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Abstract 

Background  Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treat-
ment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) 
with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment.

Materials and methods  Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment 
analysis was performed and a protein–protein interaction (PPI) network was constructed based on these c-FDEGs. 
Then, seven hub genes were screened. Three machine learning methods and verification experiments were used 
to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation 
analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network 
analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed 
using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression 
of these c-FDEGs in various cell populations.

Results  A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. 
Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, 
and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their 
corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially 
expressed c-FRGs had significantly different expression distributions across the cell populations.

Conclusion  Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospec-
tive therapeutic targets for OA.
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Introduction
As a degenerative disease that is difficult to reverse, 
osteoarthritis (OA) is often accompanied by joint pain, 
stiffness, joint swelling, restricted movement, and joint 
deformity, all of which seriously affect daily life activities. 
The structural changes in OA mainly involve the articu-
lar cartilage, subchondral bone, ligaments, capsule, syn-
ovium, and periarticular muscles [1]. The prevalence of 
OA is steadily rising due to the aging population and the 
obesity epidemic [1], and it has placed a significant bur-
den on society [2]. Currently, the main treatments for OA 
remain nonsteroidal anti-inflammatory drugs (NSAIDs), 
pain medications, and joint replacement surgery. How-
ever, these treatments cannot reduce the incidence of 
the early stages of the disease [3], prevent further carti-
lage degeneration, or promote cartilage regeneration [4]. 
Therefore, further understanding of the pathophysiologi-
cal mechanisms of OA could aid in the development of 
additional approaches for more effective diagnosis and 
treatment.

Ferroptosis is a specific type of programmed cell death 
driven by iron-dependent lipid peroxidation character-
ized by an abnormal accumulation of lipid reactive oxy-
gen species (ROS) [5, 6]. This programmed cell death 
was first reported and named by Dixon in 2012 [7]. Many 
studies have demonstrated that ferroptosis and the devel-
opment of OA are closely related [8–11], and ferroptosis-
related genes (FRGs) can help in the diagnosis of OA, as 
well as in predicting the immune status of patients with 
OA [12, 13].

Copper is an indispensable trace element involved in a 
wide range of biological reactions. A small study reported 
elevated plasma and synovial copper concentrations in 
patients with OA compared with healthy controls [14], 
and another study also found that elevated levels of cop-
per were associated with an increased risk of OA [15]. 
When the oxidizing capacity of copper ions in the body 
exceeds the antioxidant capacity of the body, joints can 
be destroyed [16]. Cuproptosis is a novel form of pro-
grammed cell death during which copper binds directly 
to the fatty acylated components of the tricarboxylic acid 
(TCA) cycle, thereby leading to an increase in toxic pro-
teins and ultimately to cell death [17]. Ferroptosis is an 
iron-dependent programmed cell death caused by lipid 
peroxidation and the massive accumulation of reactive 
oxygen radicals[7]. Furthermore, copper and iron are 
closely related; copper is essential for iron absorption, 
meaning that copper deficiency or overload can impair 
the balance of iron metabolism [18]. When the balance 
of iron metabolism is disturbed, lipid peroxidation and 
oxidative stress may be induced, which in turn leads to 
ferroptosis and alters the expression of FRGs [19–21]. 
However, it has not yet been reported whether new 

signature genes (c-FRGs) combining cuproptosis-related 
genes (CRGs) with FRGs are beneficial for the diagnosis 
and treatment of OA.

In this study, we explored and analyzed the immune 
characteristics and biological functions of c-FRGs in 
patients with OA. In addition, we screened key ferrop-
tosis-related biomarkers associated with cuproptosis in 
OA, constructed ceRNA networks, and predicted poten-
tial drugs for OA treatment. Our results suggest that 
c-FRGs may play an important role in the pathophysi-
ological process of OA and provide new directions and 
ideas for OA research.

Materials and methods
Data collection
The US National Center for Biotechnology Information 
(NCBI) gene expression omnibus (GEO) is the world’s 
largest international public repository of high-through-
put molecular information. Using “osteoarthritis” as 
a search term, the GEO database (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) was searched for appropriate data-
sets, and four datasets that met the study requirements 
were downloaded. These four datasets were GSE55235, 
GSE169077, GSE55457, and GSE55584, and the chip type 
was Affymetrix Human Genome U133a. We eventually 
obtained 25 normal human synovial samples and 32 OA 
synovial samples from the four datasets as samples for 
the follow-up study. To assess the accuracy of the analy-
sis, the GSE82107 dataset was used as validation sets. In 
addition, the FRGs and CRGs were obtained from the 
published literature [6] and the FerrDb website (http://​
www.​zhoun​an.​org/​ferrdb/).

Extraction of c‑FRGs and obtaining differentially expressed 
c‑FRGs
Inter-batch differences between the four groups 
(GSE55235, GSE169077, GSE55457, and GSE55584) 
were eliminated using “affy” packet merging and the “sva” 
packet. We performed a Pearson correlation analysis of 
CRGs with FRGs to obtain particular FRGs (c-FRGs) that 
were highly correlated with CRGs (|r| > 0.5, adj. p value < 
0.05). Differentially expressed genes (DEGs) and differen-
tially expressed c-FRGs (c-FDEGs) were obtained using 
the “limma” package (p value < 0.05).

