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Abstract 

Objectives This study aims to elucidate the transcriptomic signatures and dysregulated pathways in patients 
with Systemic Lupus Erythematosus (SLE), with a particular focus on those persisting during disease remission.

Methods We conducted bulk RNA‑sequencing of peripheral blood mononuclear cells (PBMCs) from a well‑defined 
cohort comprising 26 remission patients meeting the Low Lupus Disease Activity State (LLDAS) criteria, 76 patients 
experiencing disease flares, and 15 healthy controls. To elucidate immune signature changes associated with vary‑
ing disease states, we performed extensive analyses, including the identification of differentially expressed genes 
and pathways, as well as the construction of protein‑protein interaction networks.

Results Several transcriptomic features recovered during remission compared to the active disease state, includ‑
ing down‑regulation of plasma and cell cycle signatures, as well as up‑regulation of lymphocytes. However, specific 
innate immune response signatures, such as the interferon (IFN) signature, and gene modules involved in chromatin 
structure modification, persisted across different disease states. Drug repurposing analysis revealed certain drug 
classes that can target these persistent signatures, potentially preventing disease relapse.

Conclusion Our comprehensive transcriptomic study revealed gene expression signatures for SLE in both active 
and remission states. The discovery of gene expression modules persisting in the remission stage may shed light 
on the underlying mechanisms of vulnerability to relapse in these patients, providing valuable insights for their 
treatment.
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Introduction
Systemic Lupus Erythematosus (SLE) is characterized 
by variable clinical manifestations and an unpredict-
able disease course [1–4]. Disease severity is meas-
ured using the Systemic Lupus Erythematosus Disease 
Activity Index 2000 (SLEDAI) score, with higher scores 
indicating more severe conditions [5]. The treatment 
goal is to achieve complete remission (SLEDAI = 0) 
or Low Lupus Disease Activity State (LLDAS) (SLE-
DAI ≤ 4), as patients experiencing longer periods in 
these states demonstrate improved clinical outcomes 
[6, 7]. While over 50% of SLE patients achieve remis-
sion through immunosuppressant treatments, perma-
nent remission remains uncommon, and many patients 
experience flare-ups [8–11]. As such, understanding 
the molecular signature at various time points during 
the disease course is essential for developing personal-
ized and effective treatments for different stages of SLE.

Transcriptomic studies focusing on RNA expression 
levels have identified several molecular signatures cru-
cial to SLE. Previous research has demonstrated that 
immune response pathways, including type I inter-
feron, plasmablast, and neutrophil, are significantly 
upregulated in SLE patients, while lymphoid cell signa-
tures, such as T cells, B cells, and NK cells, are down-
regulated [12, 13]. The plasmablast signature has been 
found to best predict disease activity, and neutrophil 
signatures are associated with lupus nephritis [14, 15]. 
Recently, researchers have employed advanced single-
cell RNA-seq technology to investigate changes at the 
cellular and molecular level, uncovering multiple dis-
ease-specific cell subtypes that could potentially play a 
pathogenic role in SLE development [16, 17]. However, 
most studies have focused on transcriptomic changes 
between SLE patients and healthy controls, neglecting 
the disease’s heterogeneity within its course. Patients 
achieving stable remission may exhibit a distinct tran-
scriptomic profile compared to those actively experi-
encing flares.

In a previous study, we observed that intensive in-
hospital treatment increased the neutrophil signature 
while mitigating the interferon (IFN) signature in SLE 
patients [18]. In the current study, we focused on SLE 
patients in remission and aimed to use bulk RNA-seq 
technology to examine the transcriptomic profile of 
peripheral blood mononuclear cells (PBMCs) from 
various SLE patients, including those in the acute phase 
requiring hospitalization, those with consistently low 
disease activity, and healthy controls. Through dif-
ferential gene expression and functional enrichment 
analysis, we identified specific signatures that were alle-
viated during remission, potentially serving as mark-
ers to track disease activities. Moreover, our analysis 

uncovered signatures persisting in patients in remis-
sion, which could be potential treatment targets for 
preventing disease relapse.

