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Abstract
Objective The macrophage activation syndrome (MAS) secondary to systemic lupus erythematosus (SLE) is a severe 
and life-threatening complication. Early diagnosis of MAS is particularly challenging. In this study, machine learning 
models and diagnostic scoring card were developed to aid in clinical decision-making using clinical characteristics.

Methods We retrospectively collected clinical data from 188 patients with either SLE or the MAS secondary to SLE. 
13 significant clinical predictor variables were filtered out using the Least Absolute Shrinkage and Selection Operator 
(LASSO). These variables were subsequently utilized as inputs in five machine learning models. The performance 
of the models was evaluated using the area under the receiver operating characteristic curve (ROC-AUC), F1 score, 
and F2 score. To enhance clinical usability, we developed a diagnostic scoring card based on logistic regression (LR) 
analysis and Chi-Square binning, establishing probability thresholds and stratification for the card. Additionally, this 
study collected data from four other domestic hospitals for external validation.

Results Among all the machine learning models, the LR model demonstrates the highest level of performance in 
internal validation, achieving a ROC-AUC of 0.998, an F1 score of 0.96, and an F2 score of 0.952. The score card we 
constructed identifies the probability threshold at a score of 49, achieving a ROC-AUC of 0.994 and an F2 score of 
0.936. The score results were categorized into five groups based on diagnostic probability: extremely low (below 
5%), low (5–25%), normal (25–75%), high (75–95%), and extremely high (above 95%). During external validation, the 
performance evaluation revealed that the Support Vector Machine (SVM) model outperformed other models with 
an AUC value of 0.947, and the scorecard model has an AUC of 0.915. Additionally, we have established an online 
assessment system for early identification of MAS secondary to SLE.

Conclusion Machine learning models can significantly improve the diagnostic accuracy of MAS secondary to SLE, 
and the diagnostic scorecard model can facilitate personalized probabilistic predictions of disease occurrence in 
clinical environments.
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Introduction
Systemic Lupus Erythematosus (SLE) is a complex and 
heterogeneous disease characterized by abnormal activa-
tion of the immune system, leading to systemic impair-
ment of multiple organs and tissues [1]. According to the 
latest data, the incidence rate of SLE in China is approxi-
mately 47.15–47.96 per 100,000, and this proportion is 
gradually increasing [2]. This has imposed a significant 
burden on individual health and socioeconomic aspects. 
Macrophage Activation Syndrome (MAS) is a rare, 
severe, and potentially fatal complication of SLE. Previ-
ous studies have reported that approximately 0.9-4.6% 
of patients with SLE eventually develop into MAS [3]. 
Patients with MAS secondary to SLE have a rapid disease 
progression and are prone to developing multi-organ 
dysfunction within a short period of time. The advanced 
stage of the disease poses significant challenges to treat-
ment and carries a high risk of mortality, estimated to 
be around 4–19% [4]. Therefore, early identification of 
MAS secondary to SLE patients is particularly important 
to improve the quality of patient survival and optimize 
survival outcomes. However, It is difficult to identify the 
MAS secondary to SLE due to the lack of specific symp-
toms and signs. In addition, MAS sometimes serves as 
the starting performance in patients with SLE, resulting 
in difficulty in diagnosis [5].

Currently, research on MAS secondary to SLE is pre-
dominantly reported in the form of case studies and 
small-sample retrospective clinical studies. A retrospec-
tive study in Morocco highlighted the need to be vigilant 
for the development of secondary MAS in SLE patients 
presenting with unexplained fever, hyperlipidemia, ele-
vated ferritin levels, and high SLE Disease Activity Index 
(SLEDAI) scores [6]. Another study conducted in China 
revealed that fever, elevated lactate dehydrogenase levels, 
splenomegaly, hyperferritinemia, and hypoalbuminemia 
are the most common clinical characteristics of second-
ary MAS in SLE [7]. In recent years, both domestic and 
international research has focused on novel biomarkers 
associated with the onset of secondary MAS in SLE. A 
Study found a significant increase in serum CXCL9 lev-
els and sTNFR-II levels in patients with SLE-related MAS 
compared to SLE alone (p < 0.05) [8]. Furthermore, serum 
sCD163 has been identified as a predictive factor for 
diagnosing secondary MAS in SLE patients, exhibiting 
sensitivity and specificity rates of 59% and 86%, respec-
tively [9]. However, these studies do not provide consis-
tent conclusions, and significant diagnostic factors of 
MAS secondary to SLE remain unclear.