Function enrichment analysis and protein–protein 
interaction (PPI) networks
To acquire disease-related biological functions and sign-
aling pathways, Gene Ontology (GO) enrichment analy-
sis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis of c-FDEGs were 
performed. GO enrichment analysis was used to describe 
the molecular functions (MF), cellular components (CC), 

https://www.ncbi.nlm.nih.gov/geo/
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http://www.zhounan.org/ferrdb/
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and biological processes (BP) involved in the target genes 
(p-value < 0.05). KEGG analysis was used to systemati-
cally analyze gene functions and to link genomic infor-
mation and functional information (p-value < 0.05). 
The results of the gene set enrichment analysis (GSEA), 
GO enrichment analysis, and KEGG pathway enrich-
ment analysis of the c-FDEGs were visualized using the 
“ClusterProfiler” package in R. GSEA was based on the 
gene set (h. all. v7. 5. 1. symbols. gmt), which was down-
loaded from MSigDB (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb/​index.​jsp). The STRING database is used 
for searching interactions between known proteins and 
for predicting interactions between proteins and is one of 
the most data-rich and widely used databases for study-
ing protein interactions. Protein interaction analysis was 
performed on all c-FDEGs through the STRING website 
(https://​string-​db.​org/) and visualized using Cytoscape 
software. The degree values of the c-FDEGs were cal-
culated using the cytoHubba plugin, and the top seven 
genes were used as hub genes.

Acquisition and validation of biomarkers
In this research, we used three machine learning algo-
rithms: support vector machine recursive feature elimi-
nation (SVM-RFE), least absolute shrinkage and selection 
operator (LASSO) regression analysis, and random for-
est analysis (RF). First, we used the “e1071” R package 
for SVM-RFE analysis. Subsequently, the “glmnet” pack-
age was used to perform LASSO regression analysis. In 
addition, RF was conducted adopting the “randomForest” 
package, and genes with importance > 1 were retained. 
The crossover genes obtained by these three methods 
were regarded as prospective biomarkers for OA.

Construction and validation of disease model 
(nomogram)
In addition, a nomogram based on characteristic bio-
markers was structured using the “rms” R package. 
Receiver operating characteristic (ROC) analysis was 
performed on the biomarkers and the obtained models, 
and the area under the curve (AUC) values were calcu-
lated with the “pROC” package to assess the diagnostic 
efficacy of the potential biomarkers. In addition, the four 
biomarkers and the obtained disease nomogram were 
validated on the GSE82107 validation set.

Collection of clinical samples
Synovial tissue collection and all experimental proce-
dures were approved by the Institutional Review Board 
of the Affiliated Hospital of Southwest Medical Univer-
sity (KY2023293) in accordance with the guidelines of 
the Chinese Health Sciences Administration, and writ-
ten informed consent was obtained from the donors. 

Synovial tissue from the suprapatellar bursa was col-
lected as OA synovial samples and normal control sam-
ples, respectively, from patients who met the American 
College of Rheumatology criteria for the diagnosis of 
primary symptomatic knee OA (n=6; men: 3, women: 
3; age: 55-70 years) and from patients who underwent 
trauma-related lower extremity amputation but did not 
have osteoarthritis or rheumatoid arthritis (n=6; men: 4, 
women: 2; age: 50-67 years). All samples were collected 
within two hours of arthroplasty or lower limb amputa-
tion and were divided into two portions for subsequent 
immunofluorescence staining and western blot experi-
ments, respectively.

Immunofluorescence staining
Mid-sagittal sections (4-μm thick) of paraffin-embedded 
clinical synovial specimens were incubated for 1 hour 
at room temperature, after which the slides were closed 
with 10% bovine serum (Solarbio, Beijing, China) for 
1 hour at room temperature and then incubated with 
primary antibodies for 16 hours at 4°C. The fluorescent 
dye was incubated for 1 hour at room temperature, and 
the slides were subsequently sealed with DAPI Sealer 
(Thermo Fisher Scientific, Waltham, MA, USA).

Western blot analysis
Protein lysates were extracted from synovial tissue sam-
ples and lysed with RIPA buffer to extract the total pro-
tein. After conducting a BCA protein assay (Beyotime, 
Shanghai, China), 5 × sample buffer (Servicebio, Wuhan, 
China) was added to the protein lysates. Equal amounts 
of lysates were then separated through SDS-PAGE and 
transferred to a 0.22-um PVDF microporous membrane 
(Merck Millipore, Burlington, MA, USA). Next, the 
membrane was sealed with 5% skimmed milk and incu-
bated with the primary antibody for 16 hours at 4°C, after 
which the membrane was incubated with the secondary 
antibody for 60 minutes at room temperature. Target 
protein bands were visualized using FDbio-Dura ECL 
(Merck Millipore, Burlington, MA, USA). The antibod-
ies used for immunofluorescence and western blot in this 
study were as follows: rabbit anti-FZD7 (Cat. #: DF8657, 
1:1,000; AFFBIOTECH, USA), rabbit anti-SLC39A14 
(ZIP14) (Cat. #: 26540-1-AP, 1:1,000, Proteintech, Rose-
mont, IL, USA), rabbit anti-CDKN1A (p21) (Cat. #: 
2947T, 1:1,000, Cell Signaling Technology, Danvers, MA, 
USA), rabbit anti-GABARAPL2 (Cat. #: 14256T, 1:1,000, 
Cell Signaling Technology), anti-GAPDH (Cat. #: 60004 
-1-Ig, 1:1,000, Proteintech, USA), and species-matched 
HRP-conjugated secondary antibody (Cat. #: SA00001-1, 
1:1,000; Proteintech, USA).

