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Abstract

Background: An individual patient’s response to a particular drug is influenced by multiple factors, which may
include genetic predisposition. Pharmacogenetic studies attempt to discover and estimate the contributions of

genetic variants to the variability in response to a drug treatment. The task of identifying the genetic contribution is
often complicated by response phenotypes that are based on imprecise or subjective clinical observations. Because
the success of a pharmacogenetic study depends on the analysis of a heritable phenotype, it is important to identify
phenotypes with a significant heritable component to ensure reliable and reproducible results in subsequent genetic
association studies.

Methods: We retrospectively analyzed data collected from 436 rheumatoid arthritis patients treated with golimumab
during the phase Il GO-FURTHER study. We investigated the reliability of several potential response outcomes after
golimumab treatment. Using whole-genome sequencing of the clinical trial cohort, we estimated the heritability of
each potential outcome measure. We further performed a longitudinal analysis of the clinical data to estimate
variability of outcome measures over time and the degree to which each response metric could be confounded by
placebo response.

Results: We determined that the high degree of within-patient variation over time makes a single follow-up visit
insufficient to assess an individual patient’s response to golimumab treatment. We found that different potential
response outcomes had varying degrees of heritability and that averaging across multiple follow-up visits yielded
higher heritability estimates than single follow-up estimates. Importantly, we found that the change in swollen and
tender joint counts were the most heritable outcome metrics we tested; however, we showed that they are also more
likely to be confounded by a placebo response than objective phenotypes like the change in C-reactive protein levels.

Conclusions: Our rigorous approach to finding robust and heritable response phenotypes could be beneficial to all

pharmacogenetic studies and may lead to more reliable and reproducible results.
Trial Registration: Clinicaltrials.gov NCT00973479. Registered 4 September 2009.
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Background

Rheumatoid arthritis (RA) is a complex, chronic, and
debilitating autoimmune disorder characterized by
stiff and painful joints, chronic inflammation, syn-
ovitis, irreparable joint damage, and the presence of
auto-antibodies. Although its precise etiology is unclear,
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RA has been shown to have a strong genetic component,
as concordance in monozygotic twins is 15-30% while
the population prevalence is around 1%. Some have
estimated the heritability for the disease to be as high as
50% [1, 2]. A majority of the genetic susceptibility can be
attributed to polymorphisms at five amino acid residues
in HLA-DRBI, -B, and -DPB1 [3]. In addition, close to
100 loci from non-HLA genes have been shown to con-
tribute to disease susceptibility [4]. However, because the
genetic variants cumulatively explain only about 18% of
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disease variance, a large environmental influence has yet
to be clearly defined [5].

Despite an incomplete understanding of its etiology, a
set of clinical features as well as laboratory measurements
have allowed standardized diagnoses and assessment of
treatment efficacy in RA [6, 7]. One commonly used
metric is Disease Activity Score (DAS28 or DAS), which
incorporates swollen and tender joints counts (SJC and
TJC, respectively) out of 28 affected joints, the erythro-
cyte sedimentation rate (ESR) and a visual analog scale
score for general health (VASGH) into a formula where
a higher score (up to 10) indicates a more severe dis-
ease state [8, 9]. Variations of this score include the use
of C-reactive protein (CRP) as an acute inflammation
marker to replace ESR [10, 11]. Alternatively, categorical
definitions of RA treatment response have been devel-
oped by the American College of Rheumatology (ACR).
For example, ACR20 and ACR50 scores represent a 20%
or 50% improvement of disease state post-intervention
based on a combination of SJC, T]C, patient and physician
global assessments, pain, disability, and an acute-phase
reactant such as CRP [12, 13]. Similarly, the European
League Against Rheumatism has developed guidelines for
classifying patients’ treatment responses into good, mod-
erate, and non-response based on the change in DAS
from baseline [14]. The numerical DAS score, various
forms of DAS-based categorical variables, and ACRs are
commonly used as response metrics in RA clinical tri-
als. Despite this, other measurements such as the Health
Assessment Questionnaire and radiographic assessment
of the affected joints may provide further evidence. Gen-
erally, each of these measurements has its own strength
and limitations and several of them are often assessed in
combination to gain a comprehensive view of the disease
state or treatment effect.