In recent years, the application of machine learning 
(ML) in autoimmune diseases has developed rapidly. 
Predictive modeling based on ML has broad prospects 
for improving disease diagnosis and prognosis [10]. 
Previously, researchers have employed ML algorithms 

to filter critical predictive features within SLE datas-
ets, subsequently developing the “SLE Risk Probability 
Index”, which boasts an accuracy rate of up to 94.8% in 
the identification of SLE [11]. A study has shown that ML 
can effectively predict the likelihood of disease recur-
rence in patients with rheumatoid arthritis by analyzing 
ultrasound and blood test results at baseline. Notably, 
the XGBoost algorithm performed the best, with an area 
under the receiver operating characteristic curve (AUC) 
of 0.747 [12]. Another study employed unsupervised ML 
to categorize anti-melanoma differentiation-associated 
protein 5 (anti-MDA5) positive patients with dermato-
myositis into three distinct subtypes and established a 
decision tree algorithm to forecast their clinical charac-
teristics and prognosis. However, to date, no study has 
attempted to train ML models using clinical information 
for the early diagnosis of MAS secondary to SLE [13].

In this study, we employed ML techniques to develop 
a predictive model for secondary MAS in patients with 
SLE. By utilizing commonly available clinical data such as 
physical examination and hematological indices, we iden-
tified the predictive factors for MAS secondary to SLE 
and constructed a diagnostic scoring system. This system 
enhances the clinical assessment of disease likelihood 
and facilitates the prompt detection of secondary MAS in 
patients with SLE.

Method
Study population
This study included 188 patients diagnosed with SLE 
(94 patients) or MAS secondary to SLE (94 patients) 
between May 2012 and January 2023 at the Union Hos-
pital of Tongji Medical College, Huazhong University 
of Science and Technology. Furthermore, data from 
patients with SLE and MAS secondary SLE from the 
Second Xiangya Hospital of Central South University, 
the Central Hospital of Wuhan, the Zhongnan Hospital 
of Wuhan University, and the Second Affiliated Hospital 
of Zhejiang University School of Medicine were collected 
as an external validation set in this study. The selection 
of SLE patients complied with the 1997 ACR classifica-
tion criteria [14]. The selection of MAS secondary to SLE 
complied with both the 1997 ACR classification criteria 
and five of the eight HLH-2004 diagnostic criteria [15]. 
Exclusion criteria were: (1) < 14 years of age; (2) history 
of combined tumor and other autoimmune diseases; (3) a 
large amount of missing data. The study was approved by 
the Ethics Committee of Union Hospital, Tongji Medical 
College, Huazhong University of Science and Technology.

Candidate predictive variables
The clinical information collected in this study encom-
passed various aspects of patient characteristics, clini-
cal features, and laboratory parameters. The dataset 
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included demographic information such as age and gen-
der. Clinical features consisted of the Systemic Lupus 
Erythematosus Disease Activity Index (SLEDAI), highest 
recorded body temperature, duration of fever, reported 
symptoms, as well as laboratory indicators such as white 
blood cell count (WBC), hemoglobin (HB), platelet count 
(PLT), total bilirubin (TBil), serum electrolytes, serum 
creatinine (SC), alanine aminotransferase (ALT), aspar-
tate aminotransferase (AST), alkaline phosphatase (ALP), 
total protein (TP), albumin (ALB), globulin (GLB), serum 
ferritin (SF), triglycerides (TG), serum low-density lipo-
protein cholesterol (LDL), serum high-density lipopro-
tein cholesterol (HDL), lactate dehydrogenase (LDH), 
percentages of CD3 T cells, CD8 T cells, CD19 T cells, 
CD4 T cells, NK cells, as well as levels of interleukin-2 
(IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), inter-
leukin-10 (IL-10), tumor necrosis factor-alpha (TNF-α), 
interferon-gamma (IFN-γ), antinuclear antibody (ANA), 
anti-double stranded DNA antibodies (Anti-dsDNA), 
C-reactive protein (CRP), procalcitonin (PCT), erythro-
cyte sedimentation rate (ESR), D-dimer, activated partial 
thromboplastin time (APTT), fibrinogen (FIB), throm-
bin time (TT), prothrombin time (PT), immunoglobulin 
A (IgA), immunoglobulin G (IgG), immunoglobulin M 
(IgM), C3, and C4, totaling 91 variables. The data from 
the external validation set were collected from four other 
domestic hospitals.

