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Abstract 

Aim  Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease of childhood, with genetic sus-
ceptibility and pathological processes such as autoimmunity and autoinflammation, but its pathogenesis is unclear. 
We conducted a transcriptome-wide association study (TWAS) using expression interpolation from a large-scale 
genome-wide association study (GWAS) dataset to identify genes, biological pathways, and environmental chemicals 
associated with JIA.

Methods  We obtained published GWAS data on JIA for TWAS and used mRNA expression profiling to validate the 
genes identified by TWAS. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed. A protein–protein interaction (PPI) network was generated, and central genes 
were obtained using Molecular Complex Detection (MCODE). Finally, chemical gene expression datasets were 
obtained from the Comparative Toxicogenomics database for chemical genome enrichment analysis.

Results  TWAS identified 1481 genes associated with JIA, and 154 differentially expressed genes were identified based 
on mRNA expression profiles. After comparing the results of TWAS and mRNA expression profiles, we obtained eight 
overlapping genes. GO and KEGG enrichment analyses of the genes identified by TWAS yielded 163 pathways, and PPI 
network analysis as well as MCODE resolution identified a total of eight clusters. Through chemical gene set enrich-
ment analysis, 287 environmental chemicals associated with JIA were identified.

Conclusion  By integrating TWAS and mRNA expression profiles, genes, biological pathways, and environmental 
chemicals associated with JIA were identified. Our findings provide new insights into the pathogenesis of JIA, includ-
ing candidate genetic and environmental factors contributing to its onset and progression.
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Introduction
Juvenile idiopathic arthritis (JIA) is an autoimmune dis-
ease characterized by chronic inflammation of the joints, 
encompassing all forms of chronic inflammatory arthritis 
of unknown causes and having an onset before the age of 
16 years [1]. The reported prevalence varies between 16 
and 150 per 100,000 individuals [2]. It typically lasts for 
longer than 6 months with arthritis present for at least 6 
weeks [3, 4]. Joint involvement usually starts with syno-
vitis and the formation of inflammatory tissue, called 
the pannus, which destroys hyaline cartilage, erodes the 
bone, and leads to articular destruction and ankylosis 
[5]. It has been estimated that 37–63% of adults diag-
nosed with JIA as children maintain active disease [6]. 
Additionally, children with JIA are at a significant risk for 
cardiovascular disease in childhood [7]. Although little is 
known regarding the underlying mechanism, genetic fac-
tors play an important role in the pathogenesis of autoim-
mune diseases [8]. Therefore, studies of the genetic basis 
of JIA are necessary to provide a basis and new directions 
for prevention, early diagnosis, and targeted treatment.

JIA is believed to have a complex molecular basis and is 
influenced by both genetic and environmental factors [9]. 
Advances in genetic techniques have prompted research 
on the genetic basis of JIA, including genome-wide asso-
ciation studies (GWAS), which are a powerful approach 
to identify genetic loci associated with polygenic complex 
diseases and traits [10]. However, GWAS is limited in 
assessing the risk of complex diseases because most sin-
gle nucleotide polymorphisms identified by this approach 
are located in non-coding regions [11]. Transcriptome-
wide association studies (TWAS) show great promise 
in interpreting GWAS signatures and are powerful in 
detecting associations between gene expression levels 
and complex diseases [12]. TWAS can be used to inte-
grate expression quantitative trait locus (QTL) data with 
GWAS to identify genes whose regulation is associated 
with the disease risk [13] and to identify complex trait 
associations [14]. For example, Gusev et al. used TWAS 
to identify 69 novel genes in blood and adipose tissue 
associated with obesity-related traits [15].

Environmental risk factors are strongly associated with 
the development of autoimmune diseases. In individuals 
at an increased genetic risk for a disease, environmen-
tal or lifestyle factors can lead to early alterations in the 
immune system and the disruption of self-tolerance, 
ultimately leading to overt disease [16]. There is strong 
evidence that chemicals produce biological effects by 
affecting gene expression. For example, previous stud-
ies have revealed that altered gene expression levels in 
peripheral blood mononuclear cells are associated with 
occupational benzene exposure [17]. Furthermore, the 
altered composition of gut microbes, which are affected 

by environmental conditions, has been implicated in 
JIA pathogenesis [18]. It has also been shown that sulfur 
dioxide (SO2) from atmospheric pollution increases the 
rate of JIA [19]. Therefore, analyzing the effects of chemi-
cals on JIA is crucial.

