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Aberrant mechanical loading induces 
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Abstract 

Background  Intervertebral disc degeneration (IVDD) is closely associated with the structural damage in the annulus 
fibrosus (AF). Aberrant mechanical loading is an important inducement of annulus fibrosus cells (AFCs) apoptosis, 
which contributes to the AF structural damage and aggravates IVDD, but the underlying mechanism is still unclear. 
This study aims to investigate the mechanism of a mechanosensitive ion channel protein Piezo1 in aberrant mechani-
cal loading-induced AFCs apoptosis and IVDD.

Methods  Rats were subjected to lumbar instability surgery to induce the unbalanced dynamic and static forces to 
establish the lumbar instability model. MRI and histological staining were used to evaluate the IVDD degree. A cyclic 
mechanical stretch (CMS)-stimulated AFCs apoptosis model was established by a Flexcell system in vitro. Tunel stain-
ing, mitochondrial membrane potential (MMP) detection, and flow cytometry were used to evaluate the apoptosis 
level. The activation of Piezo1 was detected using western blot and calcium fluorescent probes. Chemical activator 
Yoda1, chemical inhibitor GSMTx4, and a lentiviral shRNA-Piezo1 system (Lv-Piezo1) were utilized to regulate the func-
tion of Piezo1. High-throughput RNA sequencing (RNA-seq) was used to explore the mechanism of Piezo1-induced 
AFCs apoptosis. The Calpain activity and the activation of Calpain2/Bax/Caspase3 axis were evaluated by the Calpain 
activity kit and western blot with the siRNA-mediated Calapin1 or Calpain2 knockdown. Intradiscal administration of 
Lv-Piezo1 was utilized to evaluate the therapeutic effect of Piezo1 silencing in IVDD rats.

Results  Lumbar instability surgery promoted the expression of Piezo1 in AFCs and stimulated IVDD in rats 4 weeks 
after surgery. CMS elicited distinct apoptosis of AFCs, with enhanced Piezo1 activation. Yoda1 further promoted CMS-
induced apoptosis of AFCs, while GSMTx4 and Lv-Piezo1 exhibited opposite effects. RNA-seq showed that knocking 
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down Piezo1 inhibited the calcium signaling pathway. CMS enhanced Calpain activity and elevated the expression 
of BAX and cleaved-Caspase3. Calpain2, but not Calpain1 knockdown, inhibited the expression of BAX and cleaved-
Caspase3 and alleviated AFCs apoptosis. Lv-Piezo1 significantly alleviated the progress of IVDD in rats after lumbar 
instability surgery.

Conclusions  Aberrant mechanical loading induces AFCs apoptosis to promote IVDD by activating Piezo1 and down-
stream Calpain2/BAX/Caspase3 pathway. Piezo1 is expected to be a potential therapeutic target in treating IVDD.

Keywords  Intervertebral disc degeneration, Piezo1, Annulus fibrosus cells, Aberrant mechanical loading, Apoptosis

Introduction
Lower back pain (LBP) is characterized by high morbid-
ity, high disability rate, and high recurrence rate, which 
jeopardizes the quality of patients’ life and impose heavy 
burdens on healthcare expenditure worldwide [1]. IVDD 
and IVDD-initiated degenerative disc diseases including 
intervertebral disc herniation, degenerative spondylolis-
thesis, and spinal stenosis are the common elicitation of 
LBP [2]. Anatomically, a healthy intervertebral disc (IVD) 
consists of a gelatinous proteoglycan-rich nucleus pul-
posus (NP) in the center, a fibrous collagen-rich annu-
lus fibrosus (AF) in the surrounding, and the bilateral 
cartilaginous endplates (CEP) adjacent to the superior 
and inferior vertebral bodies. Excessive cellular apop-
tosis is one of the distinct characteristics during IVDD 
[3]. In the past few decades, while much of the research 
progress exploring the underlying mechanisms and 
novel strategies to ameliorate apoptosis in NP and CEP 
has been accomplished, much less is achieved in that of 
AF [4]. Previous studies demonstrate that AF injury can 
result in IVD structural instability as a mechanism to 
promote IVDD progression [5–8]. Annulus fibrosus cells 
(AFCs) apoptosis results in decreased cellularity, which is 
regarded as a crucial elicitation to AF structural destabi-
lization [9]. Therefore, investigating the contributing fac-
tors and underlying mechanism of AFCs apoptosis is of 
great importance.

Among the contributing factors of cellular apoptosis 
in IVD, the biomechanical stimulus is a unique factor 
[8]. IVD functions as a loading absorber and transmit-
ter and provides flexibility to the spine [10]. Aberrant 
mechanical loading has been proven to be closely asso-
ciated with apoptosis in NP and CEP [11, 12]. However, 
the biomechanical characteristic of AF is not similar to 
NP and CEP. The multilaminar collagen lamellae of AF 
are strained by intradiscal pressure through two mecha-
nisms: direct radial tensile from the NP expansion and 
cranial–caudal stretch from the separation of the two 
endplates [9]. A human AF tissue level analysis exhib-
ited that the tensile hoop stress can reach 12.7 MPa [13]. 
Several studies have verified the apoptosis of AFCs sig-
nificantly rises with the elevation of aberrant mechanical 
loading degree [7, 14–16]. Therapies that inhibit aberrant 

mechanical loading-induced AFCs apoptosis can result 
in alleviated IVDD in animal experiments [17, 18]. How-
ever, there have not yet been any studies investigating the 
underlying mechanism that aberrant mechanical loading 
stimulates AFCs apoptosis.

The Piezo proteins are newly discovered mechanically 
sensitive ion channel proteins, whose encoding genes 
(Piezo1 and Piezo2) were identified in 2010 [19]. Piezo 
participates in the cellular response to external mechani-
cal stimuli, including compression, stretch, gravity, fluid 
shear, and so on [20, 21]. Piezo helps cells in converting 
mechanical signals into biological signals by enhanc-
ing calcium ions (Ca2+) influx and altering subsequent 
intracellular calcium signaling [22] and then regulat-
ing a series of cellular biological processes, including 
cell proliferation, cell differentiation, cell migration, 
and cell apoptosis [23–26]. Piezo1 is widely distributed 
throughout the body, especially in load-bearing tissues 
in the musculoskeletal system [27–29], while Piezo2 was 
mainly expressed in sensory neurons and tactile-sensory 
cutaneous Merkel cells [30, 31]. In IVD, Piezo1 has been 
verified to be expressed in NP and CEP [32–34]; Piezo1 
activation is closely associated with mechanical load-
ing-elicited apoptosis in NP cells [35]. Consequently, 
there exists a certain possibility that excessive aberrant 
mechanical loading-induced AFCs apoptosis is medi-
ated by Piezo1. However, no research has explored the 
expression of Piezo1 in AF and the role of Piezo1 in 
AFCs apoptosis so far.