Data processing and feature engineering
In order to obtain high-quality data, we handled missing 
values using multiple methods. Variables missing < 5% 
were populated with plurality and mean values, while 
variables missing between 5% and 20% were populated 
using random forests. We performed Mann-Whitney U 
tests on the data before and after interpolation to ensure 
that no significant change in data distribution was pro-
duced by our interpolation algorithms.

To maximize data retention, we incorporated the clini-
cally accepted normal range as prior knowledge. More 
specifically, we added some new derived features to indi-
cate whether the value exceeded the upper and lower 
limits of the empirical range (represented as 1 for values 
exceeding the upper limit, -1 for values below the lower 
limit, and 0 for values within the normal range). We iden-
tified and processed outliers using box plots. Finally, we 
normalized the data via Z-scoring to avoid scaling dif-
ferences across units. Following this procedure, the data 
conformed to the standard normal distribution.

In the external dataset, patients with missing values 
were excluded from the evaluation. The remaining sam-
ples were normalized using the Z-score model, which 
had been previously established in the processing of the 
training dataset.

Feature selection
High-dimensional data is prone to noise during the mod-
eling process and often requires dimensionality reduc-
tion. To address this issue, we conducted a two-stage 
feature selection process. In the first stage, the Pearson 
correlation coefficient and Variance Inflation Factor 
(VIF) were used to analyze the correlation and collinear-
ity among various features. Irrelevant features and some 
features with multicollinearity with the diagnostic out-
comes were removed. Derived features with clinical sig-
nificance were constructed based on clinical experience. 
In the second stage, the Least Absolute Shrinkage and 
Selection Operator (LASSO) with 5-fold cross-validation 
was used to select the remaining features. The variables 
selection using LASSO is depicted in Supplemental Fig-
ure S1.

Model and evaluation
The study employed five classification models, Logistic 
Regression (LR), Extreme Gradient Boosting (XGBoost), 
Random Forest (RF), Support Vector Machine (SVM), 
and Scorecard model to construct an evaluation model 
for MAS secondary to SLE(Fig. 1). Regarding parameter 
optimization, a L2 regularization penalty was introduced 
into the logistic regression model to address overfitting 
resulting from limited data. The L2 regularization term 
penalizes high complexity weights by adding the sum of 
the squared weights to the loss function. We used grid 
search to optimize relevant hyperparameters and utilized 
the leave-one-out method for model validation (Supple-
mental Table S1). The leave-one-out method is a type of 
cross-validation technique where one data point from the 
training set is used as the validation set, while the rest of 
the data is used for training. This method is especially 
reliable for accurately evaluating the model’s perfor-
mance on the training set when the dataset is small.

For model evaluation, the performances of these mod-
els were assessed and compared across the test set and 
the external dataset. Considering the high risk of mortal-
ity in MAS secondary to SLE, and the potential adverse 
outcomes resulting from misdiagnosis, we believed that 
the model should assign varying levels of importance to 
different types of errors. In the diagnosis of high-risk dis-
eases, false negatives (FN) should be minimized as much 
as possible. Therefore, we introduced F1 Score and F2 
Score as evaluation metrics. The F-Score is the harmonic 
mean of precision and recall (formula 1–1). The F2 Score 
applies a weighted penalty to FN errors by assigning a 
higher weight to sensitivity (by setting β = 2 in formula 
1–1), which compels the model to better address cases of 
missing diagnosis.
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F − Score = (1 + β2) · Pr ecision · Recall

β2 · Pr eicision + Re call (1-1)

Diagnostic scorecard
In this study, we have developed a diagnostic scoring sys-
tem to predict the probability of secondary MAS in SLE 
[16].This system utilizes the same set of features as the 
diagnostic models.

The algorithm first discretized the value range of fea-
tures into bins. For categorical features, each category 
was treated as a separate bin, and for continuous fea-
tures, the chi-square binning algorithm was employed. 
The chi-square binning algorithm pre-divides the value 
range of the continuous feature into 20 bins and performs 
chi-square tests on adjacent pairs of bins. The pair with 
a p-value less than 0.05 and the highest chi-square value 
was merged. This process was iterated until no further 
merging was possible or the minimum bin number was 
met.