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://string-db.org/
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ssGSEA, GSEA, and GSVA for differentially expressed 
c‑FRGs
The gene set (h.all.v2022.1.Hs.symbols.gmt), a collec-
tion of 50 symbolic gene sets for humans, was down-
loaded from MSigDB (https://​www.​gsea-​msigdb.​org/​
gsea/​msigdb/​index.​jsp). The 50 symbolic human gene set 
scores were calculated for each sample using single-sam-
ple GSEA (ssGSEA), and differential scores were obtained 
for the non-OA and OA groups. The “corrplot” package 
was used to perform correlation analysis between bio-
markers and ssGSEA gene sets. Next, GSEA and gene set 
variation analysis (GSVA) were performed for the four 
biomarkers, the seven hub genes, and the remaining 29 
differentially expressed c-FRGs.

Prediction of therapeutic drugs
The gene–drug interaction database (DGIDB, http://​
www.​dgidb.​org) [22] can help researchers annotate 
known pharmacogenetic interactions and potential drug 
accessibility–related genes. In this research, we used 
DGIdb to filter potential drugs targeted to biomarkers so 
as to identify new therapeutic targets. The obtained drug 
prediction results were also imported into Cytoscape 
(v3.9.1) software for visualization.

Construction of ceRNA network
The miRanda, TargetScan, and miRDB databases are 
authoritative databases used for predicting miRNA–
target gene regulatory relationships, and spongeScan 
is a web tool designed for sequence-based complemen-
tary detection of miRNA-binding elements in lncRNA 
sequences. Biomarkers of common mRNA–miRNA 
interactions were identified in miRanda (http://​www.​
micro​rna.​org/​micro​rna/​home.​do), TargetScan (http://​
www.​targe​tscan.​org), and miRDB (https://​mirdb.​org). 
miRNA–lncRNA interactions were obtained from Spon-
gescan (http://​spong​escan.​rc.​ufl.​edu). These interactions 
were imported into Cytoscape to construct the ceRNA 
network.

Immune infiltration analysis
To better understand the changes that occur in the 
immune system of patients with OA, the “CIBERSORT” 
R package was used to describe the basic expression of 
22 immune cell subtypes. Next, we analyzed the correla-
tion between potential biomarkers, hub genes, and the 22 
immune cell types.

scRNA‑seq analysis
The OA synovial scRNA-seq data (GSE152805) from 
three patients were obtained from the GEO database and 
analyzed using the "Seurat" software package. To ensure 
high quality of the data, we removed low-quality cells 

(cells with <200 or >10,000 detected genes, >10% of mito-
chondrial genes, or <300 or >30,000 expressed genes) 
and low-expressed genes (any gene expressed in less than 
three cells). We used the "NormalizeData" function to 
normalize the gene expression of the included cells and 
performed principal component analysis (PCA) using 
the top 2000 highly variable genes to extract the top 12 
principal components (PCs), which were retained for 
further analysis using the "FindVariableFeatures" func-
tion. To perform unsupervised and unbiased clustering 
of cell subpopulations, the "FindNeighbors," "FindClus-
ters" (resolution = 0.6), and "RunUMAP" functions were 
applied. Each cell cluster was manually annotated accord-
ing to the cell-specific marker genes. These marker genes 
were obtained from previously published literature[23, 
24] and from the CellMarker website (http://​xteam.​xbio.​
top/​CellM​arker/). Finally, we used CellChat (1.6.1) for 
the inference and analysis of cell–cell communication.

Results
Figure 1 describes the entire flow of the study.

Extracting c‑FRGs and obtaining differentially expressed 
c‑FRGs
After merging the GSE55235, GSE169077, GSE55457, 
and GSE55584 datasets (Table  1), the newly produced 
gene expression matrices were subjected to normaliza-
tion and presented as bidimensional PCA plots prior to 
and after processing (Fig.  2a and b), indicating that the 
final sample data obtained were plausible. A total of 63 
FRGs were found to be closely associated with 11 CRGs 
(Fig.  2e, Supplementary Table  1). A total of 4167 DEGs 
were determined and identified (Fig.  2c). There were 
a total of 40 c-FDEGs, including 13 upregulated genes 
and 27 downregulated genes (Fig.  2d, Supplementary 
Table  2). The correlations between the 40 c-FDEGs are 
shown in Supplementary Figure  1. The expression pat-
terns of the 40 c-FDEGs are visualized in the heatmap 
(Fig. 2f ).

