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Abstract 

Background  Primary Sjögren’s syndrome (pSS) is an autoimmune condition that causes harm to exocrine glands 
and also has extra-glandular manifestations (EGM). pSS patients with EGM have a worse prognosis than those 
with only sicca symptoms. Previous studies have shown that the minor salivary glands (MSG) of pSS patients exhibit 
a unique profile of cytokines and chemokines compared to healthy controls. However, there is a lack of research com-
paring pSS with EGM (pSS-EGM) and pSS without EGM (pSS-non-EGM). This study aims to explore potential biomark-
ers associated with pSS, particularly pSS with EGM.

Methods  By utilizing RNA sequencing, we conducted an analysis on the gene expression profiles of MSG in 63 
patients diagnosed with pSS, as well as 12 non-pSS individuals. Furthermore, we also investigated the MSG of pSS 
patients, both with and without EGM. Through bioinformatics analysis, we identified genes with differential expres-
sion (DEGs) and determined the core hub genes using PPI network. We then analyzed the top 20 DEGs and their cor-
relation with the patients’ clinical characteristics, and validated our findings using peripheral blood plasma.

Results  A total of 725 differentially expressed genes (DEGs) were identified in the comparison between pSS and non-
pSS groups, and 727 DEGs were observed between pSS-EGM and pSS-non-EGM. It is noteworthy that the expres-
sion levels of CXCL9 were higher in both pSS patients and pSS-EGM when compared to the control group. Taking 
into consideration the significance of the top 20 DEGs in relation to clinical parameters and the central hub genes, 
we ultimately chose CXCL9. In comparison to the non-pSS group, pSS patients exhibited notably greater expres-
sion of the CXCL9 gene in the MSG, as well as higher levels of CXCL9 protein in their plasma (p < 0.001). Furthermore, 
the expression of the CXCL9 gene and levels of CXCL9 protein were notably higher in pSS patients accompanied 
by EGM and those with SSA antibodies. Additionally, a correlation was found between the expression of the CXCL9 
gene and the EULAR Sjogren’s Syndrome Disease Activity Index (ESSDAI), as well as with immunoglobulin G (IgG) 
levels and erythrocyte sedimentation rate (ESR). Meanwhile, the protein levels of CXCL9 were found to be correlated 
with IgG levels and ESSDAI.

†Jingwei Hong and Hui Cheng shared first authorship.

†Xiao bing Wang and Xiaofang Zhu shared correspondence.

*Correspondence:
Xiao bing Wang
gale820907@163.com
Xiaofang Zhu
june8587@outlook.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13075-023-03229-x&domain=pdf


Page 2 of 13Hong et al. Arthritis Research & Therapy           (2024) 26:26 

Conclusion  CXCL9 proves to be a valuable biomarker in pSS, specifically due to its strong ability to differentiate 
between pSS patients with EGM and those without EGM. There is a significant correlation between CXCL9 and various 
clinical parameters both at the gene and protein level. Therefore, CXCL9 could be a potential target for future treat-
ment of pSS.

Keywords  Primary Sjögren’s syndrome, Extra-glandular manifestations, CXCL9, RNA-sequencing, ESSDAI

Introduction
Primary Sjögren’s syndrome (pSS) is an autoimmune 
condition that usually starts with gradual sicca symp-
toms [1, 2], but approximately 40% of patients may have 
extra-glandular manifestations (EGM) [3]. These EGM 
can affect different areas of the body, such as joints, 
skin, lungs, kidneys, and nervous system, and may 
range in severity.

They not only significantly impact a person’s overall 
health, but also increase the burden of the disease, in 
addition to causing dryness [4, 5]. EGM in patients with 
pSS affects the prognosis of patients [4, 6, 7].