Step 2 involved calculating the Weight of Evidence 
(WOE) values for each bin. The sample feature val-
ues were then transformed into the corresponding bin’s 
woe values, which were used to train a logistic regres-
sion model. Calculate Woe according to the following 
formula:

 
WoEi = ln

(
SLE%
MAS%

)
 (2-1)

Calculate the coefficients A and B for the score transfor-
mation function according to the following formulas:

 Score = A − B × ln (odds)  (3-1)

 
B =

PD0

ln2
 (3-2)

 A = P0 + B × ln (odds) (3-3)

Among them, the odds value represented the ratio of 
disease to non-disease, P0 was the baseline score at that 
ratio, PD0 was the score reduction when the ratio dou-
bled, the A and B were coefficients of the scoring func-
tion. In this paper, the initial odds value was set to 1/19, 
P0 was set to 70, PD0 was set to 4.14, and the coefficients 
A and B were obtained as 52.41 and 5.97, respectively.

To facilitate the assessment of the probability of dis-
ease corresponding to the scores, we established the 
probability thresholds which identified the highest score 
that satisfied the predefined disease risk (defined as the 
conditional probability of developing MAS secondary to 
SLE at a certain score). In practical operations, accurately 
estimating probabilities through sample frequencies was 

Fig. 1 Illustrative overview of the development of diagnostic machine learning model and scoring system for MAS secondary to SLE
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challenging due to limited sample sizes. Instead, we uti-
lized Gaussian kernel density estimation to estimate 
probability density functions for positive and negative 
samples. Gaussian kernel density estimation is a non-
parametric method for estimating probability density 
functions (PDFs). The integration of the PDFs over a 
unit-sized interval determined the probability of falling 
within that interval. Considering that positive (MAS sec-
ondary to SLE) and negative (SLE) samples were mutu-
ally exclusive events, the disease risk of the patient within 
a determined score interval was equivalent to the prob-
ability of a positive sample falling into that interval.

Results
Baseline data
In this study, we conducted an analysis of the differences 
in age at onset, gender, hepatosplenomegaly, neurologi-
cal symptoms, and mortality rate among 94 patients with 
SLE and 94 patients with MAS secondary to SLE based 
on their baseline data. We observed that patients with 
secondary MAS had an earlier age of onset compared 
to those with isolated SLE (median age [Q1, Q3]: 44 
years [33.2, 52.8] vs. 31.5 years [24.2, 46.8] respectively, 
p < 0.001). However, there was no significant difference in 
gender distribution between the SLE group and the MAS 
secondary to SLE group (males/females: 8.51%/91.5% 
vs. 16.0%/84.0%, p = 0.182). The incidence of hepato-
megaly was significantly higher in the MAS second-
ary to SLE group compared to the SLE group (9.57% vs. 
1.06%, p = 0.023). Similarly, the incidence of splenomeg-
aly was also higher in the MAS secondary to SLE group 
compared to the SLE group (38.3% vs. 12.8%, p < 0.001). 
Patients with MAS secondary to SLE had a higher pro-
portion of neurological and psychiatric system involve-
ment compared to SLE patients (2.13% vs. 16%, p = 0.02). 
Furthermore, there was a significant increase in the mor-
tality rate in the MAS secondary to SLE group compared 
to the SLE group (0/0% vs. 15/16%, p < 0.001)(Supple-
mental Table S2). The baseline of external validation can 
be found in Supplemental Table S3 and Supplemental 
Table S4.

Identification of diagnostic factors for MAS secondary to 
SLE
A screening of 149 features constructed from 91 clinical 
indicators was conducted to identify stable and repre-
sentative diagnostic factors(Supplemental Figure S2 and 
Supplemental Table S5). Two composite features (Pan-
cytopenia and Liver Damage) were used to replace their 
corresponding original indicators (HB, PLT, WBC, ALT, 
AST). The LASSO combined with 5-fold cross-valida-
tion identified 13 significant features from the candidate 
variables, as follows: maximum temperature, duration of 
fever, serum sodium, TG, HDL, LDH, ferritin, CRP, FIB, 
PT, TNF-α, pancytopenia, and liver damage.