The goal of a pharmacogenetic study is to establish
the association between certain genetic variants and
patients’ response to a therapy, and ultimately to esti-
mate the contributions of the genetic variants to the
variability of treatment response. While recent advances
have made genotyping widely available and highly pre-
cise, phenotypic measurements are still limited by issues
with precision and completeness, which is the ability
of a measurement to fully represent the symptoms and
underlying mechanisms of a complex disease such as
RA. Consequently, pharmacogenetic studies can be con-
founded by imprecise, subjective, or narrow response phe-
notypes. For example, a class of anti-TNF« antibodies that
includes etanercept, infliximab, golimumab, adalimumab,
and certolizumab pegol are often used in conjunction
with disease-modifying anti-rheumatic drugs (DMARDs),
such as methotrexate (MTX), in RA patients who have
an insufficient response to DMARDs alone. Evidence has
been published supporting a role for variants in the genes
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TNFA, TNFRIA, MEDIS, PTPRC, FcGR2A, FcGR3A and
others in influencing response to anti-TNFo treatment,
but few associations have been successfully replicated
[15-19]. The lack of replication may be due, in part,
to the use of response phenotypes that exhibit insuffi-
cient heritability, i.e., the variance of these phenotypes
cannot be explained by genetic variation, but rather by
some other factors. The heritability of a phenotype can be
estimated using sophisticated statistical methods such as
those implemented in the Genome-wide Complex Trait
Analysis toolkit (GCTA) [20].

Only two studies have estimated the heritability of
DAS28, SJC, TJC, and ESR as outcome metrics to vari-
ous anti-TNFa therapies [21, 22]. For example, an early
study looked at a group of 762 RA patients treated specifi-
cally with anti-TNFa monoclonal antibodies. It suggested
that SJC was the most heritable outcome metric (0.60),
followed by ESR (0.53) and TJC (0.35), while the global
health assessment score was the least heritable (0.14) [21].
Most recently, Umiceviv Mirkov, et al. used two meth-
ods to estimate the heritability of response to anti-TNF«
agents in a cohort of 878 patients through 14 weeks of
treatment. This study suggested that SJC (0.87) and TJC
(0.82) had the highest heritability estimate while ESR
(0.33) and VASGH (0.38) had the lowest estimates [22]. A
close examination of the statistical methods used in these
studies revealed several issues that may account for some
of the apparent discrepancies. First, some of the pheno-
types used to quantify patients’ drug responses exhibited
skewed distributions that violate statistical assumptions of
parametric hypothesis tests, resulting in unreliable p val-
ues. Second, most outcomes were determined at a single
follow-up visit after treatment. Because of their impre-
cise and subjective nature, these response metrics vary
over time, resulting in potentially unreliable estimates
of drug response for any given patient. Finally, none of
the published studies account for placebo response when
interpreting their results. This oversight could result in an
improvement in a patient’s disease state being incorrectly
attributed to a treatment rather than some other unknown
factor.

Here, we sought to identify robust, heritable pheno-
types associated with anti-TNFo drug response using a
set of clinical and genetic data collected from the GO-
FURTHER study [23, 24]. We investigated several pos-
sible response metrics, including changes in DAS, SJC,
TJC, and CRP levels after treatment with golimumab. We
showed that outcomes determined from a single follow-
up visit may not be sufficient to describe a patient’s true
response to a treatment and demonstrated that using dif-
ferent outcomes to quantify a patient’s response would
likely yield different results in subsequent association
studies. We then estimated the heritability of each poten-
tial response measure and showed that outcomes averaged
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across several follow-up visits resulted in higher heritabil-
ity estimates than those collected from a single follow-up
visit. Finally, we estimated the degree to which a patient’s
improvement in disease state could be attributable to
placebo response rather than active treatment and showed
that the relative magnitude of placebo response depends
on which metric is used to estimate a patient’s disease
state.

