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Abstract 

Background Identifying axial spondyloarthritis (axSpA) activity early and accurately is essential for treating physicians 
to adjust treatment plans and guide clinical decisions promptly. The current literature is mostly focused on axSpA 
diagnosis, and there has been thus far, no study that reported the use of a radiomics approach for differentiating 
axSpA disease activity. In this study, the aim was to develop a radiomics model for differentiating active from non-
active axSpA based on fat-suppressed (FS) T2-weighted (T2w) magnetic resonance imaging (MRI) of sacroiliac joints.

Methods This retrospective study included 109 patients diagnosed with non-active axSpA (n = 68) and active axSpA 
(n = 41); patients were divided into training and testing cohorts at a ratio of 8:2. Radiomics features were extracted 
from 3.0 T sacroiliac MRI using two different heterogeneous regions of interest (ROIs, Circle and Facet). Various meth-
ods were used to select relevant and robust features, and different classifiers were used to build Circle-based, Facet-
based, and a fusion prediction model. Their performance was compared using various statistical parameters. p < 0.05 
is considered statistically significant.

Results For both Circle- and Facet-based models, 2284 radiomics features were extracted. The combined fusion ROI 
model accurately differentiated between active and non-active axSpA, with high accuracy (0.90 vs.0.81), sensitivity 
(0.90 vs. 0.75), and specificity (0.90 vs. 0.85) in both training and testing cohorts.

Conclusion The multi-ROI fusion radiomics model developed in this study differentiated between active and non-
active axSpA using sacroiliac FS T2w-MRI. The results suggest MRI-based radiomics of the SIJ can distinguish axSpA 
activity, which can improve the therapeutic result and patient prognosis. To our knowledge, this is the only study 
in the literature that used a radiomics approach to determine axSpA activity.
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Background
Axial spondyloarthritis (axSpA) is a group of chronic 
autoimmune diseases characterized by inflammation 
in the spine and sacroiliac joints (SIJs) and peripheral 
arthritis in the lower limbs [1]. Disease activity refers to 
the severity of a disease at a given moment in time and is 
an important prognostic and therapeutic index in axSpA 
patients. In clinical studies, disease activity has been 
used to measure how well a treatment works to reduce 
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symptoms and provides strong evidence for research. For 
obtaining the best possible health-related quality of life, 
the control of disease activity has a prominent place in 
the management of axSpA [2, 3]. Being able to measure 
disease activity more accurately can improve when and 
how treatment decisions are taken, therefore improving 
the outcome for patient management.

Traditionally, different scales have been used to meas-
ure and compare disease activity, such as Bath Ankylos-
ing Spondylitis Disease Activity Index (BASDAI) [4] and 
Ankylosing Spondylitis Disease Activity Score (ASDAS) 
[5]. These scales are mostly based on patient-reported 
outcome measures, which are numerical or visual analog 
self-assessments of the patient’s symptom severity [6]. 
Additionally, ASDAS includes laboratory results such as 
erythrocyte sedimentation rate (ESR) or C-reactive pro-
tein (CRP) and is currently considered the gold standard 
for disease activity assessment in a clinical setting [7]. 
Being at least partially patient-driven, these two scales 
are inevitably influenced by many confounding subjective 
factors, including coexisting morbidities of the patients 
and different views that patients and physicians have on 
what disease activity means [8–10]. This results in sig-
nificant variation when quantifying the levels of pain 
or discomfort and makes it difficult to compare assess-
ments performed across different patients, institutions or 
consultations.

MRI is a sensitive imaging technique for early diagno-
sis of inflammatory sacroiliitis for axSpA patients with 
lower back pain owing to its high textural contrast reso-
lution [11]. MRI reveals signs of inflammation, includ-
ing active signs like bone marrow edema (BME) and 
chronic structural signs such as erosion [12]. Moreover, 
as an objective tool, MRI scans acquired under similar 
scanners and parameters have a high degree of compa-
rability. Although different scales exist to quantify BME 
in SIJs of axSpA patients, they have many shortcomings 
which limit their use in clinical studies. Hence, an objec-
tive computerized method using SIJ-MRIs to determine 
axSpA disease activity has the potential of overcoming 
these limitations, serving as a complement or alternative 
in situations where patient-reported outcomes might be 
compromised.