The precise cause of pSS is not currently fully under-
stood. However, lymphocytes have traditionally been 
believed to play a key role in its development [8]. 
Chemokines, which are small proteins, attract immune 
cells and interact with chemokine receptors to facili-
tate their movement and differentiation [9]. Research 
has indicated that the levels of CXCL13 increase before 
the disease becomes clinically evident. This overexpres-
sion of CXCL13 promotes the formation of abnormal 
lymphoid tissues primarily composed of B lymphocytes 
in pSS. Additionally, the use of anti-CXCL13 antibod-
ies has shown effectiveness in managing pSS [10, 11]. 
Furthermore, studies have found that CXCL9, CXCL10, 
and CXCL11 are upregulated on the corneal and con-
junctival epithelium in response to desiccating stress 
in mice and in patients with dry eye [12, 13]. In 2023, 
Zhang et al. discovered that the CXCL9, 10, 11/CXCR3 
axis, which activates G protein-coupled receptor kinase 
2, is involved in regulating the migration of T lympho-
cytes, contributing to the development of pSS [14]. 
Inhibiting the CXCL9, 10, 11/CXCR3 axis or G protein-
coupled receptor kinase 2 can reduce the migration of 
T lymphocytes [14].

A key factor in diagnosing pSS is the use of a minor 
salivary gland (MSG) biopsy [15, 16]. Pathologists ana-
lyze the minor salivary gland, and the existence of one 
or more lymphocytic foci with over 50 lymphocytes 
per 4 mm2 is considered highly indicative of pSS [16, 
17]. This is a critical diagnostic criterion for the dis-
ease. Additionally, previous research [18–20], along 
with our own [21, 22], has shown that patients with pSS 
have a distinct gene-expression signature in their MSG 
that sets them apart from healthy individuals. Most of 

these DEGs are upregulated, such as type I interferon, 
chemokine CXCL9, CXCL10, and CXCL13 [23–27].

While most studies focus on patients with primary 
Sjögren’s syndrome (pSS) and non-pSS patients, as well 
as healthy individuals, limited research exists on patients 
with pSS associated with EGM and pSS without EGM. 
In this study, we examined the clinical traits and gene 
expression of minor salivary gland (MSG) and plasma 
samples. We compared these samples not only between 
individuals diagnosed with pSS and those without the 
diagnosis but also between pSS-EGM and pSS-non-EGM 
patients, aiming to identify potential biomarkers through 
the comparison of various indicators.

Materials and methods
Patients and sample collection
Between January 2020 and August 2021, a group of 63 
pSS patients and 12 non-pSS subjects were enrolled at 
the First Affiliated Hospital of Wenzhou Medical Univer-
sity in Zhejiang, China. Based on the 2012 ACR criteria 
or the 2016 (ACR)/EULAR classification criteria, pSS 
was diagnosed in this study [28, 29]. The non-pSS sub-
jects were mainly from the physical examination center 
of our hospital. This group of patients was treated in our 
Rheumatology and Immunology department because 
they were positive for antibodies or experienced discom-
fort with dry mouth or dry eyes. Eventually, the diagnosis 
of pSS was ruled out based on negative antibodies, MSG 
biopsy, ophthalmic KCS examination, and saliva flow rate 
testing. MSG biopsy was performed on all patients for 
diagnostic purposes.

The inclusion criteria for this study were as follows: ① 
Willing and voluntary participation of all participants. 
② Signing of an informed consent form by all partici-
pants. ③ Age range between 18 and 70 years for partici-
pants. The exclusion criteria were: ① Patients who had 
received treatment (including glucocorticoids, immu-
nosuppressants, or biological agents). ② Patients who 
were currently pregnant or lactating. ③ Patients with 
another known connective tissue disease or overlap syn-
drome. ④ Patients with acquired immunodeficiency. ⑤ 
Patients with a history of diagnosed malignant tumors. 
⑥ Patients with recent infections.
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At the same time as the MSG biopsies, we collected 
salivary glands and plasma samples from all participants 
to analyze the results. In addition, plasma samples were 
collected from 10 patients with systemic lupus erythe-
matosus (SLE) (Table S1) and 20 healthy individuals. 
To avoid confounding effects, collect all data, including 
clinical information and EULAR Sjögren’s Syndrome 
Disease Activity Index (ESSDAI) scores [30, 31], prior 
to administering any systemic immunosuppressant or 
glucocorticoid medications. Systemic involvement was 
defined according to the ESSDAI [31]. The data gathered 
encompassed patient age, dry eyes or mouth symptoms, 
test results for ocular examinations, and symptoms of 
extra-glandular involvement. Other documented vari-
ables included active joint involvement, interstitial lung 
disease (ILD) [32], skin vasculitis, peripheral neurologi-
cal involvement, and renal involvement characterized 
by persistent proteinuria, tubular acidosis, interstitial 
nephritis, or glomerulonephritis. Additionally, laboratory 
investigations, including anti-nuclear antibodies (ANA), 
anti-SSA antibody (SSA), anti-SSB antibody (SSB), rheu-
matoid factor (RF), levels of immunoglobulins, and 
complement component levels (C3 and C4), etc., were 
extracted from the patient’s clinical record.

