

CORRECTION

Correction: Propylthiouracil prevents cutaneous and pulmonary fibrosis in the reactive oxygen species murine model of systemic sclerosis

Gianluca Bagnato^{1*†}, Alessandra Bitto^{2†}, Natasha Irrera², Gabriele Pizzino², Donatella Sangari³, Maurizio Cinquegrani¹, William Neal Roberts⁴, Marco Atteritano³, Domenica Altavilla², Francesco Squadrito², Gianfilippo Bagnato³ and Antonino Saitta¹

See related research by Bagnato et al., http://arthritis-research.com/content/15/5/R120

Correction

After publication of our recent article [1], we noticed that Figure 2A was incorrect as a result of mislabeling of the image files. The correct Figure 2 is given in full here as Figure 1.

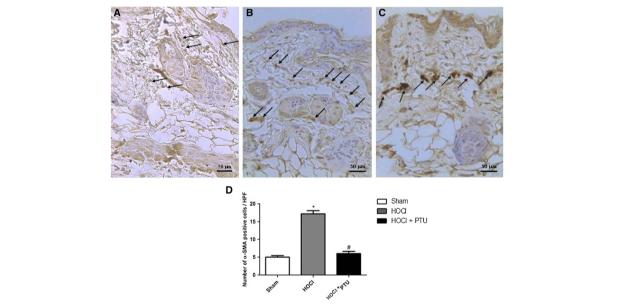


Figure 1 Immunostaining for α-SMA in cutaneous samples. Representative tissue sample from: (A) Sham animal; (B) HOCI mice; (C) HOCI + PTU animal (original magnification, \times 40). The arrows show strong diffuse staining of myofibroblast nuclei (dark brown staining). (D) Number of myofibroblasts from the three experimental groups (HOCI + PTU group, n = 10; HOCI group, n = 10; Sham, n = 5). The increase of myofibroblast population in the skin of HOCI mice is prevented by propylthiouracil administration. Values are expressed as the mean and standard deviation. *P < 0.001 versus Sham; #P < 0.001 versus HOCI. α-SMA, alpha-smooth muscle actin; HOCI, hypochlorous acid; HPF, high-powered field; PTU, propylthiouracil.

¹Division of Internal Medicine, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n°1, 98100 Messina, Italy

^{*} Correspondence: gbagnato@unime.it

[†]Equal contributors

Competing interests

The authors declare that they have no competing interests.

Author details

¹Division of Internal Medicine, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n°1, 98100 Messina, Italy. ²Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n°1, 98100 Messina, Italy. ³Division of Rheumatology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n°1, 98100 Messina, Italy. ⁴Division of Rheumatology, Department of Internal Medicine, University of Louisville, 501 East Broadway, Louisville, KY 40202, USA.

Received: 5 March 2014 Accepted: 31 March 2014 Published: 08 Apr 2014

Reference

 Bagnato G, Bitto A, Irrera N, Pizzino G, Sangari D, Cinquegrani M, Roberts WN, Atteritano M, Altavilla D, Squadrito F, Bagnato G, Saitta A: Propylthiouracil prevents cutaneous and pulmonary fibrosis in the reactive oxygen species murine model of systemic sclerosis. Arthritis Res Ther 2013, 15:R120.

10.1186/ar4534

Cite this article as: Bagnato *et al.*: Correction: Propylthiouracil prevents cutaneous and pulmonary fibrosis in the reactive oxygen species murine model of systemic sclerosis. *Arthritis Research & Therapy* 2014, 16:406