Function enrichment analysis
Understanding the signaling pathways, biological pro-
cesses, and interrelationships involved in c-FDEGs is of 
great importance in revealing the pathogenesis of OA. 
GO enrichment analysis showed that c-FDEGs were sig-
nificantly enriched in the regulation of the inflammatory 
response (BP), the positive regulation of cellular cata-
bolic process (BP), the autophagosome membrane (CC), 
the recycling endosome (CC), and NF-κB binding (MF) 
(Fig. 3a, Supplementary Table 3). KEGG pathway analy-
sis showed that these c-FDEGs were mainly involved in 
the IL-17 signaling pathway, NOD-like receptor signal-
ing pathway, HIF-1 signaling pathway, and TNF signaling 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.dgidb.org
http://www.dgidb.org
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://www.targetscan.org
http://www.targetscan.org
https://mirdb.org
http://spongescan.rc.ufl.edu
http://xteam.xbio.top/CellMarker/
http://xteam.xbio.top/CellMarker/
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pathway (Fig.  3b, Supplementary Table  4). GSEA sug-
gested that the development of OA may be associated 
with hypoxia, MYC targets v2, the P53 pathway, the 
inflammatory response, TNFα signaling via NF-κB, the 
interferon-α response, and peroxisome (Fig. 3c and d).

Building PPI networks
The String database is a database that can be used to 
retrieve interactions between known and predicted pro-
teins. To explore the interactions between each c-FDEG, 
all of the abovementioned 40 c-FDEGs were imported into 
the STRING database. The PPI network of c-FDEGs after 

deleting isolated c-FDEGs and adding the six related CRGs 
(without CDKN2A) is shown in Fig.  4a. The cytoHubba 
plugin in Cytoscape software was used to calculate the 
degree values (degrees) of the top seven genes (IL6, IL1B, 
RELA, PTGS2, EGFR, CDKN2A, and SOCS1) as the PPI 
network’s hub genes (Fig. 4b).

Machine learning algorithm–based biomarker screening 
for patients with OA
In this study, 40 c-FDEGs were further analyzed for 
potential biomarkers associated with OA using multiple 
machine learning methods. SVM-RFE analysis showed 

Fig. 1  A graphical flowchart of the study design
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that the model containing 24 genes had the best accu-
racy (Fig.  5a). LASSO regression analysis showed that 
the model was able to accurately predict OA when λ was 
equal to 12. Thus, the LASSO regression model gener-
ated 12 candidate genes (Fig. 5b). We retained the candi-
date biomarkers with RF results importance > 1 (Fig. 5c). 
Lastly, the results of these three methods were integrated, 
and CDKN1A, FZD7, GABARAPL2, and SLC39A14 
were identified as the final potential biomarkers for OA 
(Fig. 5d).

Experimental validation of four biomarkers
To validate the results of the bioinformatics analysis, we 
collected OA samples (n=6) and normal group samples 
(n=6), respectively, and performed western blot analysis 
and immunofluorescence staining (Fig.  6). Both results 
were consistent with the bioinformatics analysis, i.e., 
higher expression of FZD7 and GABARAPL2 and lower 
expression of CDKN1A (p21) and SLC39A14 (ZIP14) in 
the OA group compared with the normal group.

ssGSEA, GSEA, and GSVA for differentially expressed 
c‑FRGs
To better capture the function of the four biomarkers in 
OA, GSEA, GSVA, and ssGSEA were conducted on each 
of the above biomarkers (Fig.  7). The ssGSEA showed 
that the OA group was significantly enriched in Notch 
signaling, interferon alpha (IFN-α) response, the Wnt/β-
catenin pathway, bile acid metabolism, and peroxisome, 
while the non-OA group was mainly enriched in TNFα 
signaling via NF-κB, hypoxia, MYC targets v2, the P53 
pathway, the inflammatory response, PI3K AKT mTOR 
signaling, and IL6 JAK STAT3 signaling (Fig.  7i). Cor-
relation analysis showed that CDKN1A and SLC39A14 
were significantly positively correlated with the gene sets 
of hypoxia, TNF-α signaling via NF-κB, the P53 path-
way, and mTORC1 signaling. Meanwhile, GABARAPL2 

and FZD7 showed significant negative correlations with 
the gene sets of TNF-α signaling via NF-κB, PI3K AKT 
mTOR signaling, and mTORC1 signaling (Fig.  7j). The 
single-gene GSEA results for the seven hub genes are 
shown in Supplementary Figure  2 (a–g). The remaining 
29 differentially expressed c-FRGs are shown in Supple-
mentary Figure 3.

Construction and validation of disease model (nomogram)
Using the above four biomarkers, a disease nomogram 
was constructed. The AUC values of the individual genes 
CDKN1A, FZD7, GABARAPL2, and SLC39A4 were 
0.931, 0.879, 0.989, and 0.850, respectively, all of which 
were greater than 0.85 (Fig.  8a), further indicating that 
the above genes had good diagnostic ability (Fig. 8b). The 
AUC value of this model was 0. 996, which was signifi-
cantly greater than the AUC value of individual biomark-
ers, indicating that this model had good diagnostic value 
(Fig.  8c and d). To verify whether the above model is 
diagnostically meaningful, validation was performed on 
the GSE8207 dataset. The results showed that the AUC 
values of the four biomarkers were all greater than 0.7, 
and the AUC value of the model was 1 for the validation 
set (Fig. 8f ). These results indicate that CDKN1A, FZD7, 
GABARAPL2, and SLC39A4 are effective disease bio-
markers for OA and that the model has high diagnostic 
efficacy.