Diagnostic models
The performance of the models was assessed utilizing 
the AUC, F1 score, and F2 score (Table  1) across the 
validation dataset, test dataset, and external dataset. 
All algorithms performed well across the three datas-
ets. LR yielded an AUC of 0.998 on the test dataset vs. 
0.933 on the external dataset and an F2 score of 0.952 on 
the test dataset vs. 0.885 on the external dataset. SVM 
achieved an AUC of 0.995 on the test dataset vs. 0.947 on 
the external dataset and an F2 score of 0.995 on the test 
dataset vs. 0.893 on the external dataset. The score card 
achieved an AUC of 0.994 on the test dataset vs. 0.915 on 
the external dataset and an F2 score of 0.936 on the test 
dataset vs. 0.721 on the external dataset(Fig. 2). The LR 
model exhibited superior performance on the test dataset 
and the SVM performed best on the external dataset.

Figure  3 illustrates the analysis plot for all samples, 
showcasing the 13 distinct features. The plot reveals that 
both fever temperature and duration are significant con-
tributors to the prediction of MAS secondary to SLE. 
When the fever temperature is high and the duration is 
prolonged, the probability of developing the disease is 
relatively higher. Additionally, elevated ferritin levels have 
a notable impact on the prediction outcome. As ferritin 
levels exceed the average, the probability of developing 
MAS secondary to SLE increases with the increasing val-
ues. Furthermore, when FIB levels are above the average, 
the relative probability of developing the disease is lower. 
However, when FIB is below the average, the impact of 
this indicator on the probability of MAS secondary to 
SLE significantly increases as the values decrease. In 

Table 1 Model Performance Evaluation on Internal Datasets and External Validation Datasets (ROC-AUC, F1 Score, F2 Score)
Validation Test External Validation
AUC F1 F2 AUC F1 F2 AUC F1 F2

LR 0.991 0.937 0.932 0.998 0.960 0.952 0.933 0.851 0.885
RF 0.988 0.948 0.968 0.993 0.960 0.952 0.869 0.720 0.776
SVM 0.987 0.926 0.926 0.995 0.988 0.995 0.947 0.870 0.893
XGBoost 0.996 0.973 0.979 0.987 0.946 0.931 0.878 0.741 0.833
ScoreCard 0.994 0.957 0.972 0.994 0.959 0.936 0.915 0.789 0.721
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summary, our diagnostic models exhibited robust perfor-
mance across all three datasets, with the LR and the SVM 
model yielding the most favorable outcomes. Through 
the SHAP analysis plot, we identified maximum tem-
perature, serum ferritin, duration of fever, and FIB as the 
most influential variables in our models.

Diagnostic scorecard
To enhance the convenience of clinical utilization, we 
developed a scoring system (Fig. 4a). The score card sys-
tem achieved AUC of 0.994 on the test set and an AUC 
of 0.915 on the external dataset(Table 1). The comparable 
AUC values indicate that the performance of this sys-
tem was similar to the diagnostic model (LR), suggesting 
that binning did not significantly alter the distribution of 
the data, thus confirming the rationality of the binning 
algorithm.

The Kolmogorov-Smirnov (KS) curve was utilized 
to analyze the score distribution(Fig.  4d). The KS curve 

showcased the cumulative distribution of the patient 
population of MAS secondary to SLE (the orange curve) 
alongside the patient population of SLE (the blue curve) 
as the score increased from 0 to 100. Additionally, it 
displayed the difference between the two curves (the 
green curve). It was evident that the MAS secondary to 
SLE population accumulated rapidly at lower scores, 
whereas the SLE population tends to gather more swiftly 
at higher scores, indicating that the MAS secondary to 
SLE population primarily occupied the low score range, 
whereas the SLE population was mainly concentrated in 
the high score range. The highest point on the green line 
(score = 49) served as an effective differentiator between 
the SLE and MAS secondary to SLE populations. Hence, 
we have chosen this specific score as the threshold for the 
scorecard.

The density plot (Fig.  4c) showed that the scores of 
MAS secondary to SLE patients (blue line) were mainly 
distributed in the low score range, which was consistent 

Fig. 2 ROC curves of the Machine Learning Model for Early Identification of MAS secondary to SLE on Internal Data Set and External Validation
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with the KS curve. By establishing probability thresholds 
for developing MAS secondary to SLE at 95%, 75%, 25%, 
and 5%, we delineated the scores corresponding to the 
five diagnostic groups depicted in Fig. 4b: extremely low 
(below 5%, 68∼100), low (5–25%, 56∼67), normal (25–
75%, 47∼55), high (75–95%, 43∼46), and extremely high 
(above 95%, 0∼42).