Methods

Clinical trial design and data collection

We leveraged clinical and genetic data obtained from the
GO-FURTHER phase III clinical trial for 436 patients with
moderate to severe RA [23-25]. In brief, each patient
was randomized to either treatment golimumab (GOL) or
placebo (PBO) arms (2:1) at week 0 and followed for 100
weeks (Table 1, Fig. 1). Patients in the GOL arm were given
2 mg/kg of GOL intravenously at weeks 0 and 4 and every
eight weeks thereafter. Patients in the PBO arm received
PBO injections at weeks 0, 4, and 12. If a patient qualified
for the early escape protocol (<10% improvement from
baseline; PBO-EE), they were given intravenous GOL at
weeks 16, 20, and every 8 weeks thereafter. If they did
not qualify for early escape (PBO-NE), they were given
PBO injections at weeks 16 and 20 and were treated
with GOL at weeks 24 and 28 and every 8 weeks there-
after. All patients were on a MTX regimen prior to and
throughout the study, despite any inadequate response to
MTX as a mono-therapy previously. All patients, minus
15 early dropouts, were included in statistical analyses
without the use of the last observation carried forward

Table 1 Summary of clinical trial patients and arms

GOL PBO-NE PBO-EE
Number of patients 287 99 50
Female (%) 231(0.8) 72(0.73) 41(0.82)
Age (SD) 51.92 (11.94) 52.77(11.17) 4924 (11.84)
Disease duration (SD) 7.19(6.82) 7.64(8.16) 6.56 (6.06)
BMI (SD) 27.19(5.74) 26.88 (5.36) 26.73 (6.65)
Initial DAS (SD) 5.97(0.81) 5.87(1.02) 5.93(0.8)
RF positive (%) 265 (0.92) 91(0.92) 45(0.9)
ACPA positive (%) 262 (0.91) 92 (0.93) 48 (0.96)
Number of visits (SD) 15.03 (2.7) 14.65 (3.18) 15.76 (0.72)
Number removed (%)?  5(2) 10 (10) 0(0)

GOL includes patients randomized to GOL treatment at week 0. PBO-NE includes
patients randomized to PBO at week 0 who did not qualify for the early escape
protocol. PBO-EE includes patients randomized to PBO at week 0 who qualified for
the early escape protocol

ACPA anti-citrulinated peptide antibody, BMI body mass index, DAS Disease Activity
Score, EE early escape, GOL golimumab, NE non-early escape, PBO placebo, RF
rheumatoid factor, SD standard deviation

@Patients from any arm who dropped out within 4 weeks of initial GOL treatment
were removed from analyses
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method (Table 1). Disease state was monitored at 16 pre-
determined time points over 100 weeks, during which
CRP, SJC, and TJC were assessed and DAS was calcu-
lated (Fig. 1). By virtue of the trial design, there were four
matched time points for all three groups after initial GOL
treatment: 4 weeks, 12 weeks, 20 weeks, and 28 weeks
after GOL treatment (WAG).

The study protocol was approved by local institutional
review boards and only trial patients who gave informed
consent for the genetic study were sequenced. Whole
blood was taken from patients according to the trial
protocol and whole-genome sequencing and variant call-
ing were performed as described in Standish, et al. [25].
Additional details about the clinical trial can be found
at www.clinicaltrials.gov (NCT00973479) and in previous
publications [23, 24].

Statistical analysis

Individual response outcomes

We used the R suite for all statistical analyses involving
clinical response data [26]. Summary response metrics
from single follow-up clinical visits were calculated for
each patient as the difference in disease state (e.g., DAS,
CRP, SJC, and TJC) between two clinical visits. Response
measures specified as 4, 12, 20, and 28 WAG were cal-
culated as the difference between a patient’s disease state
immediately prior to initial GOL injection and their dis-
ease state 4, 12, 20, or 28 weeks later, respectively (Fig. 1).
Response metrics specified as FL represent the difference
between a patient’s disease state during their first clinical
visit (week 0) and their last clinical visit (week 100 or ear-
lier if they dropped out prior to trial completion). Baseline
disease state was used as a covariate for subsequent anal-
yses of treatment response. For WAG response measures,
measurements from the clinical visit immediately prior to
initial GOL treatment were used as the baseline disease
state. For FL response measures, the disease state at week
0 was used as the baseline.

Average response outcomes

Average response phenotypes were calculated from the
repeated clinical measurements obtained on the individ-
uals throughout the trial. Weighted mean disease state
was calculated before and after treatment with GOL as
the area under the response curve over time divided by
the number of weeks. For patients in the GOL arm of the
study, the single baseline measurement was taken as the
pre-treatment disease state. Mean treatment response
(MNa) was calculated as the difference between average
disease states before and after GOL initiation. We further
derived additional statistics that represented the aver-
age response of a patient, the patient-specific variance in
response, and the patient disease trajectory over time, but
these derived phenotypes did not contribute significantly
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Fig. 1 GO-FURTHER trial design and clinical endpoints. Longitudinal design for the GO-FURTHER phase Il clinical trial. Patients were initially
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to our understanding of individual patient response and
were not considered further.