The study (#16024) was approved by the ethics com-
mittee of the First Affiliated Hospital of Wenzhou Medi-
cal University.

Extraction of RNA, preparation of cDNA libraries, 
and sequencing
Gene expression was investigated in this study using 
RNA sequencing. We extracted total RNA from frozen 
salivary gland samples by utilizing TRIzol Reagent. The 
RNA purity was determined by utilizing a Nano Pho-
tometer spectrophotometer. To evaluate RNA quality, 
we employed a Bioanalyzer 2100 system with an RNA 
6000 Nano kit. To generate sequencing libraries for Illu-
mina, the NEBNext Ultra RNA Library Prep Kit was uti-
lized using a 3 mg RNA sample. We utilized the Illumina 
HiSeq platform for sequencing. To improve data quality, 
we used TrimGalore software and Cutadapt adapters to 
trim raw reads and filter low-quality reads. With FastQC 
software, we also generated quality-control reports for 
sequence reads. DESeq2 was used to normalize read 
count files after aligning them with the human reference 
genome “hg38”.

Bioinformatics analysis
The DEseq2 packages were utilized to identify the dif-
ferentially expressed genes (DEGs). The cluster profiler 
package in R was used to examine the annotation of 

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway [33]. A threshold for 
significance was established with a criterion of adjusted 
p-value < 0.05. We evaluated the interactive connections 
and protein–protein interaction (PPI) networks of the 
shared DEGs by utilizing the STRING database [34]. The 
biological network of important DEGs [25] was created 
and visualized using Cytoscape software [35].

Enzyme‑linked immunosorbent assay
The plasma levels of C-X-C motif chemokine ligand 9 
(CXCL9) and soluble C-X-C motif chemokine receptor 
3 (CXCR3) were measured in pSS patients, SLE patients, 
non-pSS subjects, and healthy controls using the Human 
CXCL9/MIG ELISA Kit from MULTI SCIENCES (Hang-
zhou, Zhejiang, China) and the Human Chemokine C-X-
C-Motif Receptor 3 (CXCR3) ELISA Kit from Jianglai 
Biological (Shanghai, China), following the product 
guides. To measure the color produced by 3,3′,5,5′-tetra-
methylbenzidine (BD Biosciences, United States), the 
ELISA plate reader was used to record the absorbance at 
450 nm. Three tests were conducted on each sample.

Statistical analysis
We analyzed the data using R version 4.2.0. The mean and 
standard error (SE) were calculated using a two-sample 
t-test. DEGs were identified based on a log2 fold change 
that was either less than -1 or greater than 1, along with 
an adjusted p-value below 0.001. Functional enrichment 
analysis was performed using the clusterprofiler pack-
age. For data that followed a normal distribution, the Stu-
dent’s t-test was employed, whereas the Mann–Whitney 
U test was utilized for variables that did not exhibit nor-
mality. Categorical variables were compared using chi-
square tests. Spearman’s correlation analysis was utilized 
to quantify the connections between gene expression and 
clinical parameters. A p-value less than 0.05 was used to 
define statistical significance.

Table 1  Clinical characteristics of patients with pSS and non-pSS

Data are expressed as mean ± SD or n (%)

ANA Antinuclear Antibody, SSA Anti-SSA antibody, SSB Anti-SSB antibody

Characteristics pSS Non-pSS P-value

N 63 12

Age, years, mean (range) 50.85 ± 15.90 48.33 ± 12.03 0.542

Female, n (%) 55/63 (87.30) 11/12 (91.67) 1

ANA-positive (%) 42/63(66.67) 1/12 (8.33) < 0.001

Anti-SSA-positive (%) 49/63(77.78) 1/12 (8.33) < 0.001

Anti-SSB-positive (%) 28/63 (44.44) 0/12 (0.00) 0.010
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Results
Patient characteristics
In this study, we compared the characteristics of patients 
with pSS and non-pSS. Table  1 summarizes the charac-
teristics of 63 pSS patients and 12 non-pSS subjects. Our 
results show that a greater proportion of pSS patients test 
positive for ANA, anti-SSB, and anti-SSA antibodies (all 
p-values < 0.05) compared to those without pSS. Never-
theless, neither group showed any significant differences 
in age or gender.

