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Abstract 

Background  Osteoarthritis (OA) is a common degenerative joint disease and causes chronic pain and disability 
to the elderly. Several risk factors are involved, such as aging, obesity, genetic susceptibility, and environmental factors. 
We conducted a transcriptome-wide association study (TWAS) and chemical-related gene set enrichment analysis 
(CGSEA) to investigate the susceptibility genes and environmental factors.

Methods  TWAS analysis was conducted to identify the susceptibility genes by integrating the summary-level 
genome-wide association study data of knee OA (KOA) and hip OA (HOA) with the precomputed expression weights 
from the Genotype-Tissue Expression Project (Version 8). The FUSION software was used for both single-tissue 
and cross-tissue TWAS, which were combined using an aggregate Cauchy association test. The biological func-
tion and pathways of the TWAS genes were explored using the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) databases, and the human cartilage mRNA expression profiles were utilized to validate 
the TWAS genes. CGSEA analysis was performed to scan the OA-associated chemicals by integrating the TWAS results 
with the chemical-related gene sets.

Results  There were 44 and 93 unique TWAS genes identified in 7 and 11 chromosomes for KOA and HOA, respec-
tively, fourteen and four of which showed significantly differential expression in the mRNA profiles, such as CRHR1, 
LTBP1, WWP2, LMX1B, and PTHLH. OA-related pathways were found in the KEGG and GO analysis, such as TGF-beta 
signaling pathway, MAPK signaling pathway, hyaluronan metabolic process, and chondrocyte differentiation. Forty-
five OA-associated chemicals were identified, including quercetin, bisphenol A, and cadmium chloride.

Conclusions  Several candidate OA-associated genes and chemicals were identified through TWAS and CGSEA analy-
sis, which expanded our understanding of the relationship between genes, chemicals, and their impact on OA.
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Introduction
Osteoarthritis (OA), a common degenerative joint dis-
ease, causes chronic pain and disability in the elderly. 
According to the data from the Global Burden of Dis-
ease project, the age-standardized point prevalence and 
annual incidence rate of OA were 3754.2 and 181.2 per 
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100,000 in 2017, with an increase of 9.3% and 8.2% from 
1990, respectively [1].

While the pathogenesis of OA is not entirely explained, 
the risk factors for OA development have been demon-
strated in epidemiologic studies, such as age, obesity, 
ethnicity, family history and genetic factors, and envi-
ronmental factors [2, 3]. Moreover, genetic factors have 
been reported to have a significant contribution to knee 
OA (KOA) and hip OA (HOA), and the heritability has 
been estimated to be 60% for the HOA and 50.4% for 
the KOA [4, 5]. Recently, genetic studies have yielded 
novel insights into the genetic propensity of OA. Several 
genome-wide association studies (GWAS) have identi-
fied more than 100 loci associated with OA [6–10], fur-
ther elucidating the genetic architecture of OA. However, 
the specific mechanism between those genetic variants 
and OA has not been fully investigated. The genetic vari-
ants have been demonstrated to have impact on the gene 
expression to further influence the phenotypes [11, 12], 
and transcriptome-wide association studies (TWAS) 
have offered the chance to integrate the summary-
level GWAS data with expression quantitative trait loci 
(eQTL) references to identify the trait-related genes.

Previous studies have identified the OA-associated 
genes by integrating the TWAS results and mRNA 
expression profiles for HOA and KOA [13, 14]. However, 
both studies adopted the skeletal muscle and blood as 
the eQTL references, which are not the causally relevant 
tissue of OA. In addition, performing TWAS using the 
eQTL panels of non-trait-related tissues leads to non-
causal hits and dropped out of the real causal ones, and 
cross-tissue TWAS has been recommended if there is no 
closely trait-related tissue available [15].

In the present study, we conducted both single-tissue 
and cross-tissue TWAS using summary-level GWAS 
data of HOA and KOA to investigate gene-trait associa-
tions. Subsequently, biological pathways of the TWAS 
genes were explored. Finally, chemical-related gene set 
enrichment analysis (CGSEA) was performed to iden-
tify chemicals associated with OA using the Comparative 
Toxicogenomics Database (CTD).