In medical imaging, radiomics refers to high-through-
put computational extraction of quantitative features 
from a certain region of interest (ROI) [13]. Radiomics 
translates medical digital images into deep-level data for 
quantitative analysis, which could ultimately aid diag-
nosis or classify or grade diseases [14]. Radiomics has 
become a focus in recent medical imaging research, espe-
cially in the field of oncology [15–18].

As a low-cost and noninvasive image processing 
method, radiomics has immense potential for axSpA 
evaluation. Owing to the complexity and heterogene-
ity of musculoskeletal medical imaging, the applica-
tion of radiomics in diseases, including axSpA, is still 
in its initial stages. Previous studies have reported the 
use of radiomics methods to analyze SIJ-MRIs [19–21]. 
These studies suggest that a SIJ-MRI-based radiomics 
model can enhance the efficacy in differentiating axSpA, 
thereby facilitating the clinical decision-making process. 
However, current literature is mostly focused on axSpA 
diagnosis, and thus far, no study has reported the use 
of radiomics for differentiating axSpA disease activity. 
Moreover, previous studies focusing on various types of 
cancer have showed that a combined radiomics model 
derived from different ROI has high predictive value, 
which can improve clinical decision-making [22–24]. 
While previous studies evaluating axSpA only analyzed 
one type of ROI, no reports compared the performance 
of models combining or constructed using different 
ROIs.

In this study, we aimed to retrospectively investigate 
the ability of radiomics features extracted from two dif-
ferent types of ROI that are segmented from SIJ-MRI to 
differentiate disease activity in axSpA, as well as to estab-
lish a radiomics models for the differentiation of active 
and non-active axSpA.

Methods
This study was reviewed and approved by the Institu-
tional Research Ethics Board, which adheres to the tenets 
prescribed by the Declaration of Helsinki (institutional 
review board M2022399, National Clinical Trial number 
MR-11–22-009236). Being retrospective research, the 
need for signed informed consent was waived. The work-
flow of the radiomics analysis conducted in this study is 
illustrated in Fig. 1.

Dataset
Approval was obtained for the use of patient data. We 
identified 1096 consecutive patients who had under-
gone MRI for SIJs in our institution from April 2019 
to September 2021. Inclusion criteria were as follows: 
(a) patients over 18  years old and (b) seeking medi-
cal attention for suspected axSpA, as diagnosed using 
the 2019 recommendations from the Assessment 
of SpondyloArthritis International Society (ASAS) 
working group.

Of the 1096 patients, 987 were excluded from this 
study for the following reasons: (a) absence of axSpA or 
lack of a definite clinical axSpA diagnosis, (b) sacroiliac 
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MR scans having incomplete coverage or sequences, and 
(c) incomplete medical records, including a lack of CRP, 
ESR, BASDAI score, and ASDAS score.

Disease activity was assessed by two rheumatologists 
using the ASDAS calculated with CRP (ASDAS-CRP). 

An ASDAS-CRP score of greater or equal to 2.1 was con-
sidered high activity.

The final cohort constituted 109 patients, of which 
68 were non-active axSpA patients and 41 were active 
axSpA patients. The flowchart for the inclusion and 
exclusion of patients is shown in Fig. 2.

Fig. 1 Workflow of the study. Manual segmentation and automatic expansions were performed on SIJ-MRIs to generate two ROIs, Circle and Facet. 
Different features were extracted, then selected by various methods, including cross-validation, LASSO, and MSE. Different predictive models were 
constructed using these features. Their performance was assessed using the ROC, decision, and calibration curves

Fig. 2 Flowchart for the inclusion of patients
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We randomly selected 80% of the samples as the train-
ing set, and the remaining 20% as the test set. Baseline 
characteristics of the final cohort can be found in Table 1.