Based on the evidence above, we hypothesized that 
aberrant mechanical loading may activate Piezo1 to pro-
mote AFCs apoptosis and aggravate IVDD. To test our 
hypothesis, the expression of Piezo1 and activation status 
was detected in human and rat AF tissues and cultured 
AFCs. Then the CMS-stimulated rat AFCs apoptosis 
model and a lumbar instability model were employed to 
ascertain the effect of Piezo1 on AFCs. High-throughput 
sequencing and subsequent expression verification were 
utilized to elucidate the underlying mechanisms of CMS-
induced AFCs apoptosis. This study is the first to verify 
the effects of Piezo1 on CMS-induced AFC apoptosis. It 
may help to better understand the relationship between 
Piezo1, aberrant mechanical loading, and AFC apoptosis 
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during IVDD, which may provide a prospective strategy 
for IVDD therapy.

Methods and materials
In vivo experiments
Animal model
Three-month-old male Sprague Dawley rats were pro-
vided by the animal center of Xinqiao Hospital, Army 
Medical University. The lumbar instability model was 
based on the previously described methods [17]. Briefly, 
rats were anesthetized with 2% pentobarbital (50  mg/
kg) and carprofen (5  mg/kg) for analgesia. The location 
of the L4/L5 disc was performed according to a previous 
study [36]. A line was drawn connecting the iliac crests, 
indicating the approximate level of the L5/L6 disc space, 
then L4 and L5 were located by palpation and labeled. A 
median incision was made in the posterior lumbar spine 
to expose the L4 and L5. The paraspinal muscle tissue 
was removed from L4–L5 to remove the dynamic forces 
created by the muscle forces transmitted across the spine, 
all lumbar spinous processes and posterior medial 1/2 
of bilateral lumbar facet joints were removed, and the 
supraspinal and interspinous ligaments were excised with 
the scalpel to remove the static forces created by the bony 
and ligamentous architecture of the spine. Unbalanced 
dynamic and static forces were induced to reduce the 
posterior column stability to promote IVDD. After wash-
ing with normal saline containing 100 U/mL of penicillin, 
the wound was closed and the surface was disinfection 
again. In the control group, only a median incision was 
made and then sutured. Cefuroxime (30  mg/kg) was 
given for three days after the operation.

Magnetic resonance imaging
Four weeks after surgery, the rats were euthanized and 
the lumbar tissues were obtained. A magnetic reso-
nance imager (PHILIPS Ingenia 3.0 T) was used to scan 
the lumbar tissue of the rats. The parameters are set as 
follows: TR time (2000  ms), TE time (80  ms), incentive 
times (2), scan time (3 min and 20 s), fat reduction tech-
nology (SPAIR), scan matrix (frequency encoding 368, 
phase encoding 288), layer thickness (2.5  mm), echo 
chains (12), and spin echo sequence (TSE sequence). Pfir-
rmann grading of rat intervertebral discs were calculated 
according to the Pfirrmann grading criteria.

Tissue specimen section
The vertebral body of L4 and L5 and the whole IVDD tis-
sue were collected and fixed with 4% paraformaldehyde 
for 24  h. Tissue samples were decalcified through 10% 
EDTA decalcification solution (E1171, Sorlabio, Bejing, 
China) for 3  weeks. Then, the samples were dehydrated 
with ethanol solutions and embedded in liquid paraffin to 

make the paraffin sections. The specimens were then cut 
into 6-μm sections and placed on slides for later use.

Hematoxylin–eosin (H&E) staining and Sirius red staining
H&E staining was performed according to the stand-
ardized protocol. The histological grading scale sys-
tem (Supplementary Table  1) included five categories 
with scores ranging from 0 points (normal) to 15 points 
(serious degeneration disc) using the method according 
to previous studies [37, 38]. The picrosirius red stain-
ing method of Novais et  al. [39] and Melrose et  al. [40] 
was used after  the initial removal of tissue proteogly-
cans by pre-digestion with bovine testicular hyaluroni-
dase (1000 U/ml) for 2 h at 37℃. The slides were initially 
stained in Wiegert’s iron hematoxylin for 30  min and 
stained in 0.1% Sirius red F3B (26–10-8, Sigma-Aldrich) 
in saturated aqueous picric acid for 2 h. The slides were 
then dehydrated in three changes of 100% ethanol, then 
cleared in xylene, and mounted in  an Eukitt mounting 
medium. The sides were examined under polarized light 
through the microscope (BX53P, Olympus). The per-
centage of thin collagen fibers (green), intermediate col-
lagen fibers (yellow), or thick collagen fibers (red) in AF 
was quantified by ImageJ software in the images (aver-
age pixels from three fields per section, three sections 
per rat, three rats per group). Color threshold levels were 
maintained constant between all analyzed images. Two 
observers evaluated the histological score of the interver-
tebral disc blindly.

Tunel staining
Sections were dewaxed and rehydrated. After incubation 
with 20 µg/mL proteinase K without DNase for 15 min, 
the sections were washed three times with PBS. Prepare 
Tunel staining solution (C1098, Beyotime, Shanghai, 
China) according to the reagent manufacturer’s instruc-
tions. The sections were incubated with working solu-
tion at 37 °C for 60 min in the dark. Sections were then 
incubated with 5 µg/mL Hoechst 33,258 solution (C1002, 
Beyotime) for 5 min and observed under the fluorescence 
microscope. Tunel-positive cells were counted in the 
images (average proportions from three fields per section, 
three sections per rat, three rats per group). The field size 
of regions of interest (ROI) was 400 μm × 700 μm.