Methods
Summary‑level GWAS data
The summary-level GWAS data were downloaded 
from GeneATLAS (http://​genea​tlas.​roslin.​ed.​ac.​uk/) 
[16]. In this study, we adopted GWAS summary sta-
tistics for HOA (M16 Coxarthrosis, Ncases = 12,868, 
Ncontrols = 439,396) and KOA (M17 Gonarthrosis, 
Ncases = 21,918, Ncontrols = 430,346), with a combined 
sample size of 452,264 individuals of European ancestry 
from UK Biobank [17]. The summary-level GWAS out-
comes were subsequently reformatted into the.sumstats 

format using the munge_sumstats.py program from the 
LD Score regression software package, which was pub-
licly accessible at https://​github.​com/​bulik/​ldsc.

Transcriptome‑wide association studies
In this study, we employed the FUSION software (http://​
gusev​lab.​org/​proje​cts/​fusion/) to conduct a summary-
based TWAS using LD reference data on built GRCh38 
of European populations from the 1000 Genomes pro-
ject (version 3) downloaded from the Alkes Group web-
site (https://​alkes​group.​broad​insti​tute.​org/​LDSCO​RE/​
GRCh38/) [18]. The eQTL reference panels from the 
Genotype-Tissue Expression (GTEx) Project (version 8) 
(https://​gtexp​ortal.​org/​home/​datas​ets) were downloaded 
from the FUSION website [19].

As there was no causally OA-related tissue reference 
panel, such as cartilage and chondrocyte, we utilized all 
GTEx reference panels in the TWAS as recommended 
[15]. Additionally, to enhance the power of the TWAS, we 
performed a sparse canonical correlation analysis (sCCA) 
TWAS with cross-tissue reference panels publicly availa-
ble on the FUSION website. The single-tissue TWAS and 
sCCA-TWAS were subsequently merged using an aggre-
gate Cauchy association test (ACAT). The comprehensive 
analytical methodology of the sCCA-ACAT approach 
was demonstrated in the previous study (https://​github.​
com/​fengh​elian/​sCCA-​ACAT_​TWAS) [20].

The TWAS was performed on the autosomal chro-
mosomes with the default settings. A strict Bonferroni-
corrected P-value (P.Bonferroni) < 0.05 was considered as a 
threshold for the significant TWAS associations.

Functional exploration of significant TWAS genes
To investigate the potential biological function of the 
identified significant TWAS genes, enrichment analysis 
was conducted using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) and Gene Ontology (GO) data-
bases [21, 22]. The KEGG and GO enrichment analysis 
was performed using the “clusterProfiler” R package (R 
Foundation for Statistical Computing, Vienna, Austria; 
https://​www.R-​proje​ct.​org/).

Gene expression dataset of cartilage
For KOA, the present study leveraged the gene expres-
sion dataset of cartilage obtained from a previous study 
[23]. This dataset comprised mRNA-sequencing data 
extracted from knee cartilage tissue of 18 healthy donors 
and 20 OA patients, characterizing all genes in terms of 
log2 fold change (FC) and an adjusted P-value. To ascer-
tain differentially expressed genes (DEGs), a significance 
threshold of adjusted P-value < 0.05 was applied.

To validate the HOA TWAS genes, a total of 10 pairs 
of preserved and OA cartilage samples (age ≥ 73) from 
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the Research Arthritis and Articular Cartilage study were 
included to analyze the gene expression profile of hip 
joint [24]. We used the GEO2R program in Gene Expres-
sion Omnibus database (https://​www.​ncbi.​nlm.​nih.​gov/​
geo/) to find out the DEGs, with a significance threshold 
of P-value < 0.05.