Patients and methods
Study design and samples collection
In a previous study, we compared transcriptomic pro-
files of SLE patients before and after intensive in-hos-
pital treatment [18]. In the current study, we recruited 
additional patients from Jining Medical University 
Affiliated Hospital in China, resulting in a cohort of 15 
healthy controls, 76 active patients requiring immedi-
ate in-hospital treatment, and 26 remission patients. 
All patients were diagnosed based on the American 
College of Rheumatology revised criteria [19], and 
SLEDAI scores were measured using SLEDAI-2K [5]. 
Remission patient samples were collected during medi-
cal follow-up, with all patients meeting the LLDAS 
criteria for at least one month, having a SLEDAI score 
≤ 4, and a current prednisolone (or equivalent) dose 
≤7.5mg [20]. Fourteen of the 26 remission patients 
were among those followed up longitudinally, who had 
blood samples collected during the active disease state, 
after intensive in-hospital treatment and during remis-
sion. IRB approval and written informed consent were 
obtained from all participants. The clinical characteris-
tics of the patients are summarized in Table 1.

Table 1 Clinical characteristics of the study participants

DMARD Disease-modifying antirheumatic drugs, MMF Mycophenolate mofetil
* Except where indicated otherwise, values are Interquartile Range (IQR)

Feature SLE active patients (n 
= 76)

SLE remission 
patients (n = 26)

Age 37 [24.25,49.5] 38.5 [31.5,48]

Female Sex (%) 65 (85) 23(88)

SLEDAI 10.5 [9, 14] 2 [0,2]

Clinical Parameter

 Anti‑dsDNA 410.4 [162.1,800] 2.64 [2.07.7.67]

 IgG 16.7 [12.15,20.7] 13.95 [12.5,16.43]

 Lymphocyte Count 0.92 [0.6575,1.375] 1.915 [1.415,2.217]

 White Blood Cell 
Count

3.935 [2.915,6.673] 5.865 [5.082, 7.590]

 C3 0.59 [0.36, 0.85] 0.93 [0.84, 1.07]

 C4 0.09 [0.04, 0.16] 0.19 [0.15, 0.255]

Treament (%)

 Prednisolone  76 (100) 26 (100)

 Hydroxychloroquine  68 (89) 21 (81)

 DMARDs  9 (12) 0 (0)

 MMF 12 (16) 9 (35)

 Cyclophosphamide 12 (16) 0 (0)

 Rituximab 4 (5) 0 (0)
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RNA sequencing and data processing
Ten milliliters of blood were collected from both SLE 
patients and healthy donors using heparin tubes. 
PBMCs were isolated from the samples via Ficoll-
Paque PLUS centrifugation, following standard proto-
cols (Ficoll-Paque™, Cytiva). The samples were stored 
in -80°C after lysis with TRizol (TRIzol™ Reagent, 
Thermo Fisher). Total RNA was extracted and qual-
ity checked by agarose gel electrophoresis, Nanodrop, 
Qubit and Agilent 2100. The NEBNext® Ultra™ RNA 
Library Prep Kit was employed for RNA library prepa-
ration, and samples were sequenced using paired-end 
150 bp reads on an Illumina platform at Novogene, 
Beijing, China. To ensure data quality, raw RNA 
sequencing data underwent quality control using Fastp 
[21]. Reads were mapped to the hg38 human genome 
from Gencode V44 utilizing the STAR alignment algo-
rithm [22], and gene-level read counts were quantified 
using featureCounts [23].