Construction of drug prediction network and lncRNA–
miRNA–mRNA network
The corresponding drug prediction network was con-
structed using the database based on the four bio-
markers (Supplementary Figure  4a). The predicted 
drugs were celecoxib, paclitaxel, carboplatin, aceta-
minophen, vantictumab, and nortriptyline. Based 
on the competitive endogenous RNA hypothesis, an 
lncRNA–miRNA–mRNA competitive endogenous 

Table 1  Information of selected microarray datasets

GPL96: [HG-U133A] Affymetrix Human Genome U133A Array; GPL570: Affymetrix GeneChip Human Genome U133 Plus 2.0 Array; GPL20301: Illumina HiSeq 4000 
(Homo sapiens)

N/A Not available, OA Osteoarthritis, Bulk RNA-seq Bulk RNA sequencing, scRNA-seq Single-cell RNA sequencing

Accession numbers Samples Age (mean ± SD) Sex, n (male/
female)

Source tissue Attribute

Platform Normal OA Normal OA Normal OA

GSE55235 GPL96 10 10 N/A N/A N/A N/A Synovium Test set (bulk RNA-seq)

GSE55457 GPL96 10 10 51±18.7 72.4±5.6 8/2 2/8 Synovium Test set (bulk RNA-seq)

GSE55584 GPL96 0 6 N/A 73.2±7.9 N/A 0/6 Synovium Test set (bulk RNA-seq)

GSE169077 GPL96 5 6 N/A N/A N/A N/A Synovium Test set (bulk RNA-seq)

GSE82107 GPL570 7 10 N/A N/A N/A N/A Synovium Validation set (bulk RNA-seq)

GSE152805 GPL20301 0 3 N/A 67.7±2.3 N/A 1/2 Synovium Test set (scRNA-seq)
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Fig. 2  Extraction of particular ferroptosis-related genes (c-FRGs) and obtainment of differentially expressed c-FRGs (c-FDEGs). a, b Two-dimensional 
PCA cluster plot of GSE55235, GSE169077, GSE55457, and GSE55584 datasets before and after normalization. c Volcano plot of DEGs. Red spots 
represent upregulated genes and green spots represent downregulated genes. d Overall expression landscape of c-FRGs in osteoarthritis (OA). *P 
< 0.05; **P < 0.01; ***P < 0. 001. OA represents the OA group and Normal represents the normal control group. e Extraction of c-FDEGs. f Heatmap 
of c-FDEGs. The redder the color, the higher the expression; conversely, the bluer the color, the lower the expression
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RNA (ceRNA) network was constructed to explore the 
function of lncRNA as an miRNA sponge in OA. We 
obtained 150 target miRNAs based on these biomark-
ers. Then, 48 lncRNAs were obtained based on these 
miRNA predictions. The four biomarkers with pre-
dicted miRNAs and lncRNAs were introduced into 
Cytoscape, and constituted a ceRNA network contain-
ing 48 lncRNA nodes, 150 miRNA nodes, 4 hub gene 
nodes, and 198 edges (Supplementary Figure 4b).

Immune infiltration analysis
The immune microenvironment plays an important role 
in the progression of OA. Therefore, with the help of 
CIBERSORT, we summarized the differences in immune 
infiltration by immune cell subpopulations between OA 
samples and non-OA tissues (Fig 9a). The OA samples 
contained a higher proportion of memory B cells, M0 
macrophages, M2 macrophages, and resting mast cells 
than the control group, as well as a lower proportion of 

Fig. 3  Functional analyses: (a) Gene Ontology (GO) enrichment analysis showed that the 40 c-FDEGs were significantly enriched in the regulation 
of the inflammatory response, the positive regulation of cellular catabolic process, the autophagosome membrane, the recycling endosome, 
and NF-κB binding. b Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these c-FDEGs were mainly involved 
in the IL-17 signaling pathway, NOD-like receptor signaling pathway, HIF-1 signaling pathway, and TNF signaling pathway. c Gene set 
enrichment analysis (GSEA) in the normal control group and (d) GSEA in the OA group based on the core set of 50 human genes suggested 
that the development of OA may be associated with hypoxia, MYC targets v2, the P53 pathway, the inflammatory response, TNFα signaling 
via NF-κB, the interferon-α response, and peroxisome
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resting CD4 memory T cells and activated mast cells. 
Correlation analysis showed that activated mast cells 
showed positive correlations with PTGS2, IL6, and IL1B, 
and the correlation between activated mast cells and 
PTGS2 was the highest (0. 686) (Fig.  9b). There were 
positive correlations between IL1B, PTGS2, and M1 
macrophages, resting CD4 memory T cells and PTGS2, 
and regulatory T cells (Tregs) and RELA. There were sig-
nificant negative correlations between follicular helper 
T cells and RELA, as well as between plasma cells and 
SLC39A14 (Fig. 9c and d).