We further analyzed the characteristics of pSS patients 
and categorized them into two groups: those with EGM 
and those without EGM. Table 2 presents the character-
istics of these two groups. Compared to pSS-non-EGM 
patients, pSS patients with EGM have higher levels of 
ANA, RF, ESR, IgG and ESSDAI (all p-values < 0.05). 
Nevertheless, there was no significant difference in 
anti-SSA, anti-SSB, age, gender, C3, C4, dry eyes, or dry 
mouth between the two groups.

Detecting DEGs in pSS patients
Using RNA sequencing, we analyzed gene expression 
patterns of MSGs in 63 pSS patients and 12 non-pSS 

patients. We discovered 725 genes that exhibit varying 
levels of expression between individuals with pSS and 
non-pSS subjects, with 697 of these genes (96.1%) being 
up-regulated. Among these DEGs, CXCL9 showed the 
most significant difference in expression (Fig.  1A). Fig-
ure  1B displays the top 20 DEGs. In addition, we used 
Cytoscape v3.9.0 software to construct a PPI network 
graph (Fig. 1C), which revealed hub genes at the central 
position, including STAT1, IFNG, CD4, CXCL9, PTPRC.

Furthermore, we used RNA sequencing to analyze 
the gene expression patterns in patients with pSS, both 
with and without EGMs. We found 727 genes that were 
expressed differently between the two groups, with 517 
(71.1%) of these genes being up-regulated. Notably, 
CXCL9 had significantly higher expression levels in pSS 
patients with EGMs than in those without, as shown in 
Fig. 1D. The top 20 DEGs, including CD84, IRF1, IL21RB, 
CXCL9, and others, are displayed in Fig.  1E. Addition-
ally, the hub genes at the central position include STAT1, 
ZAP70, LCP2, CXCL9, PTPRC (Fig. 1F).

Pathway enrichment analysis of upregulated DEGs
In order to investigate potential biological mechanisms 
associated with pSS and extra-glandular involvement in 
pSS, we conducted analyses on commonly upregulated 
DEGs using GO and KEGG pathway methods. In Fig. 2A, 
the analysis of upregulated DEGs between pSS and non-
pSS reveals the top 20 pathways that are enriched. In pSS, 
several immune-related pathways showed significant 
upregulation, including leukocyte cellular adhesion, dif-
ferentiation of T cells, and proliferation of lymphocytes 
in GO. Additionally, there was an upregulation in path-
ways such as Cytokine-cytokine receptor interaction, 
T cell receptor signaling, and Chemokine signaling in 
KEGG.

Moreover, Fig.  2B demonstrates the top 20 enriched 
GO and KEGG pathways resulting from the examination 
of upregulated DEGs between pSS-EGM and pSS-non-
EGM. In a similar manner as the previous outcome, a 
significant number of immune-related pathways exhibit 
upregulation in pSS-EGM in comparison to pSS-non-
EGM. Additionally, the Chemokine signaling pathway is 
an important pathway in both groups.

Clinical correlations of CXCL9 in pSS
To determine how potential biomarkers affect the sever-
ity of pSS-EGM disease, we analyzed the correlation 
between the top 20 DEGs (DEGs between pSS-EGM and 
pSS-non-EGM) and various clinical parameters, includ-
ing ESSDAI scores, ESR, CRP, IgA, IgG, IgM, and other 
clinical parameters. Among the 20 genes, only CXCL9 
and PTPRC were identified as the central hub genes. 
Moreover, it was observed that CXCL9 exhibited a 

Table 2  Clinical characteristics of patients with pSS-EGM and 
pSS-non-EGM

Data are expressed as mean ± SD or n (%)

ANA Antinuclear Antibody, C3 Complement C3, C4 Complement C4, CRP 
C-reaction protein, ESR Erythrocyte Sedimentation Rate, ESSDAI EULAR Sjögren’s 
Syndrome Disease Activity Index, FS Focus score, IgA Immunoglobulin A, IgG 
Immunoglobulin G, IgM Immunoglobulin M, RF Rheumatoid Factor, SSA Anti-SSA 
antibody, SSB Anti-SSB antibody