Chemical‑gene expression interaction
The CTD (http://​ctdba​se.​org/) is a publicly available 
online database that provides access to data on chem-
ical-gene interactions, chemical-disease associations, 
chemical-pathway associations, and chemical-phenotype 
associations. A flexible tool (CGSEA, https://​github.​

Fig. 1  The significant TWAS genes for knee OA with Z-scores across multiple reference panels. White spaces indicated the genes did not pass 
the significance threshold
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Fig. 2  The significant TWAS genes for hip OA with Z-scores across multiple reference panels. White spaces indicated the genes did not pass 
the significance threshold
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Fig. 3  Manhattan plots of the TWAS results. A and B showed the significant TWAS genes of knee OA and hip OA, respectively, across all autosomes. 
The blue lines indicated the significance threshold of the TWAS analysis. The labeled feature was the most significant one when there were multiple 
features with the same ID achieving significance
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com/​Cheng​SQXJTU/​CGSEA) was introduced to screen 
potential chemicals implicated in complex diseases or 
traits, and 11,190 chemical-associated gene sets were 
generated using 1,788,149 annotation terms of chemical-
gene pairs acquired from human and mice. The compre-
hensively analytical methodology was elucidated in the 
previous study [25].

In the present study, we integrated the TWAS results 
with the chemical-related gene sets to scan the candidate 
chemicals associated with OA using the CGSEA program 
with the default settings. The chemicals with both abso-
lute value of normalized enrichment score (|NES|) > 1 
and P-value < 0.05 were considered the significantly OA-
associated chemicals.

Results
Transcriptome‑wide association studies
We identified 170 and 731 significantly associated genes 
(P.Bonferroni < 0.05) across multiple eQTL reference panels 
in the single-tissue TWAS of KOA and HOA, respec-
tively (Figs. 1 and 2, Table S1-2). Amongst those features, 
40 and 74 unique genes were identified in 7 and 11 chro-
mosomes for KOA and HOA, respectively (Fig. 3). While 
most features showed the consistent expression patterns 
across expression panels, there were 4 and 10 genes with 
inconsistent direction of effect (Figs.  1 and 2). Addi-
tionally, we conducted cross-tissue TWAS through the 
sCCA + ACAT approach to improve the power of single-
tissue TWAS and found another 9 and 19 significant fea-
tures (P.Bonferroni < 0.05) for KOA and HOA, respectively 
(Table 1, Table S3-4).

Functional annotation of TWAS genes
KEGG and GO analyses were applied to explore the 
potential biological function of the TWAS genes, which 
were identified by either single-tissue or cross-tissue 
TWAS analysis. There were 4 and 12 KEGG catego-
ries with P-value < 0.05 for KOA and HOA, respectively 
(Fig. 4 A, B), including TGF-beta signaling pathway and 
MAPK signaling pathway, which played an important 
role in OA [26]. The TWAS genes were subjected to GO 
analysis as well (Table S5-6), and Fig.  4  C, D shows the 
top five GO terms in the biological process, cellular com-
ponent, and molecular function category. Particularly, we 
found some OA-related biological processes in the bio-
logical process category, such as hyaluronan metabolic 
process, chondrocyte differentiation, chondrocyte prolif-
eration, and mucopolysaccharide metabolic process.

Shared genes in mRNA expression profiling
To validate the significant TWAS features, we utilized the 
cartilage mRNA expression profiling from previous studies 
[23, 24]. In the case of KOA and HOA, a total of 14 and 4 

TWAS genes, respectively, were observed among the DEGs 
in the mRNA expression analysis (adjusted P-value < 0.05) 
(Fig. 5). Notably, among these shared genes, six genes for 
KOA exhibited a |log2FC|> 1, as shown in Table 2.

CGSEA of the TWAS genes
We conducted CGSEA analysis to identify the OA-asso-
ciated environmental factors using the significant TWAS 
genes with the Z-scores in the single-tissue TWAS 
(Table 3). For KOA, we identified the 5 enriched chemi-
cals. Meanwhile, there were 45 significantly enriched 
chemicals for HOA (Table S7), such as quercetin, bisphe-
nol A, cadmium chloride, and mercuric chloride.