Parametric testing

To test these continuous response outcomes for nor-
mality, we used the Shapiro—Wilk normality test on the
raw data, transformed data, or residuals after account-
ing for clinical covariates. We used the Breusch—Pagan
test to assess the homoscedasticity of response variables
against clinical covariates. When we regressed the change
in disease state against the baseline disease state, a com-
mon covariate included in genetic association studies, we
found that the residuals of the CRP, SJC, and TJC metrics
violated the assumption of normality. After transform-
ing the metrics in the same way, they are transformed
to calculate DAS, which is the square root for SJC and
TJC (rSJC and rTJC, respectively) or the logarithmic
scale for CRP (ICRP). These data conformed better to
the assumption of normality. In addition, we found that
the assumption of homoscedasticity was violated when
regressing the change in SJC and TJC against their respec-
tive initial values. As a result, permutations were used to
determine reliable p values from subsequent heritability
analyses.

Correlation between outcomes

To determine how correlated these potential response
metrics were with one another, we calculated the pairwise
correlation between response outcomes obtained from a
single follow-up visit (e.g., WAG4_DAS vs WAG28_DAYS)
and averaged over multiple visits (e.g., WAG4_DAS vs
MNa_DAS). We calculated the correlation amongst dif-
ferent metrics and follow-up visits after transforming
the data to follow a normal distribution, so the Pearson

correlation coefficient was used. Pairwise correlations are
represented in a heat map where all negatively correlated
values appear black.

Linear mixed model

We fit a linear mixed model to the transformed dis-
ease metrics (DAS, ICRP, rSJC, and rTJC) collected on
patients throughout the clinical trial, including random
effects to accommodate repeated measurements for each
individual. Baseline disease state (intercept), GOL, and
PBO were estimated as fixed effects to obtain population-
level effect sizes (Bintercept; BGoL, and Bppo, respectively).
Random intercepts and GOL effects were used to obtain
estimates for individuals in the cohort. For each clinical
visit (approximately 16 visits per patient x 421 patients),
the treatment protocol was defined for GOL (i.e., if they
were on golimumab during a given observation) and PBO
(i.e., if they were on placebo during a given observation)
as binary dummy variables.

Within-patient variation over time was quantified from
the residuals of the linear mixed model. For each patient,
the root-mean-square error (RMSE) was calculated as a
measure of variation that could not be accounted for by
treatment with the active drug or PBO. Using the esti-
mated fixed effects from the mixed model, we quantified
the magnitude of the population-level PBO effect for
each disease metric. We compared the respective PBO
effect size estimates relative to baseline disease state and
relative to the GOL effect size. The percentage improve-
ment in disease state due to PBO response was calcu-
lated as 100 x Bppo/Bintercept- The percentage of the GOL
effect that can be attributed to PBO was calculated as

100 x Bppo/BgoL.
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Heritability estimates and permutations

Heritability of the various response phenotypes described
above was estimated using the GCTA software suite
(v1.24.4) [20]. Single-nucleotide polymorphisms with
Minor Allele Frequency (MAF) of <1% in our cohort
were removed when calculating the genetic relationship
matrix (GRM) for GCTA analysis. Initial disease state was
used as a covariate when estimating the heritability of
treatment response and the analysis was run with and
without four principal components included as covari-
ates. Because not all the linear regression assumptions
were explicitly met, permutation tests were used to assess
the statistical significance of the heritability estimates by
randomly shuffling patients’ response phenotypes 1000
times and then re-running GCTA using the previously
calculated GRM. p values were calculated by comparing
the distribution of permuted likelihood-ratio test statistics
with the likelihood-ratio test statistic from the actual data.