Image acquisition
All MRI examinations were acquired using three 3.0-T 
scanners, two identical Discovery 750w (GE Health-
care, Milwaukee, WI) and one Discovery 750 (GE 
Healthcare, Milwaukee, WI). For both models of MR 
scanners, the same institutional protocol was used for 
SIJ examinations, including axial and oblique coro-
nal (parallel with the long axis of the sacral bone), 
fat-suppressed (FS) T2-weighted (T2w) fast spin-echo 
(FSE) sequences as well as oblique coronal T1-weighted 
FSE sequences, and oblique coronal proton density-
weighted FSE sequences.

We chose to acquire oblique coronal FS 
T2-weighted FSE images (scanning parameters: repe-
tition time/time to echo = 3200/85 ms, slice thickness/
gap = 4/0.5  mm, field of view = 30 × 30  cm, matrix 
size = 320 × 256, number of excitations = 4). This is 
because among the sequences included in the insti-
tutional protocol, BME is the most prominent in T2w 
images. Besides, in the most recent suggestion from 
the ASAS working group [11, 20], only the abovemen-
tioned T2w FS sequence is recommended. Images 
were retrieved from the Picture Archiving and Com-
munication System in the Digital Imaging and Com-
munications in Medicine format.

Segmentation and labeling of ROIs
Two different heterogeneous regions of interest (Circle-
Original and FacetOriginal) were manually segmented 
and labeled using Research Portal V1.1 (United Imaging 
Intelligence, Co., Ltd., Shanghai, China). CircleOriginal 
and FacetOriginal were segmented and labeled back-to-
back on oblique coronal MR images by two radiologists 

with 2 and 11 years of experience, respectively (Reader 
A and B). Prior to segmentation, both radiologists 
underwent training to ensure that the ROIs were drawn 
to the required standard. Boundaries of the ROIs were 
validated and redrawn by Reader B when necessary to 
reduce intra-reader bias and to better adhere to the 
segmentation criteria.

Next, CircleOriginal was automatically expanded by 
15  mm in all directions to generate Circle, which rep-
resents a pair of circular ROIs of a defined size located 
within the SIJ and encompasses as much of abnormal 
findings as possible. Circle was segmented and expanded 
using a method inspired by a previous study [21].

FacetOriginal was further automatically expanded by 
10 mm to generate Facet, a ROI that spans six consecu-
tive slices in the oblique coronal plane, including artic-
ular space and subarticular region to 1  cm. Criteria for 
segmentation and expansion of Facet were performed as 
done in a previous study [19].

All the expanded ROI boundaries were further vali-
dated and corrected by Reader B, to reduce possible 
bias and to better adhere to the segmentation criteria. 
An example of SIJ-MRI segmentation and expansion is 
shown in Fig. 3.

Data preprocessing
The voxel value range of MRI images varies significantly 
across different machines and imaging modalities. To 
reduce the impact of voxel value outliers, we sorted all 
voxels’ values in each image and truncated them to the 
range of 0.5 to 99.5 percentile.

Radiomics features
Feature extraction
We extracted corresponding radiomics features for each 
ROI in this study. Prior to extraction, various filters were 
applied to ROIs, including additive Gaussian white noise, 

Table 1 Baseline characteristics of patients with active and non-active axSpA in training and testing sets

ASDAS Ankylosing Spondylitis Disease Activity Score, BASDAI Bath Ankylosing Spondylitis Disease Activity Index, CRP C-reactive protein, ESR erythrocyte 
sedimentation rate

Training set Non-active patients Active patients P value Testing set Non-active patients Active patients P value

Age (years) 31.68 ± 9.34 30.78 ± 7.05 33.15 ± 12.18 0.252 38.14 ± 10.56 35.57 ± 9.52 42.62 ± 11.40 0.135

CRP (mg/L) 2.37 ± 5.65 0.78 ± 0.71 4.98 ± 8.57 <0.001 1.83 ± 2.78 0.78 ± 0.74 3.65 ± 4.02 0.016