In vitro experiments
Isolation and culture of AFCs
AFCs preparation was based on the previously described 
methods [41]. A total of 32 rats was used to isolated 
AFCs in the in  vitro cell experiments with a maximum 
of 4 independent repeat. Rats were euthanized by intra-
peritoneal injection of an overdose of sodium pentobar-
bital (150  mg/kg). AF tissue was isolated under sterile 
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conditions and cut into approximately 1 mm3 fragments 
with ophthalmic scissors. For each isolation, the AF tis-
sue of 8 rats was pooled and digested with 0.4% colla-
genase type II and 0.01% hyaluronidase type V for 90 min 
at 37  °C. Tissue debris was removed using a 70-μm cell 
filter, and the residues were then centrifuged at 400 g for 
5  min. The supernatant was discarded. Next, the sedi-
ment was resuspended by complete media containing 
Dulbecco’s modified Eagle medium /F-12 (C3130-0500, 
Viva Cell, Shanghai, China) and 10% fetal bovine serum 
(C2630-0500, Viva Cell), and 1% penicillin/streptomycin 
(C0222, Beyotime). Cells were cultured at 37 °C in a cell 
incubator containing 5% CO2. The medium was changed 
every 3 days, and the AFCs were passaged when the con-
fluency reached 80–90%. The third generation of AFCs 
received different treatments including CMS, activator/
inhibitor, and lentivirus, and the relevant experiments 
using these AFCs were regarded as one independent 
repeat.

Application of CMS
AFCs were seeded on Bioflex stretched 6-well plates 
(Flexcell International, Hillsborough, USA), and the cells 
were treated with CMS when the cell fusion rate reached 
80–90%. The Flex-Cell 5000 tension system (Flexcell 
International) was used to simulate the CMS stimulation 
on AFCs. The parameter of CMS was selected as 0.5 Hz, 
5–20% stretch deformation, 36 h duration, and the cycle 
mode was sinusoidal cycle, as reported in a previous 
study [42]; 20% is the maximum failure strain evaluated 
on annular collagen type I fibers, and 5% corresponds 
to a strain observed on the annular collagen type I fib-
ers from intervertebral discs submitted to external stress. 
The loading frequency (0.5 Hz) and duration (36 h) can 
result in the apparent AFCs apoptosis without induc-
ing cell detachment from the substrate or changing the 
cell phenotype [43]. After stretching for 36 h, cells were 
harvested for subsequent tests. Control groups were cul-
tured similarly without CMS.

Chemical stimuli on Piezo1 channel
AFCs were treated with 1  μM Piezo1 special agonist 
Yoda1 (SML1558, Sigma-Aldrich, MO, USA) dissolved 
in DMSO to achieve chemical activation of Piezo1. 
AFCs were treated with 0.5  μM Piezo channel inhibi-
tor GsMTx4 (HY-P1410, MCE, CA, USA) dissolved in 
DMSO to achieve chemical suppression of Piezo1. AFCs 
treated with DMSO were set as the control group.

Knockdown of Piezo1, Calpain1, and Calpain2
A Piezo1 shRNA lentiviral expression vector (pLVX-
shRNA-Puro-Piezo1, Lv-Piezo1) and its control vec-
tor (pLVX-shRNA-Puro, Lv-ctrl) were constructed by 

XuanZun bioscience (Shanghai, China). The Piezo1 
shRNA target sequence was 5’-GGA​GTA​TGC​CAA​CGA​
GAA​GCA-3’. AFCs were inoculated with Lv-Piezo1 or 
Lv-ctrl for 24  h at a multiplicity of infection (MOI) of 
20, respectively. Then, the AFCs were added with fresh 
medium. siRNA-Calpain1 and siRNA-Calpain2 were 
purchased from Tsingke Biotechnology (Beijing, China). 
To perform the knockdown experiments by siRNA, 
AFCs were transfected with siRNA Lipofectamine 2000 
(11,668,030, Invitrogen, CA, USA) according to the man-
ufacturer’s instructions.

Detection of Calpain activity
The detection of Calpain activity was performed using 
a Calpain activity assay (ab65308, Abcam, MA, USA) 
according to the manufacturer’s instructions. Briefly, 
50  μg cleared supernatant was exposed to 5  μl calpain 
substrate for 1  h at 37  °C in the presence of a calpain 
reaction buffer. Fluorescence value was recorded at exci-
tation of 400 nm and emission at 505 nm using a fluores-
cence plate reader. Relative fluorescence units were then 
calculated.

Apoptosis detection by flow cytometry
AFCs were digested with 0.05% trypsin EDTA (Hyclone, 
UT, USA) and harvested. Subsequently, Annexin V-PE/7-
AAD Apoptosis Detection Kit (C1065L, Beyotime) was 
performed according to the manufacturer’s instructions. 
Cells were then evaluated with flow cytometry. Annexin 
V-PE + /7-AAD- cells (early apoptotic cells) and Annexin 
V-PE + /7-AAD + cells (late apoptotic cells) were con-
sidered as apoptotic cells. The apoptotic incidence was 
counted and expressed as a percentage of the total num-
ber of cells.

Apoptosis detection by Tunel staining assay
AFCs were washed three times with PBS and fixed with 
4% paraformaldehyde for 30  min. Tunel assay solution 
(C1098, Beyotime) was prepared according to the reagent 
manufacturer’s instructions and incubated for 60  min 
in the dark. The nuclei were then stained with Hoechst 
33,258. The samples were observed under the inverted 
fluorescence microscope (IX73, Olympus, Tokyo, Japan).

Apoptosis detection by MMP assay
MitoTracker Red CMXRos kit (C1049B, Beyotime) was 
used to detect the mitochondrial function of AFCs. 
Working solution was configured according to the rea-
gent manufacturer’s instructions. AFCs were incu-
bated with working solution at 37  °C for 30  min in the 
dark. Nuclei were stained with Hoechst 33,258. The 
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samples were observed under the inverted fluorescence 
microscope.