Characteristics pSS-EGM pSS-non-EGM P-value

N 50 13

Age, years, mean (range) 52.84 ± 13.49 45.77 ± 13.31 0.105

Female, n (%) 43/50 (86.00) 12/13 (92.31) 0.888

Anti-SSA-positive (%) 39/50 (78.00) 10/13 (76.92) 1

Anti-SSB-positive (%) 25/50 (50.00) 3/13 (23.08) 0.154

ANA-positive (%) 37/50 (74.00) 5/13 (38.46) 0.036

RF-positive (%) 16/41 (39.02) 0/12 (0.00) 0.026

Duration(month) 32.39 ± 47.14 28.15 ± 64.92 0.156

CRP (8 mg/L) 8.46 ± 19.57 2.49 ± 5.42 0.542

ESR (mm/h) 37.93 ± 21.06 11.69 ± 7.30 < 0.001

IgG (g/L) 23.09 ± 8.87 14.72 ± 1.96 < 0.001

IgA (g/L) 3.84 ± 1.55 3.24 ± 0.85 0.124

IgM (g/L) 1.51 ± 0.79 1.29 ± 0.57 0.355

C3 (g/L) 1.04 ± 0.21 1.06 ± 0.18 0.751

C4 (g/L) 0.20 ± 0.08 0.24 ± 0.09 0.230

FS ≥ 1 39/50 (78.00) 11/13 (84.62) 0.888

ESSDAI 14.52 ± 10.16 1.08 ± 2.02 < 0.001

Xerophthalmia (%) 27/50 (54.00) 5/13 (38.46) 0.492

Xerostomia (%) 26/50 (52.00) 6/13 (46.15) 0.949
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stronger correlation with the clinical parameters. There-
fore, we have selected CXCL9 for additional analysis and 
included it in the Supplementary materials. Our analysis 
showed that CXCL9 in MSG had a positive correlation 
with ESSDAI score (Fig. 3A, r = 0.47, p < 0.001), IgG lev-
els (Fig. 3B, r = 0.52, p < 0.001), and ESR (Fig. 3C, r = 0.40, 
p = 0.002). Nevertheless, no significant associations were 
found between CXCL9 RNA expression and other clini-
cal factors.

Assessment of circulating chemokine CXCL9 and CXCR3
ELISA was used to measure CXCL9 and CXCR3 levels 
in plasma from patients with pSS, non-pSS, as well as 10 
SLE patients and 20 healthy individuals. A higher level 
of CXCL9 and CXCR3 was noted in both pSS and SLE 
patients (Fig. 4A, B). Furthermore, a notably increase in 
CXCL9 expression was found in plasma of pSS patients 
with EGM. In contrast, CXCR3 expression did not dis-
play significant differences between pSS patients with 
and without EGM (Fig. 4C, D).

Furthermore, a strong association was observed 
between CXCL9 levels in plasma and both ESSDAI score 
and IgG levels. The correlation coefficients were 0.46 
(p < 0.001) and 0.37 (p = 0.003), respectively (Fig. 3D, E, F).

CXCL9 expression in pSS with EGM
The study measured the expression of CXCL9 in 
MSGs and blood plasma of pSS patients with EGM. 
We sorted the patients into six subgroups based 
on their symptoms: peripheral blood involvement, 
joint involvement, kidney involvement, ILD, periph-
eral nervous system involvement, and rash involve-
ment. There was a notable rise in CXCL9 expression 
in patients with joint involvement, rash involve-
ment, blood involvement, kidney involvement, and 
ILD, compared to pSS-non-EGM patients, except for 
those with peripheral nervous system involvement. 
Furthermore, patients with blood involvement exhib-
ited higher CXCL9 expression levels than patients 
with kidney involvement and ILD (Fig. 5A). Similarly, 
CXCL9 expression in plasma was significantly higher 

in patients with joint involvement, blood involve-
ment, kidney involvement, and ILD, compared to pSS-
non-EGM patients, except for those with peripheral 
nervous system involvement and rash involvement. 
Moreover, pSS patients with blood involvement had 
the highest levels of CXCL9 expression (Fig. 5B).