ESR (mm/h) 16.31 ± 18.04 7.69 ± 5.86 30.40 ± 22.08 <0.001 18.55 ± 23.77 9.21 ± 5.59 34.88 ± 34.03 0.011

BASDAI 3.04 ± 1.79 2.21 ± 1.05 4.40 ± 1.92 <0.001 3.39 ± 1.64 2.36 ± 0.87 5.19 ± 0.89 <0.001

ASDAS 1.93 ± 1.06 1.26 ± 0.45 3.04 ± 0.81 <0.001 1.83 ± 0.93 1.29 ± 0.47 2.78 ± 0.75 <0.001

Gender 0.964 0.234

Men 67(77.01) 41(75.93) 26(78.79) 20(90.91) 14(100.00) 6(75.00)

Women 20(22.99) 13(24.07) 7(21.21) 2(9.09) 0(0.00) 2(25.00)
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Laplacian of Gaussian, shot noise, wavelet, binomial blur, 
recursive Gaussian, discrete Gaussian, curvature flow 
filters, and several simple filters, such as BoxMean and 
Normalize. All features were extracted using the PyRa-
diomics package (version 3.0.1) [25], and most of them 
adhered to the feature definitions provided by the Imag-
ing Biomarker Standardization Initiative [26].

The handcrafted features were classified as (I) geom-
etry, (II) intensity, and (III) texture. Geometry features 
capture the three-dimensional shape of the tumor. Inten-
sity features represent the first-order statistical distri-
bution of voxel intensities within the tumor. Texture 
features describe patterns or the second- and higher-
order spatial distributions of intensities. Various methods 
were used to extract texture features, including the gray-
level co-occurrence matrix, the gray-level run length 
matrix, the gray-level size zone matrix, and the neighbor-
hood gray-tone difference matrix.

To evaluate the performance of the multi-ROI model, 
we fused the features extracted from each ROI to obtain 
fused features. We compared the performance of mod-
eling using single-ROI features and fused features in our 
experiments.

Feature selection

Intraclass correlation coefficient (ICC) To assess the 
robustness of image features against segmentation uncer-
tainties, test–retest and inter-rater analyses were con-
ducted. Test–retest analysis involving two segmentations 
was performed by one rater for each of the randomly 
selected 32 patients, while inter-rater analysis involving 

independent segmentations of ROIs was performed by 
two raters for another set of 32 randomly chosen patients. 
In the test–retest analysis, overall ICC was high for both 
Reader A (an average of 0.965 and 0.942 for Circle- and 
Facet-based features) and Reader B (an average of 0.963 
and 0.956 for Circle- and Facet-based features). For inter-
rater analysis, ICC was also high, averaging 0.965 and 
0.944 for Circle- and Facet-based features respectively. 
The ICC was used to evaluate the features extracted from 
the multiple-segmented subregions. Features with an 
ICC ≥ 0.85 were considered robust and unaffected by seg-
mentation uncertainties.

Feature pre‑fusion In this study, the performance of fea-
tures derived from two different MRI ROIs, Circle and 
Facet, were compared. To assess whether features chosen 
from multiple ROIs outperformed those from a single 
ROI, prior further feature screening features extracted 
from the two ROIs were combined to obtain a fusion fea-
ture set. The remaining processes were the same as those 
for features extracted from one ROI and followed the 
same parameter configuration.

Standardization screening Following the initial screen-
ing using ICC, all features were standardized using the 
Z-score method to ensure a normal distribution. Sub-
sequently, p-values were calculated for all imaging fea-
tures using the t-test. Only radiomic features with a 
p-value < 0.05 were retained for further analysis.

Correlation screening Highly repeatable features were 
further analyzed using Pearson’s correlation coefficient to 

Fig. 3 SIJ-MRI segmentation and expansion for four ROIs: CircleOriginal (A), Circle (B), Facet (C), and FacetOriginal (D). MR, magnetic resonance; SIJ, 
sacroiliac joint
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identify highly correlated features. To avoid redundancy, 
only one feature was retained when the correlation coef-
ficient between any two features exceeded 0.9. To maxi-
mize feature representation while minimizing redun-
dancy, a greedy recursive deletion strategy was used 
to remove features with the highest redundancy in the 
current set at each iteration. Additionally, the minimum 
Redundancy Maximum Relevance algorithm was used to 
further reduce feature redundancy. For each ROI, only 
the 64 most important features were retained.