Calcium ions influx detection
Intracellular calcium concentrations were measured 
by Fluo-4 AM (S1060, Beyotime). AFCs were seeded in 
small confocal laser dishes and were then loaded with 
5  µM Fluo-4 AM for 1  h in Hank’s balanced salt solu-
tion containing 0.02% Pluronic F-127 (P6791, Solarbio, 
Beijing, China) and 1 mM Probenecid (SP9760, Solarbio, 
Beijing, China) at 37 °C for 1 h in darkness. Then, AFCs 
were washed 3 times with HBSS. The calcium influx was 
determined by laser confocal Ca2+ imaging technique to 
evaluate intracellular calcium transient in AFCs. Nuclei 
were counterstained with Hoechst 33,258.

Immunofluorescence staining assay
AFCs were fixed in 4% paraformaldehyde for 30  min. 
After incubation in immunostaining permeabilizer 
(P0096, Beyotime), AFCs were incubated with primary 
antibodies and overnight at 4 °C. Primary antibodies con-
tain Piezo1 (1:100, 15,939–1-AP, Proteintech, Wuhan, 
China) and Piezo2 (1:500, PA5-72,976, Invitrogen, CA, 
USA). After washing three times with PBS, appropriate 
Goat Anti-Rabbit IgG(H + L) Dylight 488 or 648 fluores-
cent-labeled secondary antibody (1: 500, BS10034 and 
BS10017, Bioworld, Nanjing, China) was incubated for 
1  h in darkness. Nuclei were counterstained with Hoe-
chst 33,258 for 5  min. Images were captured by a laser 
confocal microscope.

Western blot test
AFCs were lysed with RIPA lysis buffer (P0013B, Beyo-
time), and the protein concentration was determined by 
BCA assay kit (PC0020, Solarbio); 1/5 volume of load-
ing buffer was added to the lysate, and then the sam-
ple was placed in boiling water for 10 min. Proteins are 
separated by sulfate–polyacrylamide gel electrophoresis 
(SDS‒PAGE) techniques and transferred to the PVDF 
membrane. PVDF membrane was blocked by 5% skim 
milk for 1 h, and then the membrane was incubated with 
primary antibodies at 4° overnight. Primary antibodies 
contain calpain1 (10,538–1-AP, Proteintech), calpain2 
(11,472–1-AP, Proteintech), Bax (50,599–2-Ig, Protein-
tech), cleaved-Caspase 3 (9664, Cell Signaling Technol-
ogy, MA, USA), Piezo1 (5939–1-AP, Proteintech), and 
Gapdh (60,004–1-Ig, Proteintech). PVDF membrane was 
washed by TBST and then was incubated with the sec-
ondary antibody for 1 h. The secondary antibodies con-
tain Goat Anti-Mouse IgG (H + L) HRP (abs20001, Absin, 
Shanghai, China) or Goat Anti-Rabbit IgG (H + L) HRP 

(abs20002, Absin). The expression of the target protein 
was detected by Clarity Western ECL Subs (1705060SP, 
Bio-Rad, Universal Hood III, CA, USA) and ChemiDoc 
imaging system (Bio-Rad) and analyzed by ImageJ soft-
ware. All results were quantified and normalized to 
GAPDH.

High‑throughput RNA‑seq and data analysis
High-throughput RNA-seq was performed by Bioguoke 
Biotechnology Co., Ltd. (Beijing, China). Total RNA was 
extracted on ice using Trizol (15,596,018, ThermoFisher, 
DE, USA), RNA concentration and purity were meas-
ured using NanoDrop 2000 (ThermoFisher), and RNA 
integrity was assessed using the RNA Nano 6000 Assay 
Kit of the Agilent Bioanalyzer 2100 system (Agilent Tech-
nologies, CA, USA). Then, a cDNA library was assessed 
on the Agilent Bioanalyzer 2100 system. The Illumina 
Novaseq platform was utilized for high-throughput 
RNA-seq. After that, clean data were acquired by remov-
ing reads containing adapter, ploy-N, and low-quality 
reads from raw data. Transcripts were reconstructed 
using StringTie and HISAT2 tools software were uti-
lized to map the clean data to reference rattus norvegicus 
genome. The expression of gene was analyzed by frag-
ments per kilobase of transcript per million fragments 
mapped (FPKM). Differential expression genes were 
evaluated by the DESeq R package (1.10.1). The corrected 
p-value (FDR < 0.05) and |log2foldchange| (|FPKM|≥ 1) 
were regarded as the threshold for significant difference 
of gene expression. Finally, KOBAS software was used to 
perform the statistical enrichment of differential expres-
sion genes in Gene Ontology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways, and Gene Set 
Enrichment Analysis (GSEA).

Statistical analysis
Each experiment results were calculated from three 
biological repeats in technical triplicates. Statistical 
analysis was performed using GraphPad Prism 9 soft-
ware (San Diego, CA, USA). All data were expressed as 
the mean ± standard deviation (mean ± SD). Two-group 
comparisons was evaluated using t-test. Multiple com-
parisons were evaluated using one-way ANOVA followed 
by Bonferroni’s post hoc test. p < 0.05 was considered as 
statistically significant.

Results
Lumbar instability promoted AFCs apoptosis and Piezo1 
expression
Four weeks after the lumbar instability surgery, H&E stain-
ing of the L4/L5 disc and adjacent endplates revealed a 
normal, well-organized AF tissue and NP tissue in the 
control group with a lower histological score, whereas 



Page 6 of 19Liu et al. Arthritis Research & Therapy          (2023) 25:117 

the IVDD group exhibited disorganized laminar struc-
ture, fragmented fibers and local fissures in AF tissue, and 
sharply decreased size in NP tissue with a higher histologi-
cal score (Fig. 1a, e). The Sirius red staining results showed 
that the percentage of thick fibers was distinctly elevated 
in the IVDD group compared with control group, and the 

percentage of thin fibers was reduced in the IVDD group 
compared with control group (Fig.  1b, f). MRI results 
showed a lower signal and a higher Pfirrmann grading 
score in the L4/L5 disc in the IVDD group (Fig.  1c, g). 
These results indicated the successful establishment of 
IVDD model. TUNEL staining showed that the number 