Analysis of differential gene expression and functional 
analysis
DESeq2 was used to identify differentially expressed 
genes (DEGs), applying a threshold of adjusted p-value 
< 0.05 and log2 fold change > 0.5 or log2 fold change < 
-0.5 [24]. Gene expression data were normalized using 
the Variance Stabilizing Transformation (VST) method 
from DESeq2. Functional enrichment analysis was con-
ducted using the R package clusterProfiler, incorpo-
rating information from Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and 
Reactome terms [25]. Moreover, Gene Set Variation 
Analysis (GSVA) was performed on the VST-normal-
ized gene expression data, using a manually curated list 
of immune-related genes extracted from previous stud-
ies [26–29]. This analysis calculates sample-wise gene 
set enrichment scores [30]. Differentially expressed 
gene sets based on the GSVA scores were identified by 
the R package limma, defined as adjusted p-values < 
0.01 and log2 fold change > 0.6 [31].

Cell deconvolution analysis
We utilized CIBERSORTx for cell deconvolution anal-
ysis to infer the relative abundance of immune cells 
from the gene expression profile in PBMCs, based on 
the previously established Leukocyte signature matrix 
(LM22) comprising 547 genes [32]. By using VST-nor-
malized gene expression data as input, this analysis 
enabled us to compare the relative abundance of vari-
ous cell types among healthy controls, patients with 
active disease, and patients in remission.

Cell type enrichment analysis
We conducted a Cell Type Enrichment Analysis (CSEA) 
to identify specific cell types potentially enriched in dif-
ferent disease states, using the list of DEGs identified in 
our study. In brief, CSEA employs a permutation-based 
test for cell-type specificity, which leverages the gene 
expression patterns within a comprehensive single-cell 
RNA sequencing dataset that covers 186 lymphatic sys-
tem cell types [33]. This analysis enabled us to pinpoint 
the cell types that may be enriched in various disease 
stages based on their associated DEGs.

Protein‑protein interaction network analysis
To construct the protein-protein interaction network, we 
imported the genes into the Search Tool for the Retrieval 
of Interacting Genes (STRING), which infers interactions 
based on evidence from high-throughput experiments, 
databases on Protein-Protein interactions (PPI), co-
expression of the relevant genes, and shared function in 
the same metabolic pathways, with a minimum require-
ment score indicating the confidence of interaction set 
to 0.4 [34]. We visualized the resulting networks using 
Cytoscape and identified functional modules using the 
Molecular Complex Detection (MCODE) plugin. A score 
greater than 10 was considered a significant core module, 
and other parameters were set as follows: degree cutoff = 
2, node score cutoff = 0.2, K-score = 2, and max. depth 
= 100. These parameters generally measure the centrality 
and connectivity of the nodes in the network.

Connectivity map drug repurposing analysis
We performed a drug repurposing analysis using the 
L1000 assays in the Connectivity Map (cMAP) database 
through the clue.io interface, which records the in vitro 
effects of perturbagens on gene expression in each of 
the nine cell lines studied [35]. We imported genes from 
the functional modules identified in the Protein-protein 
interaction network analysis described earlier into the 
cMAP platform. By querying these genes, cMAP gen-
erated enrichment scores that reflect the relationship 
between the input gene signature and the gene expres-
sion reference profiles for the drugs tested. A more neg-
ative enrichment score (ES < -80) indicates that a drug 
may have reversed the expression pattern of the genes in 
a given gene list, making it a potential treatment candi-
date for the disease state characterized by the expression 
profile of the identified module.

Statistical analysis
All statistical analyses were conducted in R. We calcu-
lated pathway scores for GSVA terms and PPI-defined 
functional modules by applying a previously described 
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method to the VST-normalized gene expression [36]. We 
correlated pathway scores with clinical features using a 
linear regression model implemented in the R function 
lm(). To determine the differences in functional module 
scores among various patient groups, we utilized the Wil-
coxon signed-rank test and paired t-test implemented in 
the ggpubr package in R.

Results
Transcriptomic profiling of SLE patients
The Principle Component Analysis (PCA) revealed a dis-
tinct but not fully separated relationship between remis-
sion patients and active patients (variance explained 
by PC1:17.5%, PC2:11.9%). Both patients in active and 
remission states demonstrated significantly higher het-
erogeneity compared to the healthy control group. This 
emphasizes the intricate nature of SLE in all phases of the 
disease (Fig. 1B).

