consumption rate [57,58]. In
addition, the blood flow index with a unit of cm®/s mea-
sured by DCS, needs to be calibrated to a classical blood
flow unit of ml/min/100 ml for biological tissues.
Another limitation is that we used the 6-second average
data immediately after fatiguing exercise to represent
the exercise-induced responses, as the optical data dur-
ing exercise were contaminated by the muscle motion
artifacts [26]. Although this method has been widely
used in other exercise studies [46,47], it may generate
measurement errors since muscle hemodynamics/meta-
bolism change rapidly immediately after exercise. To
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overcome those limitations, we are currently designing
calibration methods to obtain absolute tissue blood flow
and VO,, as well as gating algorithms to reduce motion
artifacts during exercise [59].

Conclusions

We explored the application of a novel NIRS/DCS tech-
nique to simultaneously evaluate the responses of muscle
blood flow, blood oxygenation and oxygen metabolism in
subjects with FM and well-matched healthy controls dur-
ing fatiguing exercise and muscle ischemic challenge. We
found that FM resulted in less oxygen extraction in mus-
cle during fatiguing exercise as well as longer oxygena-
tion recovery following exercise and muscle ischemia.
The results suggest an alteration of muscle oxygen utili-
zation, which is possibly due to the altered mitochondrial
function and/or lactate accumulation in the FM popula-
tion. These findings verify our hypothesis that FM affects
muscle hemodynamic/metabolic responses to fatiguing
exercise and ischemic challenge, which can be noninva-
sively detected by the hybrid optical instrument. Notice
that these conclusions are based on the data from rela-
tively small samples (14 FMs and 23 healthy controls).
A large subject pool would increase the statistical power
of our measurement results. Combination of NIRS and
DCS provides a unique tool to comprehensively evaluate
tissue oxygen and flow kinetics in skeletal muscle.
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