Least absolute shrinkage and selection operator (LASSO) 
screening The final features used to construct the 
radiomics signature (Rad_Sig) were selected using the 
LASSO regression model. LASSO shrinks regression 
coefficients, setting many irrelevant features’ coefficients 
to zero based on the regularization weight lambda (λ). 
The optimal λ value was determined using tenfold cross-
validation with the minimum criterion, and λ with the 
lowest mean standard error was selected.

Construction of the assessment model
After feature screening using LASSO, various machine 
learning models, including Logistic Regression, Sup-
port Vector Machine, Random Forest, ExtraTrees, and 
eXtreme Gradient Booting (XGBoost), were used to con-
struct the assessment model.

In the training set, we performed a fivefold cross-vali-
dation and utilized the Grid Search algorithm for hyper-
parameter optimization. The best model parameters 
were selected based on their performance in the test 
set. Finally, with fixed hyperparameters, we trained the 
model using the entire training set (80%) and evaluated 
its performance in the remaining data set.

Statistical analysis
We used Statistical Package for the Social Sciences 
24.0 (IBM SPSS Inc., USA) for statistical analysis. 

Kolmogorov–Smirnov method was used to test the nor-
mality of the measurement data. Quantitative data were 
expressed as mean ± standard deviation (x̄ ± s). Chi-
square test was used for comparison between the two 
groups. Student t-test was used for quantitative data. 
p < 0.05 indicated a statistically significant difference. The 
receiver operating characteristic (ROC) curve was used 
to analyze the performance of each model in the train-
ing set and test set. The efficiency of each model is evalu-
ated by accuracy, the area under the curve (AUC), and its 
95% confidence interval (CI), sensitivity, specificity, F1 
score, true positive rate (TPR), false positive rate (FPR), 
and Youden index. Calibration curves were generated to 
evaluate the calibration performance of the model, and 
the clinical utility of the model was determined by deci-
sion curve analysis (DCA).

Results
Construction and evaluation of radiomics signature
We extracted 2286 handcrafted radiomic features of 
each model. The radiomics feature included first-order 
features, 14 different shape features, and other texture 
features. Additional file 1 provides details for the hand-
crafted features.

Seven Facet-derived features, 11 Circle-derived features 
and 18 features from the fusion feature set of nonzero 
LASSO coefficients were selected to constitute the Rad_
Sig. These specific radiomics features are presented in 
Additional file 1. Their coefficients and the mean stand-
ard error of tenfold validation is shown in Figs. 4 and 5.

Comparison of different models
For Rad_Sig comprised of Facet-derived features, Circle-
derived features, and features from the fusion set, the 
best-performing models were constructed with XGBoost, 
ExtraTrees, and Random Forest respectively. The predic-
tive capabilities and other statistical analysis results of 
these models are presented in Table  2. The AUC-ROC, 
calibration, and DCA curves of these models are shown 

Fig. 4 Coefficients of tenfold cross-validation; from left to right, the fusion feature set (left), features extracted from Circle (center), and features 
extracted from Facet (right)
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in Fig.  6. Detailed comparisons between models con-
structed with various Rad_Sig and machine learning 
models are presented in the Additional file 1.

For the three machine learning models used to con-
struct the best-performing models, their specific param-
eters are as follows:

• Random Forest: This model is configured with 4 esti-
mators, a maximum depth of 6. The minimum num-
ber of samples required to split nodes is set to 2.

• XGBoost: This model is configured with 3 estima-
tors. The maximum depth is set to 4.

• ExtraTrees: This model is configured with 8 estima-
tors, a maximum depth of 4. The minimum number 
of samples required to split nodes is set to 2.