We utilized DESeq2 to conduct the analysis of DEGs, 
applying a threshold of p.adjust < 0.05 and log2Fold 
change > 0.5. This resulted in over 5000 distinct genes in 
the three comparisons. Specifically, we identified 2,649 
genes in Active patients vs Healthy controls (1,721 up, 
928 down), 3,044 genes in Remission patients vs Healthy 
controls (1,792 up, 1,252 down), and 3,355 genes in 
Remission patients vs Active patients (1,714 up, 1,641 
down) (Fig. 1C). Detailed DESeq2 results can be found in 
Supplementary Table 1-3.

We performed functional enrichment analysis on the 
differentially expressed genes (Fig.  2A). We found that 
terms such as “immunoglobulin production” and “pro-
duction of molecular mediator of immune response” 
were enriched with up-regulated genes in active patients 
compared to controls. However, these terms returned 
to normal expression levels in patients under remis-
sion. On the other hand, the term “T cell differentiation” 
was down-regulated in active patients but recovered 

Fig. 1 Transcriptomic profiling of SLE patients. A Study design and workflow of the study. B Principal component analysis. C Volcano plot 
of the differentially expressed genes in Active Patients vs Healthy Controls (left), Remission Patients vs Healthy Controls (middle), Remission Patients 
vs Active Patients (right). (AP: Active Patient, RP: Remission Patient, HC: Healthy Control)
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in patients with remission. Additionally, terms such as 
“response to virus”, “response to lipopolysaccharide”, and 
“regulation of myeloid cell differentiation” were up-regu-
lated in both patients with flare and remission compared 
to controls (Fig. 2A).

Pathway signatures
To gain a deeper understanding of the molecular char-
acteristics associated with different disease states, we 
conducted GSVA using a meticulously curated list of 
immune gene sets based on several previous studies 
[26–29]. Pathway scores were calculated for each sample 

and collectively compared across the three disease states. 
Our findings revealed that T-cell related pathways, such 
as “Th17” and “NK” were significantly downregulated 
in active patients but restored in remission patients 
(Fig.  2B). Further analysis using cell type deconvolution 
showed a similar pattern for resting NK cells, which was 
likely due to lymphopenia in active SLE patients that 
improves during remission (Supplementary Fig 1C). This 
observation aligns well with the clinical records, which 
demonstrated an increase in lymphocyte/white blood cell 
counts in patients during remission compared to active 
patients (Fig. 2C).

Fig. 2 Molecular signatures in the SLE patients in different disease states. A GO enrichment analysis of the DEGs among the three groups. B 
Heatmap of the differentially expressed immune‑related pathways identified from GSVA analysis. The top panel contains the pathways that are 
down‑regulated in active patients and recovered in remission patients. The middle panel contains the pathways that are up‑regulated in active 
patients and down‑regulated in remission patients. The bottom panel contains the pathways that are up‑regulated in active patients and remained 
up‑regulated in remission patients (AP: Active Patient, RP: Remission Patient, HC: Healthy Control). C Boxplot of the clinical records compared 
between active patients and remission patients
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Conversely, pathways such as “IG CHAINS”, “Plasma Cell”, 
and “Cell Cycle” were significantly upregulated in active 
patients but recovered during remission, indicating their 
close association with disease activity (Fig.  2B). This find-
ing is consistent with clinical records showing that remis-
sion patients generally exhibit lower anti-dsDNA and IgG 
levels compared to active patients (Fig.  2C). Similarly, the 
results of cell deconvolution analysis revealed an increase in 
the percentage of plasma cells in active patients and back to 
normal level in remission patients (Supplementary Fig 1C).