Fig. 1  Lumbar instability promoted AFCs apoptosis and Piezo1 expression. a Representative H&E staining and histological scoring of rats in the 
Ctrl group and IVDD group (scale bar = 600 μm). b Representative Sirius red staining observed by polarized light microscopy of rats in the Ctrl 
group and IVDD group (scale bar = 1000 μm). c Representative MRI detection of the L4/L5 disc (red dotted box) of rats in the Ctrl group and IVDD 
group. d Representative Tunel staining (red) of AF tissue of rats in the Ctrl group and IVDD group (scale bar = 100 μm). Nuclei were counterstained 
with Hoechst 33,358 (blue). e Histological scoring of H&E staining results of rats in the Ctrl group and IVDD group (n = 3). f The percentage of thin 
collagen fibers (green), intermediate collagen fibers (yellow), or thick collagen fibers (red) in AF of rats in the Ctrl group and IVDD group (n = 3). 
g Pfirrmann grades of rats shown by MRI in the Ctrl group and IVDD group (n = 3). h Ratio of apoptotic cells of AF tissue of rats shown by Tunel 
staining in the Ctrl group and IVDD group (n = 3). i Representative immunofluorescent staining pictures detecting the expression of Piezo1 channel 
in AF tissue of the Ctrl group and IVDD group (scale bar = 150 μm). Piezo1 appeared green and nuclei were counterstained with Hoechst 33,358 
(blue). j Statistic data of mean Piezo1 fluorescent intensity in AF tissue of the Ctrl group and IVDD group (n = 3). **P < 0. 01, ***P < 0.001, ****P < 0.0001
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Fig. 2  CMS-induced apoptosis of AFCs in vitro. a Representative flow cytometry scatter plots detecting AFCs apoptosis under different degrees of 
CMS. b Representative Tunel staining fluorescence pictures detecting AFCs apoptosis under different degrees of CMS (scale bar = 50 μm). Apoptotic 
AFCs appeared red and nuclei were counterstained with Hoechst 33,358 (blue). c Representative MMP staining fluorescence pictures detecting 
AFCs apoptosis under different degrees of CMS (scale bar = 50 μm). MMP appeared red and nuclei were counterstained with Hoechst 33,358 (blue). 
d Statistic data of apoptotic AFCs under different degrees of CMS determined by flow cytometry (n = 3). e Statistic data of Tunel-positive apoptotic 
AFCs under different degrees of CMS determined by Tunel staining (n = 3). f Statistic data of mean MMP fluorescent intensity in AFCs under 
different degrees of CMS determined by MMP staining (n = 3). g Representative immunofluorescent staining pictures detecting the expression of 
Piezo1 channel in AFCs of the Ctrl group and CMS group (scale bar = 50 μm). Piezo1 appeared green and nuclei were counterstained with Hoechst 
33,358 (blue). h Statistic data of mean Piezo1 fluorescent intensity in AFCs of the Ctrl group and CMS group (n = 3). i Representative Fluo-4 AM 
staining pictures detecting the Ca2+ influx in AFCs of the Ctrl group and CMS group (scale bar = 10 μm). Fluo-4 AM appeared green and nuclei were 
counterstained with Hoechst 33,358 (blue). j Statistic data of mean Fluo-4 AM fluorescent intensity in AFCs of the Ctrl group and CMS group (n = 3). 
**P < 0. 01, ***P < 0.001, ****P < 0.0001
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of apoptotic cells increased significantly in AF tissue of 
IVDD rats (Fig. 1d, h). We found the expression of Piezo1 
elevated in the AF tissue of IVDD rats (Fig. 1i, j), and the 
expression of Piezo2 is not distinct in AF tissue (Fig S1a). 
These results above indicated aberrant mechanical loading 
induced IVDD in rats, with elevated AFCs apoptosis and 
Piezo1 expression.

CMS induced AFCs apoptosis and Piezo1 activation in vitro
Rats AFCs were imposed with CMS induced by Flex-
cell-5000 tension system. The total percentage of apop-
totic AFCs including early apoptosis and late apoptosis 
significantly increased with the elevation of the extent of 
elongation, which peaked at 20% elongation (Fig.  2a, d). 
Moreover, similar results were also shown in the TUNEL 
staining (Fig. 2b, e). MMP assay results showed that with 
the increase of elongation, the MMP intensity gradually 
declined (Fig. 2c, f ). These results showed that CMS could 
induce apoptosis of AFCs; 20% elongation induced the 
most distinct cellular apoptosis and was used in subse-
quent experiments. The expression of Piezo1 was upregu-
lated in AFCs under CMS (Fig. 2g, h), and the expression 
of Piezo2 is not distinct in AFCs (Fig S1b). Calcium ions 
influx detection results showed that CMS promoted the 
Ca2 + influx in AFCs (Fig.  2i, j). These results suggested 
that Piezo1 was expressed in AFCs, and aberrant mechan-
ical loading activated Piezo1 in AFCs in vivo and in vitro.

Regulating the activation of Piezo1 affected AFCs 
apoptosis under CMS
To further explore the mechanism of Piezo1 in AFCs 
apoptosis, Yoda1 and GsMtx4 were applied in AFCs 
under CMS, respectively. Flow cytometry analysis 
showed that Yoda1 enhanced AFCs apoptosis, while 
GsMtx4 alleviated AFCs apoptosis (Fig.  3a, d). Similar 
results were also shown in the Tunel staining (Fig.  3b, 
e). MMP assay results showed that Yoda1 aggravated the 
MMP intensity reduction while GsMtx4 ameliorated the 
MMP intensity reduction stimulated by CMS (Fig.  3c, 
f ). These results indicated that the activation status of 
Piezo1 is associated with AFCs apoptosis under CMS.

Knocking down Piezo1 reduced AFCs apoptosis under CMS
To further confirm the role of Piezo1 in CMS-induced 
AFCs apoptosis, LV-Piezo1 was used to knock down 
the expression of Piezo1 in AFCs, and the effectiveness 
of shRNA was verified (Fig. S2a, b). Flow cytometry 
showed that the apoptosis rate of the Lv-Piezo1 group 
was reduced compared with the Lv-Ctrl group and CMS 
group (Fig. 4a, d). Tunel staining showed that the Tunel-
positive cells in the Lv-Piezo1 group was lesser than that 
in the control group and Lv-Ctrl group (Fig. 4b, e). MMP 
assay results showed that knockdown Piezo1 alleviated 
MMP intensity reduction under CMS (Fig. 4c, f ). These 
results indicated that Piezo1 mediated the apoptosis of 
AFCs stimulated by CMS.