In this study, candidate genes and biological pathways 
associated with JIA were identified to improve our under-
standing of the pathogenesis of this disease. Furthermore, 
we examined the associations between chemicals and JIA 
based on chemical–gene interaction networks. An over-
view of the study is provided in Fig. 1.

Data and methods
GWAS data for JIA
GWAS data for JIA were obtained from the literature 
[20]. In brief, Elena et  al. evaluated 4520 UK JIA sam-
ples and 9965 samples from healthy individuals using 
Illumina Infinium CoreExome and Infinium OmniEx-
press genotyping arrays. Finally, 12,501 individuals were 
retained in the QC-filtered dataset (3305 cases and 9196 
healthy controls). Haplotype phasing and interpolation 
were performed with the Michigan Interpolation Server 
using SHAPEIT2 and Minimac3 as well as the Haplotype 
Reference Consortium reference panel. Simple linear 
regression using additive genetic models was used to test 
for genetic associations. Detailed sample characteristics, 
experimental design, quality control, and statistical anal-
yses are described previously [20].

TWAS of JIA
Common approaches for TWAS (e.g., PrediXcan, 
TWAS-FUSION, and SMR) can be viewed as forms of 
instrumental variable analyses with an emphasis on test-
ing causal relationships between gene expression and 
complex traits [21]. In the present study, FUSION was 
used to analyze aggregated GWAS data for a TWAS of 
JIA (http://​gusev​lab.​org/​proje​cts/​fusion/). FUSION is a 
set of tools used to evaluate the association between gene 
expression and a target disease/phenotype based on pre-
calculated gene expression weights and GWAS summary 
data [15]. Briefly, we used the predictive model imple-
mented in FUSION to calculate the gene expression by 
combining tissue-specific expression weights with aggre-
gated GWAS results to translate single genetic variant–
phenotype associations into gene/transcript–phenotype 
associations for quantitative evaluations of associations. 
Gene expression weight panels for precomputation were 
downloaded from the FUSION website (http://​gusev​lab.​
org/​proje​cts/​fusion/). All P values were then corrected 
for multiple testing using the Benjamini–Hochberg pro-
cedure to collect Q values, which represent the minimum 
false discovery rate (FDR) threshold at which expo-
sure is considered significant. In our study, genes with 

http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
http://gusevlab.org/projects/fusion/
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FDR.P < 0.05 and MODELCV.R2 ≥ 0.01 were considered 
significant.

Gene expression profiles for JIA
Gene profiles were downloaded from the Gene Expres-
sion Omnibus database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/). The keywords for inclusion were (1) juvenile idi-
opathic arthritis, (2) Homo sapiens, and (3) peripheral 
blood tissue. Datasets with pharmacological stimulation 
or other interventions were excluded. Finally, we selected 
two datasets that met the criteria, GSE7753 [22] and 

GSE11083 [23]. The platform used for both chip data-
sets was GPL570, Affymetrix Human Genome U133 Plus 
2.0 Array. The datasets involved 31 patients with JIA and 
45 healthy controls. After removing inter-batch effects 
using the R package “sva” and the combat function [24], 
a differential gene expression analysis was performed 
using the “limma” package. Genes with |log2FC| > 1 and 
adjusted p-value < 0.05 were screened as differentially 
expressed genes (DEGs) in JIA. The results were visual-
ized using the “ggplot” package. The “ComplexHeatmap” 
package was used to generate a heatmap [25].

Fig. 1  The research design and general process of this research

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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Chemical gene expression annotation dataset
A chemical gene expression annotation dataset was 
downloaded from the Comparative Toxicology Genom-
ics Database (CTD) (http://​ctdba​se.​org/​downl​oads/), 
an innovative digital ecosystem that relates toxicologi-
cal information for chemicals, genes, phenotypes, dis-
eases, and exposure to advance our understanding of 
human health [26]. CTD integrates four main datasets, 
namely chemical gene interaction functions, chemi-
cal disease associations, genetic disease associations, 
and chemical element phenotype associations, to auto-
matically construct a hypothetical chemical–gene–phe-
notype–disease network [27]. A dataset of 1,788,149 
chemical–gene pairs annotated with related terms for 
humans and mice was used by Cheng et al. to generate 
a set of 11,190 chemical-associated genes [28].