Discussion
The present study identified 49 and 93 significantly asso-
ciated genes of KOA and HOA, respectively, through 
single-tissue and cross-tissue TWAS, and the biological 

Table 1  The additional significantly associated genes identified 
through the ACAT approach

OA Osteoarthritis, ACAT​ Aggregate Cauchy association test, P.ACAT P-value from 
ACAT analysis, P.Bonferroni Bonferroni-corrected P-value from ACAT analysis

OA Symbol P.ACAT​ P.Bonferroni

Knee AC005152.3 1.71E − 06 4.90E − 02

AL450226.2 1.76E − 07 5.04E − 03

COG8 1.30E − 07 3.74E − 03

CYB5B 3.14E − 07 8.98E − 03

HIC1 1.11E − 07 3.18E − 03

RP1-221C16.8 9.64E − 07 2.76E − 02

RP11-234K24.3 5.32E − 07 1.52E − 02

RP11-419C5.2 1.73E − 06 4.94E − 02

RP11-667K14.3 3.33E − 08 9.53E − 04

Hip ALAS1 2.49E − 07 7.13E − 03

ALG1L11P 1.17E − 06 3.36E − 02

CLIP1 7.76E − 08 2.22E − 03

DIABLO 3.26E − 07 9.33E − 03

FAM86B3P 6.68E − 07 1.91E − 02

FAM90A10P 4.67E − 07 1.34E − 02

GLYCTK-AS1 1.01E − 06 2.89E − 02

ITIH3 1.18E − 08 3.39E − 04

MALAT1 8.25E − 07 2.36E − 02

NT5DC2 1.61E − 06 4.61E − 02

PBRM1 3.06E − 07 8.76E − 03

RP11-481A20.4 1.36E − 06 3.90E − 02

RP11-67K19.3 2.18E − 07 6.24E − 03

RP5-966M1.7 7.71E − 07 2.21E − 02

RPS7P11 5.52E − 07 1.58E − 02

SETD1B 8.67E − 08 2.48E − 03

SSSCA1-AS1 2.20E − 11 6.30E − 07

TNC 3.00E − 08 8.58E − 04

TNNC1 1.17E − 07 3.35E − 03

https://github.com/ChengSQXJTU/CGSEA
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Fig. 4  The significant KEGG categories and top five GO terms of TWAS genes. A and B showed the significant KEGG categories for knee OA and hip 
OA, respectively. C and D showed the top five GO terms for knee OA and hip OA, respectively
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function and pathways of those signals were further 
investigated using KEGG and GO databases. We used 
the gene expression profiling of cartilage to validate the 
TWAS results.

More than 100 independent risk variants of OA have 
been reported in previous GWAS studies. While sev-
eral the significant TWAS genes overlapped with the 
effector genes or reasonable candidate genes in the 

Fig. 5  The shared significant genes identified in both TWAS analysis and cartilage mRNA expression profiles. A for knee OA and B for hip OA
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GWAS analysis, such as GDF5, USP8, TNC, FGFR3, 
LTBP1, and UQCC1, we unraveled several novel poten-
tial risk genes by TWAS analysis, which also showed 
significantly differential expression in the cartilage 
mRNA expression profiling, such as EVI2A, FMNL1, 
and AARS. Actually, studies demonstrated that some 
of the TWAS genes were involved in the OA-related 
biological function, such as GDF5 [27–29], WWP2 [30, 
31], and MALAT1 [32–34], while several TWAS genes 
have not been fully investigated in OA. For example, 
the MLXIP gene, also known as MAX-interacting pro-
tein 1 or MIP1, encodes a protein that interacts with 
the MAX transcription factor, which plays a critical 
role in the regulation of gene expression. Studies have 
shown that the MLXIP gene is involved in various bio-
logical processes, including glucose metabolism [35, 
36], lipid metabolism [37–39], and cellular senescence 
[40], which have also been implicated in the pathogen-
esis of osteoarthritis.