Results

Variability of potential response outcomes

Technical error and biological factors can contribute to
variation in a patient’s observed disease state. When try-
ing to determine each patient’s response to GOL treat-
ment, we found that a patient’s disease state varied from
week to week. To better understand the variation present
for each patient, we quantified within-patient variation
for each patient that could not be explained by GOL
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or PBO treatment. After fitting a linear mixed model to
outcome data collected from clinical visits throughout
the trial, we calculated the RMSE from the residuals of
each patient’s observations and found that many patients
had clinically meaningful variation in disease state over
the course of the trial. We found similar distributions of
within-patient error across the population, regardless of
which outcome metric was used (i.e., DAS, ICRP, rSJC,
or rTJC; Fig. 2a). The magnitude of unexplained varia-
tion in a patient, for DAS, ranged from 0.22 to 1.62 with
a median value of 0.71 points. Within-patient variation
calculated across the population using the other clinical
outcome measures showed similar distributions, demon-
strating two important findings: (1) quantifying clinical
response based on a single follow-up visit may not accu-
rately represent a patient’s response to a treatment and (2)
the degree to which a patient’s disease fluctuates due to
unknown factors varies from patient to patient.
Furthermore, when we compared outcomes determined
at different follow-up visits (4, 12, 20, or 28 weeks after
initial GOL treatment), we found that outcomes obtained
from different follow-up visits and using different out-
come measures had little or no correlation to one another
(Fig. 2b). Looking between different outcome metrics, for
example, the change in ICRP after GOL treatment had
a very low correlation with the changes in rSJC or rT]JC
after treatment (less than 0.3, regardless of which follow-
up visits were considered). Even when comparing the
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same metric across different follow-up visits, the maxi-
mum correlation coefficient was only 0.76 (DAS_20WAG
vs DAS_28WAG) (Additional file 1: Figure S1). The low
correlations between outcomes calculated using a sin-
gle follow-up visit further demonstrate the limitations
of this approach. From these results, it is clear that the
results of any genetic association study would be greatly
impacted depending on which outcome measure was used
(e.g., DAS or ICRP) and which clinical visits were used to
calculate a patient’s response (e.g., 4AWAG or 12WAG).

Because patients show clinically meaningful variations
in disease state over time and because that variation
results in low correlations between potential outcome
measures, using a response measurement from a single
follow-up visit may not sufficiently capture the efficacy of
a treatment for a given patient. As a result, we explored
the use of the repeated measurements for each individual
over the course of the trial to identify a more representa-
tive response metric. We calculated the average response
of each patient using multiple visits before (when avail-
able) and after initiation of GOL treatment. The relatively
high correlations between the average response estimates
(MNa) and the response outcomes obtained from sin-
gle follow-up visits suggest that simply taking an average
of the disease state over several clinical visits provides a
more representative view of patients’ response to a given
treatment (Fig. 2b).

Heritability estimates

Since genetic studies rely on a heritable clinical pheno-
type, we estimated the proportion of phenotypic vari-
ance explained by common single-nucleotide variations
for both singular and averaged response statistics. The
heritability estimates varied, both across phenotypes and
between time points. At follow-up measurements 4, 12,
20, or 28 weeks after initial GOL treatment, the heritabil-
ity estimate for the change in DAS was not significantly
different from 0; however, when we used the difference
between the final and initial measurements (weeks 100
and 0), the resulting heritability estimate was greater than
0. Similarly, for transformed SJC and TJC, the heritability
estimate was significantly greater than O for only three of
five time points used, for each measure (Fig. 3a; Additional
file 1: Table S1). After averaging phenotypic measure-
ments over time, we found that MNa for DAS, rSJC, and
rTJC all had heritability estimates significantly greater
than 0 (Fig. 3b). The transformed CRP estimate was non-
significant for all five single measurement estimates, nor
for the averaged response. These results suggest that sim-
ply averaging multiple measurements may be sufficient
to reduce the noise and get a more reliable measure of
drug response. Furthermore, we found that the heritability
estimates for the transformed data were greater than for
the raw data. We also estimated the heritability of these
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phenotypes while including the first four principal com-
ponents of the genetic data to control for population strat-
ification (Additional file 1: Figure S2). The results were
very similar, with estimates showing a correlation of 0.93
with the original model for single time point outcomes
(Additional file 1: Figure S3).