Chemically related gene set enrichment analysis (CGSEA)
A CGSEA was performed to assess the association 
between chemicals and complex diseases. Briefly, 
genome-wide pooled data (TWAS pooling) were used 
to explore the relationship between chemicals and 
many complex diseases from a genomic perspective. 
CTD chemical–gene interaction networks and pooled 
TWAS data were subjected to the weighted Kolmogo-
rov–Smirnov tests to explore the relationships between 
chemicals and JIA [29]. In particular, 10,000 permuta-
tions were generated to obtain the empirical distribu-
tion of GSEA statistics for each chemical substance, 
and the p-value was calculated for each chemical sub-
stance based on the empirical distribution of CGSEA 
statistics. Based on the literature, we excluded genomes 
containing fewer than 10 or more than 500 genes to 
control for the effect of genome size [30]. The analysis 
method has been described in detail in a previous study 
[28].

Functional enrichment analysis
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
[31] and Gene Ontology (GO) [32] enrichment analy-
ses of genes identified by the TWAS were performed to 
identify JIA-related biological processes. Enrichment 
analyses were performed using the R packages “org.
Hs.eg.db” and “clusterProfiler” (https://​www.R-​proje​ct.​
org/).

Protein–protein interaction network analysis
Protein–protein interaction (PPI) networks were gen-
erated using the STRING v11.5 database (STRING, 
https://​string-​db.​org), requiring a confidence level of 
0.15 and generating “active interaction sources” based 
on a previous study [33]. Cytoscape [34] was used to 

visualize interaction networks and the plugin Molecu-
lar Complex Detection (MCODE) [35] was used for 
analyzing modules.

Results
TWAS of JIA
We identified 1481 genes associated with JIA by TWAS, 
and there were 225 genes that satisfied FDR.P < 0.05 
and MODELCV.R2 ≥ 0.01, including 54, 43, 60, 24, and 
44 genes expressed in muscle-skeletal (MS), EBV-trans-
formed lymphocytes (EL), transformed fibroblasts (TF), 
peripheral blood (NBL), and whole blood (YBL) tissues, 
respectively. The genes identified by TWAS are shown 
in a Manhattan plot in Fig.  2. To evaluate tissue speci-
ficity as well as co-expressed genes, we performed an 
overlap analysis of the genes identified by TWAS in dif-
ferent tissues and cells, as summarized in a Venn diagram 
(Fig. 3). For example, 225 genes identified by TWAS were 
associated with JIA in TF; three genes were commonly 
expressed in EL and TF; four significant genes were com-
monly expressed in EL, TF, and blood (NTR and YFS), 
and the expression of one gene was common among the 
four joint categories. The JIA susceptibility gene jointly 
identified in the four tissues/cells was HLA-DRB1.

Common genes identified by TWAS and mRNA expression 
profiling
Using |log2FC| > 1 and adjusted p-value < 0.05 as crite-
ria for screening, we obtained 154 DEGs in JIA. The top 
20 upregulated and downregulated genes were visualized 
(Fig. 4).

We compared the genes detected by TWAS and by 
mRNA expression profiling. The following eight common 
genes were identified by both analyses: ANXA3, GPR146, 
KCNJ15, ANKRD9, and TMEM158. These 8 common 
genes are described in Table 1.

CGSEA
We conducted a CGSEA of environmental factors and 
found that 287 chemical substances were significantly 
associated with JIA. These significant chemicals included 
drugs (e.g., levofloxacin), pesticides (e.g., florfenicol), 
herbal medicines (e.g., difenesin), phenols (e.g., nonyl-
phenol), phthalates (e.g., dicyclohexyl phthalate), heavy 
metals (e.g., manganese), and air pollutants (1-nitropyr-
ene). The top 50 compounds are listed in Table 2.

Functional exploration of the TWAS‑identified genes 
associated with JIA
We performed GO and KEGG pathway enrichment anal-
yses of 225 genes identified by TWAS and detected 267 
GO terms and 37 KEGG terms. Next, 179 GO terms and 
36 KEGG terms were screened with p.adjust < 0.05, such 

http://ctdbase.org/downloads/
https://www.r-project.org/
https://www.r-project.org/
https://string-db.org
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Fig. 2  Manhattan plot of JIA-associated genes identified by TWAS (colored dots). Each dot represents a gene, the x-axis is the physical location 
(chromosomal localization), and the y-axis is the -log10 (p-value) of the gene’s association with RA. Significant genes in different tissues/cells are 
highlighted in different colors. A MS. B YBL. C NBL. D EL. E TF
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as antigen processing and presentation of peptide antigen 
via MHC class I, T-cell–mediated cytotoxicity, rheuma-
toid arthritis, and human T-cell leukemia virus 1 infec-
tion. The results are shown in Fig. 5. The top 10 pathways 
with the lowest p.adjust are summarized in Fig. 6, such as 
the T-cell receptor signaling pathway and MHC class II 
protein complex.