As indicated by bold type in Table 2, the model based 
on fusion-set derived Rad_Sig and constructed with Ran-
dom Forest exhibited the best prediction performance in 
the test set while maintaining low overfitting. As shown 
in Fig.  6, it achieved a high AUC value; the calibration 
curve indicates that the calibration performance of the 
fusion-set derived model is better than the two other 
models, and the decision curve suggests that the fusion-
set derived model has a better prediction performance. 
The results demonstrate that the Rad_Sig derived from 

the fusion feature set, which combines features from 
both ROIs, has a higher clinical application value.

Discussion
In this research, we introduced a multi-ROI fusion radi-
omics model to predict axSpA disease activity using data 
for 109 patients. The results suggest MRI-based radiom-
ics of the SIJ can distinguish axSpA activity, which could 
ultimately improve the therapeutic result and patient 
prognosis. To our knowledge, this is the only study in the 
literature that used a radiomics approach to determine 
axSpA activity.

Accurately judging axSpA disease activity is challeng-
ing, as the evaluation involves combining clinical, labora-
tory, and radiologic aspects of the patient. However, MRI 
is the most objective method to evaluate disease activity, 
especially inflammation presenting in the form of BME. 
Further, an abundant reserve of high-dimensional data 
can be extracted from MRIs using radiomics. In oncol-
ogy, radiomics is well-developed to extract a vast array of 
quantitative characteristics from MRI data, allowing for 
the prediction of clinical outcomes [14].

Until now, four researchers have explored the appli-
cation of radiomics in axSpA. In a cohort of 47 SpA 
patients, Tenorio et al. associated quantitative and radi-
omic biomarkers extracted from spectral attenuated 

Fig. 5 Mean standard error of tenfold cross-validation for the fusion feature set (left), features extracted from Circle (center), and features extracted 
from Facet (right), respectively

Table 2 axSpA activity prediction performance of models based upon different Rad_Sig

AUC  area under the curve, CI confidence interval, PPV positive predictive value, NPV negative predictive value

Models Accuracy AUC 95% CI Sensitivity Specificity PPV NPV Youden Cohort

Fusion 0.908 0.977 0.9536–0.9998 0.909 0.907 0.857 0.942 0.500 Train

Circle 0.874 0.882 0.7880–0.9752 0.848 0.889 0.824 0.906 0.362 Train

Facet 0.966 0.988 0.9703–1.0000 0.970 0.963 0.941 0.981 0.438 Train

Fusion 0.818 0.857 0.6994–1.0000 0.750 0.857 0.750 0.857 0.361 Test
Circle 0.727 0.777 0.5781–0.9755 1.000 0.571 0.571 1.000 0.300 Test

Facet 0.682 0.714 0.4822–0.9463 1.000 0.538 0.533 1.000 0.345 Test
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inversion recovery (SPAIR) and short tau inversion 
recovery (STIR) sequences of SIJ MRI with various clini-
cal indices to potentially compose a radiomic model for 
assessing SpA [20, 27]. Kepp et  al. found that texture 
analysis is superior to qualitative assessment for dif-
ferentiating sacroiliitis and degenerative changes using 
radiomics based on data of 90 patients [21]. Ye et  al. 
used multivariable logistic regression to build a radiom-
ics model using data of 638 patients (424 with axSpA 
and 214 non-axSpA) that showed performance in train-
ing and testing cohorts, with accuracy (0.78 vs. 0.74), 
sensitivity (0.75 vs. 0.71), and specificity (0.83 vs. 0.81). 
However, the clinical-radiomics nomogram model that 
incorporated radiomics with independent factors showed 
significant improvement in accuracy (0.82 vs.0.78), sen-
sitivity (0.82 vs. 0.94), and specificity (0.83 vs. 0.62) in 
training and testing cohorts [19]. These studies included 
fewer cases or were focused on diagnosis rather than dis-
ease activity.