We have developed an online MAS secondary to SLE 
scoring tool, which could be accessed through an online 
Webpage [17]. This tool facilitates both physicians and 
patients in the accurate diagnosis of MAS secondary to 
SLE based on the indicators submitted online. The indi-
cators that fall within a threatening range will be high-
lighted, serving as a helpful reminder. In conclusion, our 
diagnostic scorecard exhibited comparable performance 
to our diagnostic models across all three datasets. Fur-
thermore, we observed significant differences in the dis-
tribution of scores between the two patient groups. And 
we determined the bordering scores of the five diagnostic 
groups we defined.

Discussion
The early diagnosis of MAS secondary to SLE remains 
challenging. The typical symptoms of MAS, such as 
fever and hematological abnormalities, may occur in SLE 
patients due to disease activity, making early diagnosis 

extremely difficult. At present, the diagnostic criteria 
for MAS still follow the HLH-2004 standards. Previous 
studies have shown that the critical values of the diag-
nostic indicators for MAS may be influenced by differ-
ent autoimmune diseases [18]. Therefore, it is necessary 
to conduct personalized research on the clinical predic-
tive features of MAS secondary to SLE. To the best of our 
knowledge, this is the first study to focus on the predic-
tion of patients with MAS secondary to SLE.

We employed an ML algorithm to construct an early 
detection model for MAS secondary to SLE. Compared 
to traditional statistical methods, ML demonstrates supe-
rior predictive accuracy in complex data scenarios [19]. 
The LR model we employed, incorporating L2 regular-
ization, effectively mitigates overfitting in scenarios with 
limited samples in rare diseases. This approach enhances 
the efficiency of the model in disease recognition. Addi-
tionally, the XGBoost model and SHAP analysis method 
we utilized provide feature importance assessments, 
aiding in the understanding of the predictive process of 
the model. In our study, we introduce for the first time 
a novel diagnostic scoring system designed to assess the 
probability of developing MAS secondary to SLE. This 
scoring system is capable of automatically calculating a 
total score and evaluating the likelihood of disease based 
on 13 common indicators entered by clinical physicians. 

Fig. 3 SHAP analysis plot of the early identification model for MAS secondary to SLE
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The scoring system quantifies the impact of each pre-
dictive variable on the probability of disease occurrence 
by establishing specific numerical ranges and assigning 
unique score values. Physicians can utilize these scored 
values to intuitively grasp the patient’s performance level 
in relation to a particular predictive feature, which aids in 
more accurate and detailed clinical assessments. Further-
more, the selected predictive variables are readily obtain-
able in clinical practice and involve low testing costs. 

When integrated with an online scoring system, they can 
promptly identify patients in the early stages of MAS sec-
ondary to SLE. The performance and clinical utility of the 
model have also been validated using data from multiple 
centers within the country. The external validation has 
shown excellent performance, indicating that the model 
can be effectively applied in clinical practice.

Fever presents as an exceedingly common symptom 
among patients with MAS secondary to SLE, with a 