Protein–protein interaction network analysis
To identify densely connected regions in the PPI net-
work, we formed eight MCODE clusters with PPI net-
work genes (Fig.  7). The hub genes identified using the 
MCODE plugins were further evaluated by functional 
analyses. For example, MCODE1 was associated with 
autoimmune diseases, MCODE2 was associated with 
legionellosis and antigen processing presentation, and 
MCODE3 was associated with negative regulation of 
NOTCH4 signaling.

Discussion
GWAS is a common method for the screening and iden-
tification of candidate genes involved in complex dis-
eases. However, most loci identified by this approach are 
located in the non-coding regions, making it difficult to 
explain the relative risk [36]. Therefore, to understand 
JIA pathogenesis, we performed TWAS using large-scale 
GWAS data. The main symptoms of JIA are inflamma-
tion of the joints as well as extra-articular manifestations, 
including fever, enlarged lymph nodes, rash, and plasma-
cytosis [37]; various immune events occur not only in the 

joints but also on extra-articular mucosal surfaces and 
primary lymphoid tissues, especially the synovium. Thus, 
several types of tissues and cells are affected, including 
the synovial membrane, cartilage, bone, fibroblasts, adi-
pocytes, macrophages, and immune cells [38]. Based on 
a previous TWAS of RA by Wu et  al., we selected MS, 
EL, TF, NBL, and YBL tissues as gene expression refer-
ences [38]. We combined the TWAS results with mRNA 
expression data for JIA to identify candidate genes and 
performed a pathway enrichment analysis for these 
genes. Finally, we performed a CGSEA using the pooled 
TWAS data to identify the environmental factors and 
chemicals that may be associated with the pathogenesis 
of JIA.

Integrating TWAS and mRNA expression profil-
ing data revealed several candidate genes associated 
with JIA, and compared to previous studies, in the pre-
sent study, we identified some novel genes that may 
play a potential role in the pathogenesis of JIA, such as 
ANXA3, GPR146, ANKRD9, and TMEM158. Report-
edly, ANXA3 contributes to cancer development via the 
NF-κB pathway [39]. NF-κB and RANK ligand receptor 
activator expression in the joints of children with JIA may 
facilitate the survival of inflammatory cells in the joints 
[40]. Some studies have shown that GPR146 deficiency 
reduces lipids and prevents atherosclerosis [41], and the 
study by Clarke et al. found that genetic susceptibility to 
juvenile idiopathic arthritis is associated with multiple 
cardiovascular risk factors [42], supporting the hypoth-
esis of increased cardiovascular risk in juvenile idiopathic 

Fig. 3  Venn diagram of genes obtained from TWAS identification in four tissues/cells. Purple, blood; blue, EL; pink, TF; green, MS
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Fig. 4  A The expression signal intensity of each sample detection after inter-batch difference correction, it indicates a good degree of 
normalization between samples. B The PCA plot after batch difference correction, the difference between the groups is obvious, and the 
subsequent analysis of variance will have more meaningful results. C A total of 154 differential genes were screened. D The top 20 gene expression 
of highly expressed genes versus lowly expressed genes in the results

Table 1  Common genes identified by TWAS in conjunction with mRNA expression profiles

CHR chromosome, BEST.GWAS.ID rsID of the most significant GWAS SNP in locus, TWAS.Z TWAS Z-score, TWAS.P TWAS P value, adj.P mRNA P value after FDR adjust

Gene Chr BEST.GWAS.ID TWAS.Z TWAS.P adj.P logFC

ANXA3 4 rs1154761 2.08 3.78 × 10−2 1.00 × 10−5 1.94

GPR146 7 rs10246200 2.00 4.59 × 10−2 1.00 × 10−5 1.36

ANKRD9 14 rs2298877 − 2.02 4.32 × 10−2 2.00 × 10−5 1.26

TMEM158 3 rs7622843 2.22 2.66 × 10−2 < 1.00 × 10−5 1.24
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Table 2  The top 50 of the identified compounds