Additionally, several pathways, including “IFN”, 
“MHC-I”, “Neutrophil”, and “ROS Production” were 
consistently upregulated in both remission and active 
patients compared to healthy controls (Fig.  2B). 
These pathways serve as persistent disease signatures 
throughout different disease states.

Correlation between transcriptomic signature and clinical 
manifestations
We further investigated the relationship between tran-
scriptional signatures and clinical manifestations by 

conducting a correlation analysis of pathway scores and 
clinical features with a correlation coefficient > 0.35 
and p value < 0.05 set as cut-off. Our findings revealed 
positive correlations between immune pathways such as 
“Plasma Cell” and both the SLEDAI score and IgG level 
(Fig. 3A). Additionally, several metabolism-related path-
ways, including “Fatty Acid Beta Oxidation”, “Amino Acid 
Metabolism”, and “Mitochondrial Translation”, were also 
significantly correlated with the SLEDAI score, under-
scoring the involvement of immunometabolism in auto-
immunity (Fig. 3E-F).

Moreover, the “Plasma Cell” signature demonstrated 
a strong inverse relationship with C3 and C4 levels, 
corroborating the use of transcriptomic signatures to 
track clinical features (Fig.  3C). In contrast, the “Th2” 
and “Th17” pathways displayed negative correlations 
with the SLEDAI score (Fig. 3D). Notably, we observed 
no correlation between the “IFN” and “Neutrophil” 
pathways and the SLEDAI score, which may be attrib-
uted to their persistent nature throughout the disease 
course (Fig. 3B).

Fig. 3 Correlation between transcriptomic signatures and clinical features with Pearson coefficient and p‑value shown. A Positive correlation 
of plasma cell signature with SLEDAI score and IgG level. B No significant correlation observed between IFN/Neutrophil signatures and SLEDAI 
score. C Negative correlation of plasma cell signature with C3 and C4 level. D Negative correlation of Th2/Th17 signatures with SLEDAI score. E‑F 
Positive correlation of fatty acid beta oxidation, amino acid metabolism, mitochondrial translation, glycolysis signatures with SLEDAI score
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Network analysis revealed core modules involved 
in the course of the disease
To categorize dysregulated genes in active patients, we 
stratified them based on their expression changes dur-
ing active disease and in remission. For genes that were 
upregulated in active patients compared to healthy 
individuals, those with a reduced expression of 0.5 log-
2fold and an adjusted p value less than 0.05 in remission 
patients compared to active patients were classified as 
“Recovered Down”. Genes that did not meet this criterion 
were classified as “Persistent Up”. A similar approach was 
used to classify “Persistent Down” and “Recovered Up” 
genes (Fig. 4A).

Examples of “Persistent Up” genes include STAT1, 
ACTB, and IFI27, while genes classified as “Recov-
ered Down” include IGLL, EXO1, and TLR7 (Fig.  4B). 
The CSEA analysis reveals that persistent up genes are 
enriched in myeloid lineage cells, including monocytes, 
macrophages, and neutrophils. In contrast, the Recov-
ered Down genes are primarily significantly enriched in 
plasma cells (Supplementary Fig 2A-B).

We built Protein-Protein Interaction Networks for 
genes classified as “Persistent Up” and “Recovered Down” 
to examine the complex interactions between the genes 
in each category. In order to pinpoint genes with essential 
functional connections in each network, we employed 
the MCODE algorithm, which identified core modules 
with scores exceeding 10. Gene Ontology and Reactome 
pathway enrichment analyses were conducted to gener-
ate functional annotations for these modules.

Among the genes classified as “Persistent Up”, we 
observed two modules. Module 1 exhibited enrich-
ment in terms such as “GO: defense response to virus”, 
“GO: response to external biotic stimulus”, and “Reac-
tome: Interferon Signaling”. Upon querying the Interfer-
ome database (http:// inter ferome. org), we found that all 
these genes are core interferon-regulated genes shared 
among Type I, Type II, and Type III mechanisms (Sup-
plementary Fig 1D). Genes in Module 2 demonstrated 
enrichment in terms such as “Reactome: Oxidative Stress 
Induced Senescence” and “Reactome: Transcriptional 
regulation of granulopoiesis” (Fig. 4C).