Placebo response

Using the fixed estimates of baseline disease state (inter-
cept), GOL effect size, and PBO effect size from the
linear mixed model, we identified a statistically significant
reduction in all disease metrics in patients who main-
tained their MTX regimen while enrolled in the PBO
arm (Table 2). For DAS, the average pre-treatment dis-
ease state for the population was estimated to be 5.93,
with GOL and PBO resulting in an average improvement
of 1.89 and 0.64, respectively. The magnitude of the PBO
effect resulted in, on average, a 10.8% improvement in
DAS, which accounts for roughly 33.8% of the improve-
ment in disease state that would otherwise be attributed
to GOL treatment. Similarly, PBO resulted in a 9.3%
improvement from baseline values for ICRP, and a 18.4%
and 13.2% improvement from baseline values for rSJC and
r'TJC, respectively (Fig. 4). Importantly, the magnitude of
the PBO effect relative to the GOL effect was larger for
rSJC and r'TJC than for ICRP (Fig. 4; rSJC = 38.3%; r'TJC =
35%, ICRP = 24.1%).

These results indicate that the active PBO influenced
outcomes based on rSJC and rTJC more than the
responses based on ICRP levels. Since DAS is a composite
score that includes ICRP, rSJC, and rTJC, the PBO effect
size for DAS fell between the estimates for the joint counts
and inflammation marker. The change in ICRP levels after
GOL treatment was less influenced by PBO than other
potential outcomes, but it also had the lowest heritabil-
ity estimate. Conversely, the change in rSJC and rTJC had
significant heritability estimates, but was influenced by
PBO to a greater extent. The change in DAS after GOL
treatment was less influenced by PBO than rSJC or rTJC,
but still had an appreciable heritable component. These
results highlight the complexities of performing a study of
this nature, which requires a heritable phenotype that reli-
ably represents the characteristic of interest (i.e., response
to GOL).

Discussion

In the new era of precision medicine, pharmacogenetic
studies may provide key insights that can be used to guide
clinical decision-making. There are successful cases in
oncology in which genotype-based companion diagnos-
tics are used to stratify patients to receive the treatment
likely to be most efficacious, resulting in greater over-
all survival and more cost-effective treatment regimens
[27, 28]. However, this potential has not been realized
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for immunological diseases because such predictive geno-
types have not been identified. In RA, for example, several
studies have described genetic associations with response
to expensive anti-TNF« biologics, but the results of these
studies have not been reproducible [15-19]. While the
limited sample sizes may contribute to this discrepancy,
one often overlooked issue in these studies is the phe-
notype itself. The success of pharmacogenetic studies
depends on many factors, not the least of which is the
analysis of a phenotype with a significant heritable com-
ponent. We sought to gain insight into the value of various

Table 2 Golimumab and placebo effect estimates

Outcome  Fixed effect ~ Value Standard error  p value
DAS Baseline 5931 0.057 0.000
GOL —1.892 0054 1760 x 107241
PBO —0640 0058 5277 x 10728
ICRP Baseline 1.246 0.022 0.000
GOL —0482 0024 7423 x 10788
PBO —0.116  0.024 1479 x 1070
rSJC Baseline 3.752 0.063 0.000
GOL —1.799 0059 3.150 x 107191
PBO —0690 0065 9436 x 1072
rmJC Baseline 4992 0.077 0.000
GOL —1876 0068 1.149 x 10719
PBO —0657 0074 6.040 x 1019

Fixed effect estimates of baseline disease state, GOL effect size, and PBO effect size
derived from linear mixed models that used various outcomes (e.g., DAS, ICRP, etc.)
as response metric

DAS Disease Activity Score, GOL golimumab, ICRP log transform of C-reactive protein
metric, PBO placebo, rSJC square root of SIC, rTJC square root of TJC, SJC swollen
joint count, TJC tender joint count

clinical measurements in understanding individualized
treatment response.