Chemical ID Chemical name NES P

C006551 2-Amino-2-methyl-1-propanol 339.36 1.00 × 10−4

D002118 Calcium 15.10 1.00 × 10−4

C483909 Torcetrapib 12.84 1.00 × 10−4

D001104 Arbutin 12.17 1.00 × 10−4

D048628 Ketolides 7.475 1.00 × 10−4

C511621 2-Methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazophe-
nyl)amide

6.64 1.00 × 10−4

D019324 Beta-naphthoflavone 6.48 1.00 × 10−4

D006830 Hydralazine 5.51 1.00 × 10−4

C051246 1-Methylanthracene 6.39 2.00 × 10−4

C036042 Dicyclohexyl phthalate 6.21 2.00 × 10−4

D007649 Ketamine 5.86 3.00 × 10−4

C029892 Cupric chloride 5.77 3.00 × 10−4

D002995 Clofibric acid 5.70 3.00 × 10−4

C052901 Lemongrass oil 9.05 4.00 × 10−4

D008713 Methimazole 7.64 5.00 × 10−4

D014303 Trinitrotoluene 5.61 5.00 × 10−4

D011345 Fenofibrate 5.30 5.00 × 10−4

D002065 Buspirone 4.59 5.00 × 10−4

D009853 Omeprazole 6.08 6.00 × 10−4

D008628 Mercury 5.19 6.00 × 10−4

D003999 Dichloroacetic acid 4.98 6.00 × 10−4

C029424 Hydrazine 2.72 6.00 × 10−4

C038753 Leptomycin B 19.31 8.00 × 10−4

D010081 Oxazolone 6.98 1.10 × 10−3

C013698 Tallow 6.52 1.10 × 10−3

D001507 Beclomethasone 6.28 1.10 × 10−3

D006160 Guanosine triphosphate 0.53 1.10 × 10−3

D000244 Adenosine diphosphate 5.81 1.20 × 10−3

C548651 2-(1′H-indole-3′-carbonyl)thiazole-4-carboxylic acid methyl ester 4.48 1.20 × 10−3

C001277 Geldanamycin 5.66 1.30 × 10−3

D002330 Carmustine 4.96 1.30 × 10−3

C018637 Phorone 8.24 1.50 × 10−3

D017239 Paclitaxel 4.03 1.50 × 10−3

C494474 Perchlorate 8.51 1.60 × 10−3

C502851 Quinocetone 6.07 1.70 × 10−3

C005219 Methyl cellosolve 4.69 1.70 × 10−3

C025256 Nonylphenol 4.35 1.80 × 10−3

C013418 Bromfenacoum 4.01 1.80 × 10−3

D000109 Acetylcholine 2.30 1.80 × 10−3

C032668 1-Nitropyrene 6.28 1.80 × 10−3

D008274 Magnesium 3.51 2.00 × 10−3

D010672 Phenytoin 4.87 2.10 × 10−3

D020001 1-Butanol 3.92 2.10 × 10−3

C019499 2-Nitrofluorene 6.20 2.20 × 10−3

C002741 N-nitrosomorpholine 4.57 2.20 × 10−3

C016151 Tinuvin 4.40 2.20 × 10−3

D008383 Margarine 1.49 2.20 × 10−3

C576882 1-(2-Trifluoromethoxyphenyl)-2-nitroethanone 5.70 2.30 × 10−3

D020245 p-chloromercuribenzoic acid 4.12 2.30 × 10−3
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arthritis, suggesting that GPR146 may be associated with 
the development of JIA. TMEM158 was initially reported 
as a Ras-induced gene during aging and classified as an 
oncogenic or tumor suppressor depending on the tumor 
type [43]. The potential mechanisms involving STAT3 
activation mediating TMEM158-driven glioma progres-
sion have also been identified, and the inhibitory effect 
of TMEM158 downregulation on glioma growth has 
been confirmed [44]. While autoimmune diseases have 
many similarities with cancer, there are many links and 

similarities in the pathogenesis of both, so we speculate 
that TMEM158 may be closely related to the develop-
ment of JIA.