RNA‑seq showed Piezo1‑mediated AFCs apoptosis 
via calcium signaling pathway
RNA-seq was performed in 4 in vitro experimental bio-
logical repeats received Lv-Ctrl + CMS treatment or 
Lv-Piezo1 + CMS treatment. Then 4 samples of Lv-Ctrl 
treated AFCs under CMS and 4 samples of Lv-Piezo1 
treated AFCs under CMS were acquired, respectively. 
Then RNA-seq was performed to further explore the 
underlying mechanisms by which Piezo1 affects AFCs 
apoptosis. Heatmap and volcano plot exhibited the differ-
entially expressed genes (Fig. 5a, b). GO analysis showed 
that the differentially expressed genes were significantly 
enriched in “response to mechanical stimulus” (Fig. 5c). 
KEGG pathway analysis revealed that the differentially 
expressed genes were significantly enriched in “calcium 
signaling pathway” (Fig. 5d). GSEA analysis showed that 
Lv-Piezo1-mediated Piezo1 suppression was closely asso-
ciated with the calcium signaling pathway downregula-
tion in AFCs (Fig. 5e). These results revealed that Piezo1 
may affect the function of AFCs by calcium signaling 
pathway.

Piezo1 promotes AFCs apoptosis via Ca2 + /Calpain2/
Caspase3 pathway
Next, we explored the downstream mechanism in Piezo1-
mediated apoptosis of AFCs. Piezo1-activated calcium 

Fig. 3  Yoda1 enhanced the apoptosis of AFCs, while GsMtx4 inhibited the apoptosis induced by CMS. a Representative flow cytometry scatter 
plots detecting AFCs apoptosis in the Ctrl group, CMS group, CMS + Yoda1 group, and CMS + GsMtx4 group. b Representative Tunel staining 
fluorescence pictures detecting AFCs apoptosis in the Ctrl group, CMS group, CMS + Yoda1 group, and CMS + GsMtx4 group (scale bar = 50 μm). 
Apoptotic AFCs appeared red and nuclei were counterstained with Hoechst 33,358 (blue). c Representative MMP staining fluorescence pictures 
detecting AFCs apoptosis in the Ctrl group, CMS group, CMS + Yoda1 group, and CMS + GsMtx4 group (scale bar = 50 μm). MMP appeared red 
and nuclei were counterstained with Hoechst 33,358 (blue). d Statistic data of apoptotic AFCs in the Ctrl group, CMS group, CMS + Yoda1 group, 
and CMS + GsMtx4 group determined by flow cytometry (n = 3). e Statistic data of Tunel-positive apoptotic AFCs in the Ctrl group, CMS group, 
CMS + Yoda1 group, and CMS + GsMtx4 group determined by Tunel staining (n = 3). f Statistic data of mean MMP fluorescent intensity in AFCs in the 
Ctrl group, CMS group, CMS + Yoda1 group, and CMS + GsMtx4 group determined by MMP staining (n = 3). **P < 0. 01, ***P < 0.001, ****P < 0.0001

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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signaling pathway can induce downstream calpains acti-
vation, which is closely related to apoptosis. We specu-
lated that Piezo1-activated calcium signaling pathway may 
regulate AFCs apoptosis through calpains. Calpain activity 
detection kit results showed that CMS elevated the activity 
of Calpains, and Lv-Piezo1 treatment reduced the activity 
of Calpains (Fig. 6a). Western blot results showed that the 
expression of Calpain1, Calpain2, and downstream Bax, 
Cleaved-Caspase3 were all elevated after CMS and declined 
after Lv-Piezo1 treatment (Fig. 6b and Fig. S3a-d). To specify 
the certain Calpain that underlies Piezo1-mediated AFCs 
apoptosis, siRNA-Calpain1 and siRNA-Calpain2 were 
used to inhibit the activation of Calpain1 and Calpain2 in 
Yoda1-treated AFCs under CMS, respectively (Fig. S2b-e). 
Flow cytometry, Tunel staining, and MMP staining results 
showed that apoptosis of AFCs was inhibited after siRNA-
Calpain2 treatment but not after siRNA-Calpain1 treatment 
(Fig. 6c-h). Western blot results showed that the expression 
of Bax and Cleaved-Caspase3 were suppressed after siRNA-
Calpain2 treatment (Fig.  6i  and Fig. S3e-f). These results 
indicated that CMS increases AFCs apoptosis by activating 
Piezo1 and Ca2 + /Calpain2/Caspase3 pathway.

Knocking down Piezo1‑alleviated AFCs apoptosis 
and IVDD in rats
H&E staining of the L4/L5 disc in Lv-Piezo1 treated 
IVDD rats revealed that Lv-Piezo1 treatment allevi-
ated the disorganized laminar structure AF tissue and 
decreased size in NP tissue, which resulted in elevated 
histological score compared with Lv-Ctrl or PBS treated 
IVDD rats (Fig. 7a,e). Sirius red staining results showed 
that Lv-Piezo1 treatment reduced the percentage of thick 
fibers and elevated the percentage of thin fibers in IVDD 
rats (Fig. 7b, f ). Tunel staining showed that the number of 
apoptotic cells declined in AF tissue of Lv-Piezo1 treated 
IVDD rats (Fig.  7c,g). MRI results showed Lv-Piezo1 
treated IVDD rats obtained elevated Pfirrmann grading 
score in the L4/L5 disc compared with Lv-Ctrl- or PBS-
treated IVDD rats (Fig. 7d, h). These results showed that 
Piezo1 knockdown inhibited AFCs apoptosis and IVDD 
in rats. Schematic diagram of aberrant mechanical load-
ing-induced AFCs apoptosis via activating Piezo1 chan-
nel were shown in Fig. 8.