CXCL9 expression is elevated in pSS with SSA antibodies
The study discovered that pSS patients who have SSA 
antibodies may have higher levels of CXCL9 expression in 
their minor salivary gland (MSG) and plasma. Antibodies 
against SSA were used to classify patients. A notable dis-
tinction was found between patients with antibodies and 
those without antibodies in the expression of the CXCL9 
gene in MSG and the plasma levels of the protein, as 
shown in Figure S2A and S2B.

Discussion
Although there is a wealth of literature on the applica-
tion of RNA-seq in investigating pSS patients [36–40], 
research on pSS patients with EGM is relatively limited. 
For this research, we employed RNA-seq to examine 
the gene expression patterns of diagnosed pSS patients 
in comparison to individuals without pSS, as well 
as pSS patients with and without EGM. In pSS, there 
are disruptions in several immune-related pathways, 
and these disruptions also occur in cases of pSS with 
extra-glandular involvement. Among these pathways, 
the Chemokine signaling pathway was found to be par-
ticularly important in both groups, which is consistent 
with prior studies on pSS [41, 42]. Additionally, among 
several DEGs, CXCL9 showed a significant difference in 
expression in pSS. Furthermore, CXCL9 has the poten-
tial to act as a critical regulator or signaling molecule in 
the network that drives the progression of pSS and pSS 
with EGM.

CXCL9 is a chemokine protein that interacts with its 
receptor, CXCR3, to attract T cells, natural killer cells, and 
macrophages to the location of inflammation [43–45]. 
Interferon-gamma-induced CXCL9 is also called MIG 
(monokine induced by interferon gamma) and is believed 

(See figure on next page.)
Fig. 1  Identification of DEGs in patients. A Volcano plot representing differentially expressed genes between pSS and non-pSS samples. Genes 
with adjusted p < 0.001 and absolute log2-fold change > 1 are represented in red or blue. B Heatmap showing the top 20 DEGs between pSS 
and non-pSS. C The network consists of 100 top DEGs between pSS and non-pSS. D Volcano plot representing differentially expressed genes 
between pSS-EGM and pSS-non-EGM samples. Genes with adjusted p < 0.001 and absolute log2-fold change > 1 are represented in red or blue. 
E Heatmap showing the top 20 DEGs between pSS-EGM and pSS-non-EGM. F The network consists of 100 top DEGs between pSS-EGM 
and pSS-non-EGM. In the network, each gene is represented by a node, and the connections between nodes represent the interactions 
between the corresponding proteins. The size and color of the nodes indicate the degree (number of connection) of the genes. The larger size 
and darker color indicate a higher degree and greater importance
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to be  involved in the development of multiple autoim-
mune disease [46–48], including pSS [23, 49]. Several 
studies [13, 50] have reported elevated levels of CXCL9 
in the exocrine glands tissue of patients with pSS, and 
our results were consistent with what has been previ-
ously described in the literature. However, the correla-
tion between CXCL9 and extra-glandular involvement of 
pSS has not been previously investigated.Our study found 
that the expression of CXCL9 is higher in MSGs from pSS 
patients compared to non-pSS subjects. Furthermore, it 
was observed that pSS and SLE patients had elevated lev-
els of CXCL9 and CXCR3 in the plasma when compared 
to individuals of non-pSS and healthy controls. Numerous 

studies [51–53] have suggested that the development of 
pSS and SLE shares some similarities. Our findings indi-
cate that the CXCL9/CXCR3 axis may have a significant 
role in the pathogenesis of both pSS and SLE. Moreover, 
we discovered a connection between the CXCL9 gene’s 
expression and CXCL9 protein levels, as well as various 
clinical characteristics in these individuals, including ESR, 
IgG levels, and ESSDAI. This suggests that biomarker 
CXCL9 may be potentially serve as a helpful indicator for 
assessing both disease activity and progression in indi-
viduals with pSS. Such information could assist clinicians 
in making more informed decisions regarding treatment 

Fig. 2  Pathway enrichment analysis of upregulated DEGs. A Bar chart depicting the top 20 enriched Gene Ontology (GO) and KEGG pathways 
from the analysis of upregulated DEGs between pSS and non-pSS. B Bar chart illustrating the top 20 enriched Gene Ontology (GO) and KEGG 
pathways from the analysis of upregulated DEGs between pSS-EGM and pSS-non-EGM. The x-axis displays the GO and KEGG pathways, 
while the y-axis shows the enrichment score (-log10 adjusted p-value). Each bar corresponds to a specific pathway, with its height representing 
the degree of enrichment
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options for their patients, indicating that CXCL9 could 
play a role in the progression of pSS.