Our findings resulted in several useful insights that
could guide the design and interpretation of future phar-
macogenetic studies. First, we found that continuous
response phenotypes often require a transformation to
conform to the assumptions of many parametric statistical
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Fig. 4 Relative magnitude of placebo effect. Population-level
estimates of placebo effect for different clinical metrics. Percentage
improvement of disease state from PBO treatment relative to BL (dark
bars) and magnitude of PBO effect relative to magnitude of GOL
effect (light bars). BL baseline disease state, DAS Disease Activity Score,
GOL golimumab, ICRP log transform of C-reactive protein metric, PBO
placebo, rSJC square root of SJC, rTJC square root of TJC, SJC swollen
joint count, TJC tender joint count
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analysis approaches. Violations of these assumptions may
produce unreliable p values and confound results from
the study. Conversely, the use of non-parametric meth-
ods often leads to a loss in power, which would have to
be compensated for by increasing the size (and cost) of
the study. Second, measuring a patient’s disease state at
a single time point after treatment is an insufficient and
possibly misleading means of assessing their true response
to that therapy. Many metrics, including those often used
in RA, fluctuate over the course of a day or week and
can be influenced by environmental factors. Collecting
multiple measurements over time and controlling for non-
genetic factors will better allow researchers to separate
the signal from the noise. Third, the degree to which a
response phenotype is heritable can vary depending on
which metric is used. Using a response measurement that
is not heritable would plague any genetic study from the
outset. For RA, the changes in swollen or tender joints
resulting from anti-TNFa treatment are estimated to be
the most heritable response metrics by our analysis as well
as a previous study [22]. Finally, we found that the mag-
nitude of the PBO effect varied among different response
metrics. Because some clinical measurements (e.g., pain
used to assess TJC [29]) are subjective while others (e.g.,
inflammation markers) are not, they can be influenced to
a greater or lesser extent by the idea that one is receiv-
ing treatment. Pain perception, for example, is known
to be influenced by a range of factors from mood to
attention [30-32].

Taken together, these results paint a complicated picture
for the pharmacogenetics of anti-TNF« treatment. In our
study, the change in the number of swollen or tender joints
after treatment had the highest estimates of heritability,
but were also the most influenced by PBO, improving the
disease state by roughly 15% and accounting for 35-40%
of the improvement seen during anti-TNFu treatment.
While all patients had previously been on a MTX regimen,
it is possible that a portion of this PBO effect results from
more attentive care and greater adherence to DMARD
treatment upon entering the clinical trial. Conversely,
the phenotype least influenced by active PBO treatment,
change in CRP, was also the least heritable. As a compos-
ite score, DAS represents an adequate balance between
subjective and non-subjective measurements and is use-
ful in pharmacogenetic studies as a heritable metric that
is more robust to PBO response. Our results also show
a (statistical) benefit from more frequent monitoring of
patients, though this could prove implausible if it involves
expensive molecular and radiographic tests.

While we gained many valuable insights from this study,
there were still limitations to our retrospective analysis.
Our sample size remains small for genome-wide asso-
ciation and heritability studies since the availability of
large, deeply phenotyped clinical cohorts is very limited.
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However, by reducing noise and accounting for known
sources of variation in our study, we were able to improve
our ability to detect meaningful signals in the data. Addi-
tionally, as with most retrospective analyses of clinical
trials, we were limited by the trial design. Roughly two-
thirds of patients were randomized to GOL from the
outset of the trial, meaning that these patients were never
treated with PBO alone in the trial and we cannot directly
estimate their individual PBO response. Furthermore, we
cannot say unequivocally how well their disease was main-
tained prior to enrollment in the trial. Thus, some of the
PBO response could be a result of more attentive care and
greater adherence to the DMARD regimen.

Future trials in which all patients are treated with PBO
and the baseline disease state is monitored and main-
tained could ameliorate some of these issues. Another
consideration in our findings is that both RA patients
and drug developers could benefit from frequent moni-
toring of joint conditions, which could be facilitated by
smartphone-enabled health apps. It is possible that more
frequent self-reports of disease state (e.g., from health-
monitoring apps and/or devices) could yield a sufficiently
high-resolution dataset to provide a better picture of a
patient’s disease state and lead to useful clinical insights.
Such study designs would require specialized longitudi-
nal analysis approaches to account for the serial correla-
tion between measurements on a single individual. Future
studies could also consider objective molecular proxies
for disease activity; however, recurrent molecular test-
ing could prove costly and would limit the frequency of
follow-ups in clinical studies. Because some types of data
collected may not conform to the assumptions of basic
parametric statistical methods, even after transformation,
the use of permutations, bootstrapping, Monte Carlo sim-
ulations, and other sophisticated statistical methods may
be necessary for accurately interpreting the data.

Conclusions

While concerted efforts have been made to assemble
larger and larger genetic studies, attention to the clini-
cal phenotype is often lacking, complicating the effort to
identify biomarkers that can guide treatment decisions by
physicians. Our study suggests that a comprehensive eval-
uation of clinical response phenotypes can result in more
effective and efficient pharmacogenetic studies. Using the
correct statistical methods, accounting for within-patient
variation, and using a heritable phenotype that is not con-
founded by PBO response will result in consistent results
that truly advance precision medicine.
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