Discussion
Excessive aberrant mechanical loading-induced AFCs 
apoptosis is an elicitation of IVDD. However, the under-
lying mechanisms by which aberrant mechanical load-
ing promotes AFCs apoptosis are not clear. In this study, 
we explored the role of a mechanosensitive ion channel 
protein Piezo1 in aberrant mechanical loading-induced 
AFCs apoptosis and investigated the potential mecha-
nisms. We found that the expression of piezo1 was ele-
vated in the AF of rat experimental IVDD. CMS elicited 
distinct AFCs apoptosis, as well as up-regulated Piezo1 
expression and Piezo1 channel activation. Yoda1 pro-
moted AFCs apoptosis, while GsMtx4 and lentivirus-
based Piezo1 knockdown suppressed AFCs apoptosis. 
RNA-seq showed that Piezo1 activated the calcium sign-
aling pathway, which then activated downstream Cal-
pain2/Bax/Caspase3 axis to stimulate AFCs apoptosis. 
Intradiscal administration of Lv-Piezo1 significantly alle-
viated the progress of IVDD in rat experimental IVDD. 
This study reveals the role of Piezo1 in aberrant mechani-
cal loading stimulated AFCs apoptosis during IVDD and 
may facilitate the effects of current IVDD therapies.

As a crucial supporting component in the biome-
chanical properties of IVD, the structural and mechani-
cal integrity of AF is crucial in confining NP. The AF is 
generally the first site to be injured in the onset of IVDD, 
after that scar tissue resulting from the healing of small 
tears or fissures can cause progressive weakening of IVD. 
Previous studies verified that AF injury is closely related 
to AFCs apoptosis. The reasons that induced AFCs 
apoptosis is complex; the excessive aberrant mechanical 
loading is a unique factor in promoting AFCs apoptosis, 
which is also proved to be closely related to the cellular 
apoptosis in other fibrous tissue like tendon, ligamentum 
flavum, and anterior cruciate ligament [44–46]. Surgery-
induced unbalanced dynamic and static forces, which 
are elicited by lumbar instability surgery, are reported to 
result in excessive aberrant mechanical loading in AF and 
contributed to IVDD [47]. This lumbar instability model 
can cause distinct AFCs apoptosis, as shown in our Tunel 
staining results and previous studies [17, 18]. In  vitro 
studies also proved that 20% elongation of CMS stimu-
lated distinct apoptosis of AFCs, which is also similar to 

(See figure on next page.)
Fig. 4  Knockdown of Piezo1 reduced the apoptosis induced by CMS. a Representative flow cytometry scatter plots detecting AFCs apoptosis in 
the Ctrl group, CMS group, CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 group. b Representative Tunel staining fluorescence pictures detecting AFCs 
apoptosis in the Ctrl group, CMS group, CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 group (scale bar = 50 μm). Apoptotic AFCs appeared red and 
nuclei were counterstained with Hoechst 33,358 (blue). c Representative MMP staining fluorescence pictures detecting AFCs apoptosis in the Ctrl 
group, CMS group, CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 group (scale bar = 50 μm). MMP appeared red and nuclei were counterstained with 
Hoechst 33,358 (blue). d Statistic data of apoptotic AFCs in the Ctrl group, CMS group, CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 group determined 
by flow cytometry (n = 3). e Statistic data of Tunel-positive apoptotic AFCs in the Ctrl group, CMS group, CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 
group determined by Tunel staining (n = 3). f Statistic data of mean MMP fluorescent intensity in AFCs in the Ctrl group, CMS group, CMS + Lv-Ctrl 
group, and CMS + Lv-Piezo1 group determined by MMP staining (n = 3). **P < 0.01, ***P < 0.001, ****P < 0.0001
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Fig. 4  (See legend on previous page.)
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the cellular response of AFCs to CMS reported by Zhang 
et al. [42].

Piezo1 and Piezo2 are mechanically sensitive ion chan-
nel proteins that convert extracellular mechanical stim-
uli to intracellular signaling [48, 49]. Piezo1 and Piezo2 
participate in aberrant mechanical loading-induced 
apoptosis in chondrocytes, type II pneumocytes, and 
tumor cells [50–52]. Piezo1 activation also stimulates 
the NPCs apoptosis during IVDD [35, 53, 54]. Therefore, 
we explored the expression of Piezo1 and Piezo2 in AF 

and investigated whether Piezo1 and Piezo2 mediated 
the aberrant mechanical loading-induced AFCs apop-
tosis. We found that Piezo1 is highly expressed in AF, 
whereas Piezo2 is barely expressed in AF. Using Piezo1-
specific activator Yoda1, we found that Piezo1 activation 
enhanced the CMS-induced AFCs apoptosis. A mecha-
nosensitive cation channels blocker GsMTx4 suppressed 
the CMS-induced AFCs apoptosis. However, GsMtx4 is 
not a specific Piezo1 inhibitor for it also hinders the acti-
vation of other mechanosensitive cation channels like 