Single‑cell analysis
The scRNA-seq data from three OA synovial samples 
were obtained from the GSE152805 dataset. After ini-
tial quality control, we finally retained 10,194 cells for 
cell annotation (Supplementary Figure  5). The top 2000 
highly variable genes were selected for further analy-
sis (Supplementary Figure  5b). We used the "RunPCA" 
function to reduce the dimensionality and obtained 
14 clusters (Supplementary Figures  6d and e); the first 
five DEGs of each cluster are shown in Supplementary 
Table  5. Later, we performed cellular annotation using 
marker genes and annotated seven cell populations: 
fibroblasts (77.7%), macrophages (8.8%), dendritic cells 
(DCs) (3.6%), endothelial cells (ECs) (3.5%), smooth 
muscle cells (SMCs) (3.4%), T cells (1.8%), and mast 
cells (1.2%) (Fig.  10a). Next, we performed differential 

gene expression analysis on these seven cell populations 
to verify the accuracy of the cell annotation (Fig.  10b). 
Figures  10c and d show the distribution and expression 
of seven hub genes and four biomarker genes in differ-
ent cell populations. We found that 11 c-FRGs were sig-
nificantly different in macrophages, DCs, mast cells, and 
NK cells. For example, IL1B, PTGS2, and SLC39A4 were 
significantly highly expressed in some cells, whereas they 
were significantly less expressed, or even absent, in other 
cells. We used CellChat to identify differentially overex-
pressed ligands and receptors for each cell population. In 
total, 254 significant ligand–receptor pairs were detected, 
which were further classified into 62 signaling pathways 
(Table  2). We found that the immune cells interacted 
weakly with each other; however, the non-immune cells 
had extensive communication interactions with other 
cells and were involved in various paracrine and auto-
crine signaling interactions (Fig. 10e to g).

Discussion
Copper is an irreplaceable trace metal element that par-
ticipates in a variety of biological processes. When cop-
per ions accumulate in excess, they eventually lead to cell 
death, and this new form of programmed cell death is 
known as cuproptosis [17]. A recent report has demon-
strated that copper levels are significantly higher in the 
serum and synovial tissue of patients with OA than in 
controls [14]. Evidence from several studies suggests that 

Fig. 4  Protein–protein interaction (PPI) network and core gene screening. a PPI network constructed from 40 c-FDEGs; red triangles represent 
c-FDEGs, green triangles represent CRGs that are closely related to them, and the correlation between c-FDEGs and CRGs is indicated by dashed 
lines. b The top seven core gene interaction networks calculated using the cytoHubba plugin: the darker the color, the more powerful the critical 
degree
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the development of OA is closely related to ferroptosis in 
articular cartilage and synovium [25–29], and that OA 
can be treated to some extent by modulation of ferropto-
sis [29, 30]. Additionally, previous studies have reported 
that copper and iron levels are closely correlated with 
each other in patients with OA [14, 15, 31].

In this study, we identified transcriptional altera-
tions and expression of c-FRGs based on the GSE55235, 
GSE169077, GSE55457, and GSE55584 datasets. Forty 
c-FDEGs were identified in 63 c-FRGs. GO enrichment 
analysis showed that these 40 c-FDEGs were mainly asso-
ciated with the inflammatory response, cellular response 

Fig. 5  Machine learning-based potential biomarker screening. a SVM-RFE model with the optimal error rate when the number of signature genes 
was 58. b LASSO regression model. c Random forest model and the top 20 genes in terms of importance. d The final biomarkers screened using 
three machine learning algorithms
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to external stimulus, and autophagy. The KEGG enrich-
ment analysis showed that these genes were highly 
enriched mainly in the IL-17 signaling pathway, NOD-
like receptor signaling pathway, HIF-1 signaling pathway, 
and TNFα signaling pathway. For both OA and non-OA 
groups, GSEA and ssGSEA showed that OA was mainly 
associated with the enrichments in Notch signaling, adi-
pogenesis, xenobiotic metabolism, fatty acid metabolism, 
peroxisome, TNFα signaling via NF-κB, the inflamma-
tory response, PI3K AKT mTOR signaling, and IL6 JAK 
STAT3 signaling. This indicates that the mechanism of 
OA development is closely related to fatty acid metabo-
lism, the inflammatory response, immune regulation, and 
cell adhesion.

We analyzed the PPI results using the cytoHubba 
plugin in Cytoscape, revealing seven key c-FDEGs, 
including IL6, IL1B, RELA, PTGS2, EGFR, CDKN2A, 
and SOCS1. GSEA and GSVA of the seven genes revealed 
that IL6, IL1B, RELA, PTGS2, SOCS1, and EGFR were 
closely associated with inflammation, immune regula-
tion, extracellular matrix, and cell adhesion pathways in 

OA, which is consistent with previous findings [32, 33]. 
Interestingly, we also found that they were closely associ-
ated with lipid metabolism and fatty acid metabolism in 
OA. Considering that increased iron accumulation, free 
radical production, fatty acid supply, and increased lipid 
peroxidation are key to the induction of ferroptosis [5–7], 
it is possible that they affect the development of OA by 
regulating lipid metabolism and fatty acid metabolism, 
which affects ferroptosis; however, this needs to be fur-
ther investigated.