Regarding the “Recovered Down” genes, Module 1 
displayed enrichment in terms such as “Reactome: Cell 
Cycle” and “GO: cell cycle process”. On the other hand, 
Module 2 exhibited enrichment in terms such as “GO: 
immunoglobulin complex” and “Reactome: Initial trig-
gering of complement” (Fig. 4D).

Expression change of core modules throughout the disease 
course
We then evaluated the expression level of the functional 
modules throughout the disease course. In both active 

and remission patients, the interferon and transcriptional 
regulation modules sustained a higher level of expression 
than healthy controls (Fig. 5A). By leveraging the samples 
who have paired data across the active state, immediately 
after intensive in-hospital treatment and the remission 
period, we observed that the IFN and transcriptional 
regulation modules were repressed to a lower level after 
intensive in-hospital treatment but bounced up during 
the remission period (Fig. 5B). In contrast, in the remis-
sion patients, the cell cycle and immunoglobulin modules 
significantly decreased compared to the active patients 
(Fig.  5A). Particularly, the cell cycle module decreased 
but to a level that is still significantly higher than healthy 
controls after intensive in-hospital treatment and 
throughout the remission. The decreased immunoglobu-
lin module after intensive treatment kept decreasing and 
returned to the level of healthy controls in patients under 
remission (Fig. 5B).

Potential compounds to reverse persistent‑up module 
expression
After importing the genes from the two persistent-up 
modules to the cMAP database, we identified potential 
small molecule compounds capable of reversing their 
expression signature. A more negative ES score indicates 
that the compounds are more capable of reversing the 
expression of the given gene set. The top molecules with 
the most negative mean score across the nine cell lines 
include kenpaullone, palbociclib, SB-415286, BX-795, 
IKK-16, GSK-3-inhibitor-IX, and AT-9283, which are 
classified as CDK inhibitors, IKK inhibitors, and Gly-
cogen Synthase Kinase inhibitors (Fig.  6A-B). Then, we 
imported the genes from the two Recovered-Down mod-
ules to the cMAP. Interestingly, we identified widely-
used SLE drugs, including mycophenolate mofetil, 
mycophenolic-acid, methotrexate, and corticosteroid as 
top perturbagens to reverse the expression of the recov-
ered genes (Supplementary Table  6). The concordance 
with the clinical drug usage showcases the potential util-
ity of drug repurposing based on in-vitro transcriptomic 
changes.

Discussion
This study focused on analyzing the transcriptomic pro-
file of well-defined SLE remission patients who met the 
LLDAS criteria for a certain period, confirmed through 
medical follow-up. The unpredictable nature of SLE 
remission and relapse cycles makes it challenging for 
patients to manage their symptoms and adhere to treat-
ment plans, leading to increased healthcare costs and 
reduced treatment effectiveness [3]. Low-dose immuno-
suppressants typically stabilize patients for only a limited 

http://interferome.org
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time, with a large proportion of patients experiencing 
flares afterward [11]. The discovery of molecular bio-
markers can help distinguish between active and inactive 

disease states, monitor disease flares, and predict the 
likelihood of future flares, allowing for more personal-
ized and effective treatment plans. We performed an 

Fig. 4 Stratification of the genes dysregulated in active SLE patients. A‑B Overview and examples of genes altered in active SLE patients. There are 
1721 genes up‑regulated in the active patients, of which 696 significantly decreased in remission patients and 1025 remained unchanged. There 
were 928 genes down‑regulated in the active patients, of which 372 significantly increased in remission patients and 556 remained unchanged 
(C) Protein‑Protein interaction network and the identification of core modules of the genes persistently up‑regulated in the remission patients 
compared to the healthy control. D Protein‑Protein interaction network and the core modules of the genes down‑regulated in the remission 
patients comparing to the active patients
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extensive functional analysis aimed at characterizing the 
specific features of SLE remission state.