GO analyses revealed enrichment for several terms, 
such as T-cell–mediated immune regulation, interferon-
gamma–mediated signaling pathway, neutrophil activa-
tion, processing and expression of endogenous peptide 
antigens via MHC class I, processing and expression of 
antigens via MHC class II, autoimmune thyroid diseases, 
and rheumatoid arthritis. JIA is characterized by a loss 

Fig. 5  Network diagram of GO term analysis for TWAS-identified genes, where each circular point in the network represents a term whose size is 
proportional to the number of input genes for that term. A BP. B CC. C MF. D KEGG
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of immune tolerance, and it is believed that the balance 
between the activity of effector T and regulatory T-cells 
in the joints is disturbed, leading to the chronic inflam-
mation of the joints and JIA [45]. Our results demon-
strate the importance of T-cell–mediated immunity in 
the pathogenesis of JIA. A life-threatening complica-
tion of systemic JIA (SJIA), macrophage activation syn-
drome (SJIA-MAS), is characterized by a cytokine storm 
and dysregulated T-lymphocyte proliferation [46]. Our 
results also confirm that interferons may be involved in 
JIA development. Several studies have linked antigen 
processing and expression via MHC class I and MHC 
class II to the development of JIA, and a recent large-
scale study identified the MHC locus as the strongest 
genetic risk region for JIA [47].

We used an extended classical GSEA with a large-
scale GWAS aggregate dataset to detect the associa-
tions between environmental chemical substances and 
JIA and identified 281 chemical substances, including 
drugs, organic compounds, inorganic compounds, plants 

extracts, nutrients, phenols, air pollutants, and heavy 
metals. As a common component used in many consumer 
products, 2-amino-2-methyl-1-propanol is a promising 
amine for use in industrial-scale post-combustion CO, 
as well as being an atmospheric pollutant [48]. Yavorskyy 
et  al. detected high levels of 2-amino-2-methyl-1-pro-
panol in the synovial fluid of osteoarthritic knees [49]; 
thus, it may be related to the onset of joint inflammation 
to some extent, corroborating our findings. Arbutin is a 
plant extract often present in skin care products owing 
to its whitening effect; there is evidence for a combined 
effect of arbutin and indomethacin on inducing inflam-
mation [50]. As a widespread environmental contami-
nant with many toxic effects, including roles in endocrine 
disruption, reproductive dysfunction, immunotoxicity, 
liver damage, and cancer, 2-methyl-2H-pyrazole-3-car-
boxylic acid amide may contribute to the development of 
JIA to some extent [51]. β-Naphthoflavone is present in 
cigarette smoke condensate, and Adachi et al. found that 
cigarette smoke condensate can lead to AhR-dependent 

Fig. 6  Network diagram of the top 10 pathways with the smallest p.adjust
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NF-κB activation and activate related pathways, thereby 
inducing the production of the pro-inflammatory factor 
IL-1β in synoviocytes of patients with rheumatoid arthri-
tis [52]. This is consistent with our findings indicating 
that beta-naphthoflavone is associated with JIA onset.

In this study, we combined TWAS and mRNA expres-
sion profiling to identify the candidate genes and biologi-
cal pathways related to JIA. The combination of these two 
methods can accurately identify candidate genes. We 
performed functional enrichment and PPI network anal-
yses of the identified genes and determined biological 

processes associated with JIA pathogenesis. Finally, we 
identified several environmental chemicals that may be 
associated with JIA. Our results provide new insights 
into the pathogenesis of JIA and its risk factors.

Limitations of the study
The limitations of this study include the following: First, 
the pooled GWAS data were obtained from the UK 
Biobank, and the study subjects were mostly from Euro-
pean populations. Thus, the results of this study may 
not be generalizable to other populations. Second, some 

Fig. 7  The PPI of AS-associated proteins



Page 12 of 13Feng et al. Arthritis Research & Therapy           (2023) 25:19 

candidate genes for JIA obtained have not been validated 
by molecular biology experiments; these genes should be 
evaluated by functional assays in future research.

Conclusion
In summary, we integrated the GWAS dataset of JIA 
from the UK Biobank to complete TWAS. Then, we fur-
ther compared the genes identified by TWAS with those 
identified by mRNA expression profiling and performed 
GO and KEGG analyses and PPI network construction 
to identify genes and biological pathways associated with 
the pathogenesis of JIA. Finally, we performed CGSEA 
analysis to obtain chemical substances and environmen-
tal factors associated with the pathogenesis of JIA. Our 
results provide a new direction for the study of the mech-
anisms of JIA at the genetic and molecular levels and new 
ideas for the chemical environmental factors associated 
with JIA.
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