Notably, CDKN2A acts as both a cuproptosis-related 
gene and a ferroptosis-related gene simultaneously. 
CDKN2A is often considered an important gene in cellu-
lar senescence and aging [34], and it is used as a molecu-
lar marker of cellular senescence [35]. Our study showed 
that CDKN2A expression was higher in patients with 
OA, suggesting that CDKN2A may contribute to the 
development of OA by affecting cellular senescence and 
thereby promoting the development of OA.

This is the first study to use the new signature genes 
combining CRGs with FRGs to reveal the pathogenesis of 

Fig. 6  Experimental validation of four biomarkers. a Representative immunofluorescence staining images of the four biomarker proteins (p21, 
FZD7, GABARAPL2, and ZIP14) in the normal and OA groups, with nuclei stained blue with 4’,6-diamidino-2-phenylindole. Scale bar = 25 µm. b 
Semi-quantitative analysis of mean fluorescence intensity of the four biomarker proteins in the normal and OA groups (n = 6). (c, d) Representative 
western blotting and statistical comparisons of the four biomarker proteins in the normal and OA groups (n = 6). *p < 0.05, **p < 0.01, all 
by independent samples t-test
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Fig. 7  GSEA, GSVA, and ssGSEA results of four potential biomarkers. a–d Single-gene GSEA-KEGG pathway analysis of four potential biomarkers. 
We show the top six pathways with the smallest p-value. e–h High- and low-expression groups based on the expression levels of each potential 
biomarker combined with gene set variation analysis (GSVA). Red means the pathway is significantly upregulated, green means the pathway 
is significantly downregulated, and gray means the pathway is not statistically significant. i ssGSEA of OA and normal controls based on the h.
all.v7.5.1.symbols.gmt gene set. *P < 0.05; **P < 0.01; ***P < 0. 001. Treat represents the OA group, and control represents the normal group. (j) 
Correlation of four biomarkers with 50 human symbolic gene sets from the h.all.v7.5.1.symbols.gmt gene set
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OA and aid in its treatment. We executed three machine 
learning algorithms using the 40 c-FDEGs mentioned 
above and eventually identified four biomarkers: 
CDKN1A, FZD7, GABARAPL2, and SLC39A14.

Frizzled7 (FZD7) is known to be a receptor of the Wnt 
pathway. Fzl receptors are usually classified as belonging 
to the G protein receptor family and are rich in cysteine, 
which can directly interact with Wnt proteins and thus 

activate downstream responses [36–38]. Numerous stud-
ies have shown that excessive upregulation or down-
regulation of Wnt signaling pathways in OA may lead to 
cartilage damage and ultimately accelerate the progres-
sion of OA. Therefore, it is necessary and important to 
maintain a balance in the biological activity of Wnt-
related pathways [39–41]. In the present study, FZD7 
was significantly increased in the OA group compared 

Fig. 8  Validation of four biomarkers. a ROC analysis of the four biomarkers. b ROC analysis of the disease model constructed from the four 
biomarkers. c, d Nomograms based on the disease model: we obtained the corresponding scores for each genetic variable, drew a vertical line 
above the “points” axis, summed the scores of all predictor variables, found the final value on the “total score” axis, and then drew a straight line 
on the “probability” axis to determine the patient’s risk of osteoarthritis. e, f Validation of the disease model and four biomarkers on the GSE82107 
validation dataset
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Fig. 9  Results of immune infiltration by CIBERSORTx. a Bar plot showing the composition of 22 types of immune cells. b Box plot presenting 
the difference of immune infiltration of 22 types of immune cells. Treat represents the OA group, and Control represents the normal group. c 
Heatmap showing the correlation between seven hub genes and 22 types of immune cells in osteoarthritis. d Correlation between the four 
biomarkers and 22 types of immune cells in osteoarthritis
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Fig. 10  Analysis of single-cell RNA sequencing data from three OA synovial samples. a UMAP plot of scRNA-seq showing unsupervised clusters 
colored according to putative cell types among a total of 10,194 cells in OA synovial samples. The percentages of total acquired cells were 
as follows: 77.7% fibroblasts, 8.8% macrophages, 3.6% dendritic cells (DCs), 3.5% endothelial cells (ECs), 3.4% smooth muscle cells (SMCs), 1.8% T 
cells, and 1.2% mast cells. b Heatmap depicting the expression levels of the top five marker genes among seven detected cell clusters. c, d UMAP 
plots and violin plots showing the expression of the selected seven hub c-FRGs and four potential biomarkers for each cell type. e Interaction net 
count plot of OA synovial cells. The thicker the line, the greater the number of interactions. f Interaction weight plot of synovial cells. The thicker 
the line, the stronger the interaction weights/strength between the two cell types. g Detailed network of cell–cell interactions among seven cell 
subsets
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with the non-OA group. Therefore, we speculate that 
an excess of FZD7 may lead to the abnormal activation 
of Wnt-related pathways and ultimately accelerate the 
development of OA.