Our analysis demonstrated that the most significant 
distinguishing features between remission patients and 
active patients were the up-regulated lymphocyte sig-
natures, as well as the down-regulated plasma and cell 
cycle signatures. Lymphopenia is a prevalent condition in 

SLE, characterized by a decrease in the number of lym-
phocytes in the blood [37, 38]. As revealed by GSVA and 
cell deconvolution analysis, the decline of T and NK cell 
activities observed in active SLE patients may indicate a 
state of lymphopenia, which has been discussed in previ-
ous transcriptomic research [13]. Furthermore, our study 
showed that these lymphocyte signatures recovered in 

Fig. 5 Expression level of the functional modules identified from PPI analysis throughout the disease course. A Violin plot shows the expression 
level of persistent IFN module, persistent transcriptional regulation module, recovered‑down cell cycle module, recovered‑down immunoglobulin 
module among healthy, active patients and remission patients. B Boxplot illustrates the expression changes of the functional modules in paired 
samples among different disease stages such as active disease, after intensive hospital treatment, and during remission
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remission patients and had a negative correlation with 
the SLEDAI score, suggesting a restoration of lymphope-
nia conditions during remission.

Plasma cells play a significant role in the pathogen-
esis of SLE. Specific subsets of plasma cells, such as 
plasmablasts and long-lived plasma cells, can be found 
in the circulation and affected tissues of SLE patients. 
These cells not only produce autoantibodies but also 
secrete pro-inflammatory cytokines and chemokines, 
perpetuating the autoimmune response and amplify-
ing inflammation in SLE [39–41]. Previous studies have 
demonstrated a positive relationship between plasma 
signatures and disease activity in SLE [13]. In line with 
these findings, our analysis further validated a positive 
association between the plasma cell and SLEDAI score, 
indicating that increased plasma cell activity played a 
key role to heightened disease activity. Additionally, we 
observed a negative correlation between the plasma cell/
Ig chain signature and C3/C4 levels, which is consist-
ent with decreased complement levels often observed 
in active SLE patients [42]. By utilizing GSVA analysis 
and examining the expression of immunoglobulin mod-
ules identified through PPI, we determined that plasma 
cell signatures largely returned to normal levels during 
remission.

Additionally, we identified a downregulation of a 
core signature associated with cell cycle function in 
patients under remission compared to active patients. 
This finding aligns with previous research showing 
enrichment of disease-activity genes in cell cycle path-
ways, supporting the notion that dysregulated cell 
cycle processes contribute to SLE pathogenesis [43, 
44]. Although the expression levels of the genes in cell 
cycle module in remission patients were lower than in 

the active state, they remained higher than in healthy 
individuals. This highlights the potential importance of 
restoring proper cell cycle regulation in achieving com-
plete remission.

Upon comparing SLE patients in both flare and remis-
sion to healthy controls, we observed upregulated GO 
terms such as "response to virus" and "regulation of mye-
loid cell differentiation", indicating a deregulated innate 
immune response throughout the course of the disease. 
Similarly, GSVA analysis showed that several innate 
immune pathways, including interferon, neutrophil, 
parainflammation, and ROS production, consistently 
exhibited up-regulation in patients with remission. Neu-
trophils contribute to tissue damage and inflammation 
through the release of reactive oxygen species and pro-
inflammatory cytokines [45]. They also form neutrophil 
extracellular traps, which can promote autoantibody pro-
duction and immune complex deposition [46]. Dysregu-
lation of the interferon pathway is a characteristic feature 
of SLE and contributes to the chronic inflammation and 
autoimmunity observed in the disease [12].