Many existing axSpA disease activity scales are based 
on SIJ-MRIs, including the Berlin Method [28] and the 
Spondyloarthritis Research Consortium of Canada 
(SPARCC) Scoring System [29]. Both scales require a 
trained professional to count the number of subchondral 

articular sections with BME. Therefore, using these 
scales is time-consuming and heavily depends on read-
er’s experience, which may have subjective problems that 
limit clinical application [30]. Moreover, patients with 
lower back pain or even healthy individuals may also 
be identified as having BME of SIJs, thus leading to low 
specificity of diagnosis by MRI alone [31–33]. Therefore, 
scale based on imagery oftentimes overdiagnoses axSpA 
activity. These scoring systems do not measure sub-
chondral bone erosions or fat deposition, both of which 
could be caused by and potentially measure axSpA 
activity. Zheng et  al. explored the possibility of replac-
ing these scoring systems with a radiomics-based model. 
Researchers found that the radiomics model can distin-
guish between high and low SPARCC groups, and the 
resulting radiomics model is significantly correlated to 
the SPARCC score [34].

In the present study, a combined ROI model accu-
rately discriminated between active and non-active 
axSpA, with high accuracy (0.90 vs. 0.81), sensitiv-
ity (0.90 vs. 0.75), and specificity (0.90 vs. 0.85) in the 
training and testing cohorts. This suggests that SIJ-
MRI-based radiomics biomarkers and models can 
discriminate axSpA activity, which is a drastic improve-
ment from the results of previous studies that used 

Fig. 6 AUC-ROC (left), calibration (center), and decision (right) curves of different Rad_Sig in training (up) and testing (down) cohorts. The model 
based on fusion-set derived Rad_Sig and constructed with Random Forest outperforms the other two models. AUC, area under the curve; DCA, 
decision curve analysis; ROC, receiver operating characteristic; ROI, region of interest
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SIJ-MRI-based scales to assess activity [3, 35]. By inte-
grating relevant clinical factors into our model, such 
as age, gender, patient-reported outcome measures, 
and laboratory results, correlations between radiom-
ics biomarkers and these clinical factors can be further 
explored, and the efficiency and accuracy of our model 
may be further improved.

In the present study, while models derived from 
Facet-based features outperformed those from Cir-
cle in the train set, Circle-based model outperformed 
the Facet-based model in the test set. Circle represents 
what the reader considers to be the section of SIJ that 
is most dominated by inflammatory lesions, mostly 
BME. BME is considered as the MRI finding indicative 
of inflammation and axSpA activity. However, axSpA 
is accompanied by other chronic structural changes, 
including erosion, osteosclerosis, fatty infiltration, and 
ankylosis. Facet is a larger and less arbitrary portion 
of the SIJ, that includes more of the articular and sub-
articular regions. Thus, findings other than BME rele-
vant to axSpA disease activity are included within. The 
fusion-ROI model combines the best of both worlds 
and outperforms both Circle- and Facet-based models 
in the train set and the test set.

There are some limitations to our study. First, this is a 
retrospective study and might have selection bias; pro-
spective studies are required to confirm our findings. 
Second, our results were derived from data of a sin-
gle institution, and to enhance reproducibility, external 
validation will be required. Third, two similar machines 
with the same scanning protocol were used. While this 
may provide better comparability across the MR images, 
a radiomics model based on images selected from vari-
ous MR scanners may be more robust and better suited 
for a clinical setting. Fourth, manual ROI segmentation is 
complex and time-consuming. Automatic ROI segmen-
tation techniques are required to improve its reliability 
and reproducibility. Moreover, only one sequence (T2w 
FS FSE) was chosen to extract images. Other studies 
included more sequences sensitive to inflammation, such 
as SPAIR and STIR. Sequences more sensitive to struc-
tural changes, especially T1-weighted spin echo without 
FS, were not included in our protocol. With more imag-
ing modalities, more radiomics features can be extracted 
to potentially construct a more robust and sensitive 
model.

Conclusion
In summary, we successfully trained a multi-ROI fusion 
radiomics model to predict axSpA activity. Our findings 
indicate that the combined model has the best discrimina-
tory ability in determining MRI of SIJ between active and 
non-active axSpA patients. Further research is needed to 
explore the potential of radiomics in the field of axSpA.
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