Additionally, by integrating the TWAS results with 
the chemical-related gene sets, we found a total of 45 
unique OA-associated chemical substances. Among the 

identified chemicals, quercetin was extensively studied 
in the field of OA and alleviated OA through its multi-
ple biological functions, including suppression of the 
inflammation and cartilage degeneration, pain relief, 
and attenuation of oxidative stress, ER stress, and associ-
ated apoptosis [41–45]. Clinical studies also support the 
protective effect of quercetin supplement, which could 
significantly improve the joint function and collagen II 
synthesis/degradation balance [46]. There were some 
hazardous chemicals among the identified OA-associated 
ones. For instance, bisphenol A was detected not only 
in the serum of the OA patients, but also in the synovial 
fluid of knee replacement patients, and exhibited a con-
centration-dependent antagonistic effect on the protec-
tive actions of E2 on chondrocyte, which decreased the 
NF-kappaB activation and MMP1 expression [47]. In 
addition, the exposure of cadmium chloride could reduce 
the chondrocyte cell viability, increase the expression of 
the catabolic markers (MMP13, MMP9, MMP3, MMP1) 
and inflammatory markers (IL-1β and IL-6), and activate 
the expression of the cartilage extracellular matrix genes 
(aggrecan and collagen II), and the cadmium contributed 
the cartilage loss by activating the interleukins through 
the reactive oxygen species [48]. Clinical findings sup-
ported the harmful effect of cadmium, and cadmium 
exposure through smoking was positively correlated with 
the severity of OA [49].

There were several limitations of the present study. 
First, the lack of causally OA-related tissues could reduce 
the power of the TWAS analysis, while we utilized 
both single-tissue and cross-tissue TWAS approaches 
to address this issue. Second, we employed the bioin-
formatic analysis to explore the OA-related candidate 
genes and chemicals, and the biological function of 
TWAS genes and related chemicals needed to be further 
investigated through biological experiments and clini-
cal observation. Third, the summary-level GWAS data 
were exclusively derived from the European population, 
and caution should be exercised when extrapolating the 
results to other populations.

Conclusions
In summary, we identified multiple OA-associated genes 
and chemicals by performing the TWAS and CGSEA 
analysis and yielded novel insights into the relationship 
between genes, chemicals, and their impact on OA.
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eQTL	� Expression quantitative trait loci
GWAS	� Genome-wide association study
TWAS	� Transcriptome-wide association studies
sCCA​	� Sparse canonical correlation analysis
ACAT​	� Aggregate Cauchy association test

Table 2  The shared genes between significant TWAS genes and 
DEGs with |log2FC|> 1

TWAS Transcriptome-wide association study, DEGs Differentially expressed 
genes, OA Osteoarthritis, FC Fold change

OA Symbol log2_FC Adjusted_P-value

Knee CDK2AP1 1.15 1.49E − 03

EVI2A 1.50 1.93E − 05

GDF5 1.14 2.81E − 02

LTBP1 1.37 2.21E − 03

SPAG4  − 1.02 2.68E − 04

WWP2  − 1.36 7.46E − 05

Table 3  The top five significantly OA-associated chemicals 
identified through CGSEA analysis

OA Osteoarthritis, CGSEA Chemical-related gene set enrichment analysis, NES 
Normalized enrichment score

OA Chemical Name MeSH® ID NES P-value

Knee Acetaminophen D000082 15.90 9.99E − 04

Tetrachlorodibenzodioxin D013749 37.22 9.99E − 04

Aflatoxin B1 D016604 65.49 9.99E − 04

Bisphenol A C006780 6.69 2.00E − 03

Cyclosporine D016572 13.42 3.00E − 03
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Mercuric Chloride D008627 76.38 9.99E − 04

Atrazine D001280 64.67 9.99E − 04

Quercetin D011794 61.42 9.99E − 04

Genistein D019833 56.48 9.99E − 04
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CGSEA	� Chemical-related gene set enrichment analysis
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