Our findings indicate that compared to patients with-
out EGM, patients with pSS who exhibit EGM have 
higher levels of ANA, RF, ESR, IgG, and ESSDAI (all 
p-values < 0.05). Due to the importance of these clini-
cal parameters in the diagnosis and treatment of pSS 
[54–57], it is essential to consider them when evaluat-
ing patients with confirmed pSS. This will facilitate early 
detection of EGM in pSS patients. Additionally, we found 
a considerable rise in the expression of the CXCL9 gene 
and CXCL9 protein levels in pSS patients with EGM 
compared to those without EGM. It is known that the 
CXCL9/CXCR3 pathway is critical in the migration of 
immune cells [43, 58, 59]. Studies have shown that the 
migration of a large number of immune cells and invasion 

of glandular tissue are the first and most important path-
ological manifestations of pSS [13, 49, 56]. This suggests 
that the occurrence of EGM in pSS patients could be 
related to the CXCL9/CXCR3 pathway. There are various 
manifestations of extra-glandular involvement in patients 
with pSS [60, 61]. To further understand of the role of 
CXCL9 in various types of extra-glandular involvement, 
the pSS-EGM group was divided into six subgroups. In 
addition to peripheral nervous system and rash involve-
ment, the expression of CXCL9 was noticeably higher in 
pSS patients with joint, blood, kidney, and ILD involve-
ment in comparison to pSS-non-EGM patients. Patients 
with blood involvement showed the highest levels of 
CXCL9 expression. Further research is required to 
explore the relationship between EGM and the CXCL9/
CXCR3 pathway.

Fig. 3  Association between CXCL9 and clinical features of primary Sjögren’s syndrome. A, B, C The Spearman correlation between expression 
of CXCL9 gene in MSG and clinical characteristics such as ESSDAI score (A), IgG (B), and ESR (C). D, E, F The Spearman correlation 
between expression of CXCL9 gene in plasma and clinical characteristics such as ESSDAI score (D) and IgG (E), but not with ESR (F). The top 
and right boxplot indicates the distribution. Dashed lines represent the mean value
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The anti-SSA antibody, also known as anti-Ro antibody, 
is an autoantibody that targets the SSA antigen [62, 63]. 
It is one of the diagnostic criteria for the disease [28, 55]. 
Previous studies [6, 64, 65] have found that the existence 
of SSA antibodies is a reliable indication of the existence of 
EGM in pSS over an extended period of observation. How-
ever, our study discovered that the rates of positivity in 
SSA showed no significant variation among patients with 
and without EGM. The limited number of pSS patients 
in our sample may have influenced the research findings, 
and race differences may have also played a role. To verify 
these findings in the future, it may be necessary to conduct 

an ongoing follow-up study. Additionally, our research 
revealed that pSS patients with SSA antibodies have ele-
vated levels of CXCL9 expression in their MSG and higher 
levels of CXCL9 protein in their plasma. Earlier studies 
[66, 67] have shown that anti-SSA antibodies can trigger 
activated interferon (IFN) production by activating plas-
macytoid dendritic cells, which are specialized immune 
cells that produce significant quantities of IFN. This can in 
turn result in the production of CXCL9 via MIG signaling. 
Therefore, there may be a correlation between anti-SSA in 
pSS and CXCL9 mediated by IFN signaling. Nevertheless, 

Fig. 4  Differential expression of CXCL9 and CXCR3 in plasma. A, B Boxplots depicting the expression of plasma CXCL9 (A) and CXCR3 (B) in HC, 
non-pSS, pSS, SLE. C, D Boxplots showing the expression of plasma CXCL9 (C) and CXCR3 (D) between pSS-non-EGM and pSS-EGM. Significance 
determined by Wilcoxon’s test
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further investigation is necessary to clarify the precise 
mechanisms and implications of this connection.

Conclusions
Overall, these findings confirm that CXCL9 is elevated in 
pSS patients, particularly those with EGM and SSA anti-
bodies. The way it is expressed may be a useful biomarker 
for measuring disease severity, suggesting that it could 
have a significant impact on the development of the dis-
ease. It could also be utilized as a biomarker or treatment 
target, but additional research is necessary to validate 
and fully understand these discoveries.
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