Fig. 4 Score card for diagnostic assessment of MAS secondary to SLE, Diagnostic Threshold Grouping, and Score Distribution. a. score card for diagnostic 
assessment of MAS secondary to SLE. b Diagnostic grouping and threshold scores. c Probability Density Plots of Scores for SLE Patients and MAS second-
ary to SLE Patients. d KS (Kolmogorov-Smirnov) curve for the score card
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significant number experiencing prolonged episodes of 
fever before receiving a definitive diagnosis. It may be 
attributed to the inflammatory cytokine storm associ-
ated with MAS, lupus flare, or concurrent infections. The 
persistence of fever serves as a crucial indicator warrant-
ing heightened vigilance for the potential development of 
secondary HLH. In our study, nearly all patients exhibited 
hyperferritinemia during the progression of the disease. 
The HLH-2004 criteria include a ferritin level > 500  µg/
mL as one of the diagnostic criteria. However, it is rec-
ognized that severe infections, malignancies, and 
other conditions can also cause ferritin levels to rise to 
500 µg/L or above, leading to a growing number of schol-
ars advocating for a reassessment of the ferritin threshold 
in HLH diagnosis [20]. In a retrospective study focusing 
on adult HLH, the average ferritin level was 70,398 ng/
mL, and the optimal cutoff value for ferritin was pro-
posed to be 16,000 ng/mL (sensitivity 79.4%, specificity 
79.2%) [21]. Lehmberg et al. compared 123 HLH patients 
with 320 patients with other causes of hyperferritinemia, 
suggesting a threshold value of 2,000  µg/L for ferritin 
(sensitivity 70%, specificity 68%) [22]. Our study further 
supports the view that ferritin levels above 1,242.25 µg/
mL possess higher predictive value for secondary MAS 
associated with SLE. Our study has identified for the 
first time that low levels of high-density lipoprotein are 
predictive factors for MAS secondary to SLE. Previous 
studies have shown that low serum HDL levels are inde-
pendent risk factors influencing the prognosis of second-
ary HLH [23], and the occurrence of low HDL levels is 
higher in hemophagocytic syndrome patients compared 
to hypertriglyceridemia [24]. Currently, the HLH-2004 
diagnostic criteria only mention hypertriglyceridemia 
(TG > 3 mmol/L), and we suggest that more attention 
should be paid to abnormal changes in high-density lipo-
protein levels in patients with MAS secondary to SLE. 
Previous studies have shown that compared to HLH 
patients, MAS patients have higher levels of CRP, and a 
cutoff value of 90  mg/L has been identified to differen-
tiate between these two conditions (AUC: 0.87, sensitiv-
ity: 0.85, specificity: 0.83) [25]. In our study, patients with 
MAS secondary to SLE had higher levels of CRP com-
pared to those without MAS. Consistently, similar results 
were reported by Ahn et al [26]. High levels of CRP may 
be associated with the activity of the primary disease and 
secondary infections in MAS. Monitoring the dynamic 
changes in CRP levels can help differentiate between 
MAS and disease activity [27]. According to the study 
conducted by Kostik et al., hyponatremia can serve as a 
biomarker for early recognition of MAS [28]. The occur-
rence of hyponatremia may be related to the impact of 
MAS on renal tubular function [29]. Our research indi-
cates that hyponatremia shows promise as a distinguish-
ing factor between SLE and MAS secondary to SLE. 

However, its discriminative power is not as robust as that 
of other indicators.The pathogenesis of MAS involves 
a variety of cytokine storms and excessive inflamma-
tory responses [30]. Currently, the cytokine profile and 
underlying mechanisms associated with MAS second-
ary to SLE remain unclear. Some studies have indicated 
elevated levels of TNF-α-related molecules in MAS sec-
ondary to SLE, which can serve as diagnostic markers for 
the transition from active SLE to MAS [31]. During the 
remission phase of MAS, multiple cytokines including 
TNF-α exhibit decreased levels compared to the active 
phase [32]. However, lower levels of TNF-α were found in 
SLE patients with MAS compared to single SLE patients 
in the present study. Different results may be attributed 
to confounding factors, such as the time of TNF-α mea-
surements. Because our cytokine measurements were 
only performed at admission, we need to interpret these 
findings with caution. In the future, through dynamic 
monitoring of changes in TNF-α levels throughout the 
course of MAS, we can better understand the role of 
TNF-α in MAS secondary SLE.

Certainly, this study presents several limitations. The 
small sample size used may limit the generalizability of 
the findings and compromise the diagnostic accuracy due 
to potential data imbalance. Additionally, Although the 
risk of overfitting was reduced in this study through tech-
niques such as cross-validation, there is still a possibil-
ity of overfitting when using complex models and a large 
number of features in small-sample situations. More-
over, the limited availability and potential missing data of 
certain examination indicators at our center may result 
in overlooked or underestimated clinical information 
related to the disease. In the future, it is recommended to 
establish a multi-center prospective study specifically tar-
geting MAS secondary to SLE in order to further confirm 
the efficacy of the model.

Conclusion
In conclusion, we have developed a predictive model 
and scoring card based on clinical features to predict 
MAS secondary to SLE, which can assist clinicians in 
implementing better-personalized disease management, 
facilitating dynamic monitoring and early warning of the 
disease progression.
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