The PPI analysis identified a core Persistent-Up mod-
ule consisting solely of 30 interferon regulated genes. 
Another core module identified through PPI analysis 
consisted of histone genes and transcriptional regulation-
related genes, such as MOV10 and SPI1. Dysregulation of 
these genes suggests an unstable and disturbed genomic 
architecture in SLE patients, even during the remission 
state, underlying the risk for further disturbance of gene 
expression. These pathways have a weak correlation with 
disease activities, likely due to their high levels of expres-
sion even in patients with low disease activity.

The paired data shows that intensive in-hospital 
treatment with large doses of immunosuppressants 

Fig. 6 Connectivity Map Drug Repurposing Analysis. A Heatmap of the enrichment score of the top 10 perturbagens in 9 cell lines. B Sankey 
diagram of the top 10 molecules predicted to reverse the expression of the genes in the persistent up core modules with their mechanisms 
of actions
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temporarily suppressed their expression to a lower level, 
but they rebounded during remission. This suggests that 
even for patients in a stable remission state who exhibit 
none or limited clinical symptoms, there may still be 
ongoing immune dysregulation. These immune path-
ways, which fail to be suppressed by current treatments, 
may pose a risk for chronic damage and potential relapse 
in SLE patients.

Analyzing the genes from the two Persistent-Up core 
modules in cMAP, we identified small compound mol-
ecules, including IKK inhibitors and CDK inhibitors that 
could reverse their expression in vitro. Previous research 
has shown that blocking CDK activity could reduce 
inflammation activity in a lupus-prone mouse model, 
while inhibiting NFKB pathways reduced IFN expression 
in vitro, highlighting their potential role in treating per-
sistent features in patients under remission [47, 48].

In addition to small compound molecules, biolog-
ics targeting type I interferons have undergone exten-
sive clinical testing. Anifrolumab, which targets the 
IFN-alpha receptor, has been proven to reduce disease 
severity in patients with moderate-to-severe SLE [49]. 
Together with traditional immunosuppressants, target-
ing these persistently upregulated genes appears to be 
a promising therapeutic approach for treating patients 
with remission and further controlling disease activity.

At the cellular level, the genes that fail to be suppressed 
are likely preferentially expressed in monocytes. Mono-
cytes play a crucial role in the pathogenesis of SLE. Pre-
vious studies have demonstrated that monocytes from 
SLE patients exhibit dysregulated inflammatory features, 
such as heightened IFN production and deregulated cell 
cycle regulation [17, 50]. A distinct subset of monocytes, 
characterized by the coexpression of IL1B and IFN genes, 
has been specifically identified in SLE patients [16]. It is 
likely that current treatment strategies have failed to con-
trol the activities of monocytes in SLE remission patients. 
Thus, understanding the pathogenicity of these dysregu-
lated monocytes is crucial for developing novel therapeu-
tic strategies that address the root cause of the disease.

The current study has several limitations. We could 
not track the disease activities for all the patients, so we 
treated the remission and active patients as two sepa-
rate cohorts with distinct disease states. Additionally, we 
had a limited number of remission patients that met our 
selection criteria. Moreover, the bulk level data and the 
analysis do not directly reveal transcriptomic changes 
at the cellular level, which could have more accurately 
reflected changes in cell subpopulations. Future studies 
should address these issues, possibly by utilizing larger 
cohorts, conducting long-term longitudinal follow-ups, 
and employing cutting-edge technologies such as single-
cell RNA-seq.

Conclusion
Overall, our analysis of the transcriptomic profile of 
SLE remission patients has yielded critical insights into 
the immune signatures throughout disease course. Our 
research highlights the distinct features of SLE remission, 
with a specific emphasis on the recovery of lymphocyte 
signature and the attenuation of plasma and cell cycle 
pathways. However, the persistent signatures, includ-
ing IFN modules and transcriptional regulation mod-
ules, contribute to the chronic inflammation observed in 
patients, even in the absence of clinical symptoms. These 
findings present a promising avenue for the development 
of biomarkers to track disease activity in SLE patients. 
Additionally, our research offers a foundation for the 
development of personalized treatment strategies that 
could lead to more effective management of SLE.
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