ZIP14 (SLC39A14) is a metal transporter [42] that 
affects the metabolic balance of zinc, manganese, iron, 
copper, and other metals [43]. For example, ZIP14 can 
transport non-transferrin-bound iron (NTBI) [44] and 
ZIP14 can transport cadmium and manganese through 
metal/bicarbonate symbiotic activity [45]. It has been 
shown that OA is closely related to the metabolic bal-
ance of metals such as iron, copper, and manganese [14, 
15, 31, 46–48]. In this study, we found that ZIP14 was 
greatly reduced in the OA group compared with the non-
OA group. Furthermore, scRNA-seq analysis showed 
that the distribution of SLC39A14 in OA patients varied 
significantly among cell populations, with low or even 
no expression in some cells, which is likely to disrupt 
the metal metabolic balance in the joints and eventually 
cause the accumulation of metals such as iron and cop-
per. Therefore, SLC39A14 (ZIP14) may be a very impor-
tant therapeutic target for OA treatment in the future.

ssGSEA showed that CDKN1A significantly posi-
tively correlated with TNF-α signaling via NF-κB, the 
TGF-β signaling pathway, hypoxia, the P53 pathway, 
apoptosis, mTORC1 signaling, and other gene sets, 
suggesting that CDKN1A may affect OA by regulat-
ing inflammation, apoptosis, and hypoxia. Although 
both the CDKN1A and GABARAPL2 genes have been 
reported previously [49–52], their relationship with 
ferroptosis and cuproptosis in OA is not yet known. 
This suggests that these genes may be targets not only 
for immunotherapy, inflammation, and autophagy but 
also for the treatment of cuproptosis and ferroptosis in 
OA. Notably, we found that melphalan, paclitaxel, vin-
blastine, and vantictumab may serve as potential drugs 
for the treatment of OA. Previous studies have reported 
that they act therapeutically by regulating CDKN1A 
or FZD7 [53–55], thus affecting processes such as the 
cell cycle, cell proliferation, and apoptosis, which also 
validates our prediction. We then constructed a disease 
model of OA based on these four biomarkers that could 
significantly improve our ability to recognize OA at an 

early stage. Thus, our findings suggest that CDKN1A, 
FZD7, GABARAPL2, and SLC39A14 are excellent dis-
ease biomarkers and potential therapeutic targets for 
OA, and the disease model constructed based on them 
has good diagnostic efficacy.

Recently, an increasing number of studies have shown 
that immune cell infiltration is essential for OA onset 
and development and cartilage repair [56–58]. Our 
study showed a close relationship between the seven 
hub genes and immune cells. Notably, there were sig-
nificant positive correlations of PTGS2, IL6, and IL1B 
with M1 macrophages and activated mast cells. Previ-
ous studies have demonstrated that the activation of 
macrophages and mast cells may significantly accel-
erate the progression of OA [58–60]. Therefore, we 
speculate that PTGS2, IL6, and IL1B may influence the 
onset and progression of OA by regulating these cells. 
Interestingly, scRNA-seq analysis further revealed that 
PTGS2 was significantly highly expressed in mast cells, 
leading us to speculate that PTGC2 may influence the 
progression of OA by regulating the activation of mast 
cells and thus the progression of OA. Surprisingly, we 
found weak interactions between immune cells in the 
synovial tissue of patients with OA, whereas there were 
complex communication networks between immune 
and non-immune cells (fibroblasts, SMCs, and ECs). 
These hypotheses and questions require more stud-
ies to reveal intricate interrelationships between these 
c-FRGs, immune cells, and OA.

In addition, we found that C10orf91 could regulate 
CDKN1A and SLC39A14 by regulating hsa-miR-149-3p, 
hsa-miR-423-5p, hsa-miR-31-5p, and hsa-miR-30b-3p. 
Both hsa-miR-513a-3p and has-miR-548c-3p can regu-
late both CDKN1A and GABARAPL2; however, no 
related study has been reported yet, so this needs to be 
further investigated and validated in the future.

This study was conducted mainly using bioinformat-
ics analysis, and despite the combination of scRNA-
seq analysis and the use of powerful machine learning 
algorithms, such as RF and SVM-RFE, there are still 
some limitations to our study. First, the small sample 
size of the analysis may have led to inaccuracies in the 
determination of hub genes, CIBERSORT analysis, and 
single-cell analysis. Second, although the disease model 
nomogram was well validated, the data was obtained 
retrospectively from public databases, meaning that 
inherent selection bias may have affected their accu-
racy. In addition, while our data can show the correla-
tion between OA and immune cells, they cannot reveal 
causality. Extensive prospective studies, as well as com-
plementary in  vivo and in  vitro experimental studies, 
are necessary to validate the accuracy of potential ther-
apeutic targets and biomarkers.

Table 2  Type and number of ligand–receptor pairs

L–R Ligand–receptor

Communication mode Number of 
pathways

Number of L–R 
pair types

Number 
of L–R 
pairs

Cell–cell contact 24 54 312

ECM–receptor 7 121 558

Secreted signaling 31 79 360
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Conclusions
Our study showed that four genes—CDKN1A, FZD7, 
GABARAPL2, and SLC39A14—are good disease bio-
markers and potential therapeutic targets for OA. Our 
study provides a theoretical basis and research direction 
for understanding the role of c-FRGs in the pathophysi-
ological process and for potential therapeutic interven-
tion in OA.
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