Fig. 5  CMS affected the Calcium signaling pathway in AFCs. a Heatmap of differentially expressed genes in AFCs treatment with Lv-Ctrl and 
Lv-Piezo1 under CMS (n = 4). b Volcano map of differentially expressed genes in AFCs treatment with Lv-Ctrl and Lv-Piezo1 under CMS. c GO 
pathway analysis of differentially expressed genes in AFCs treatment with Lv-Ctrl and Lv-Piezo1 under CMS. d KEGG pathway analysis of differentially 
expressed genes in AFCs treatment with Lv-Ctrl and Lv-Piezo1 under CMS. e GSEA analysis of Calcium signaling pathway (KEGG pathway number: 
RNO04020) in AFCs treatment with Lv-Ctrl and Lv-Piezo1 under CMS
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Fig. 6  Piezo1 promotes AFCs apoptosis via Ca2 + /Calpain2/Caspase3 pathway. a The activity of Calpains in the Ctrl group, CMS group, 
CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 group as determined by Calpain activity detection kit (n = 3). b Western blotting analysis showing 
the Calpain1, Calpain2, Bax, Cleaved-Caspase3 expression in the Ctrl group, CMS group, CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 group 
(n = 3). c Representative flow cytometry scatter plots detecting AFCs apoptosis in the CMS + Yoda1 group, CMS + Yoda1 + si-Ctrl group, 
CMS + Yoda1 + si-CAPN1 group, and CMS + Yoda1 + si-CAPN2 group. d Representative Tunel staining fluorescence pictures detecting AFCs 
apoptosis in the CMS + Yoda1 group, CMS + Yoda1 + si-Ctrl group, CMS + Yoda1 + si-CAPN1 group, and CMS + Yoda1 + si-CAPN2 group (scale 
bar = 50 μm). Apoptotic AFCs appeared red and nuclei were counterstained with Hoechst 33,358 (blue). e Representative MMP staining 
fluorescence pictures detecting AFCs apoptosis in the CMS + Yoda1 group, CMS + Yoda1 + si-Ctrl group, CMS + Yoda1 + si-CAPN1 group, and 
CMS + Yoda1 + si-CAPN2 group (scale bar = 50 μm). MMP appeared red and nuclei were counterstained with Hoechst 33,358 (blue). f Statistic 
data of apoptotic AFCs in the CMS + Yoda1 group, CMS + Yoda1 + si-Ctrl group, CMS + Yoda1 + si-CAPN1 group, and CMS + Yoda1 + si-CAPN2 
group determined by flow cytometry (n = 3). g Statistic data of Tunel-positive apoptotic AFCs in the CMS + Yoda1 group, CMS + Yoda1 + si-Ctrl 
group, CMS + Yoda1 + si-CAPN1 group, and CMS + Yoda1 + si-CAPN2 group determined by Tunel staining (n = 3). h Statistic data of mean MMP 
fluorescent intensity in AFC in the CMS + Yoda1 group, CMS + Yoda1 + si-Ctrl group, CMS + Yoda1 + si-CAPN1 group, and CMS + Yoda1 + si-CAPN2 
group determined by MMP staining (n = 3). i Western blotting analysis showing the Bax, Cleaved-Caspase3 expression in the CMS + Yoda1 group, 
CMS + Yoda1 + si-Ctrl group, CMS + Yoda1 + si-CAPN1 group, and CMS + Yoda1 + si-CAPN2 group (n = 3). **P < 0. 01, ***P < 0.001, ****P < 0.0001
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TRPC1 and TRPC3 [55, 56]. Therefore, we accomplished 
Piezo1 knockdown via Lv-Piezo1 transfection and veri-
fied that Piezo1 activation enhanced the CMS-induced 
AFCs apoptosis. Moreover, imagological and histologi-
cal results exhibited that intradiscal administration of 
Lv-Piezo1 alleviated lumbar instability induced IVDD. 
These results proved that Piezo1 is a modulator in CMS-
induced AFCs apoptosis.

We then investigate the downstream intracellular sign-
aling stimulated by the Piezo1 activation. RNA-seq and 
KEGG analysis exhibited that the calcium signaling path-
way was enriched when the Piezo1 was knockdown in 
CMS-induced apoptotic AFCs. Piezo1 activation helps 
cells to convert mechanical signals into biological signals 
via promoting Ca2 + influx and altering subsequent intra-
cellular calcium signaling to elicit a series of cellular bio-
logical processes [57, 58]. Ca2 + plays a central role as a 
second messenger in eukaryotic signal transduction [59]. 
The intracellular free Ca2 + concentration is maintained 
at lower levels than extracellular fluid [60]. Ca2 + over-
load is associated with all three apoptotic pathways, the 
intrinsic apoptotic pathway (the mitochondrial pathway), 
the extrinsic apoptotic pathway (the death receptor path-
way), and the endoplasmic reticulum pathway [61, 62]. 
Our results found that Piezo1 activation promotes the 
expression of proapoptotic protein Bax and cysteine pro-
tease Caspase3. Ca2 + overload can trigger mitochon-
drial permeability transition via opening the permeability 
transition pore, then initiate the activation of consequent 
apoptogenic factors including Bax and initiate the caspase 
cascade reaction [63–65]. Previous studies have explored 
the potential mechanisms underlying piezo1 and 
Ca2 + -induced NPCs apoptosis. Mechanical compres-
sion activates Piezo1 in NPCs and induced apoptosis via 
Ca2 + -induced mitochondria dysfunction [35]. Stiff extra-
cellular matrix activates Piezo1 channel and increased 
intracellular Ca2 + levels and promotes NPCs apoptosis 
via aggravating endoplasmic reticulum stress [53]. How-
ever, unlike NPCs, AFCs are under excessive aberrant 
mechanical loading elicited by direct radial tensile from 
the NP expansion and cranial–caudal stretch from the sep-
aration of the two endplates [9]. Therefore, the underlying 

mechanism that piezo1-induced AFCs apoptosis may be 
discrepant from piezo1-induced NPCs apoptosis.

Calpains are special Ca2 + -activated non-lysosomal 
cysteine proteases that are closely related to Ca2 + -medi-
ated apoptosis via caspase activity [66, 67]. The activity 
of calpains is tightly regulated by intracellular Ca2 + con-
centration. Calpains consist of several isoforms. In 
these isoforms, conventional calpains are ubiquitously 
expressed across all tissues and organs including IVD 
[68, 69]. Conventional calpains have two isoforms: Cal-
pain1 (µ-calpain) that requires micromolar Ca2 + for 
activation and Calpain2 (m-calpain) that requires milli-
molar Ca2 + for activation. Both calpain-1 and calpain2 
are closely related to mechanical force-stimulated cell 
apoptosis [70–74]. Piezo1 has been reported to activate 
Calpain-2 through the elevated Ca2 + influx [50, 75], and 
Piezo1-specific activator Yoda1 can enhance Calpain-2 
activation [76]. Our results found that CMS enhanced 
the expression of Calpain1 and Calpain2, and silencing 
Calpain2, not Calpain1 could reverse the Yoda1- and 
CMS-stimulated AFCs apoptosis, indicating that piezo1 
promotes AFCs apoptosis via Ca2 + influx-mediated Cal-
pain2 activation. To investigate the downstream effec-
tors of Calpain-2 activation, we explored the expression 
of Bax that can be cleaved by Calpain-2 to induce the 
cellular apoptosis [77–80]. Our results found that CMS 
enhanced the expression of Bax and cleaved-Caspase3, 
whereas knocking down Piezo1 could reverse the CMS-
induced AFCs apoptosis. Silencing Calpain2 could 
suppress the expression of Bax and cleaved-Caspase3, 
indicating that piezo1 promotes AFCs apoptosis via Cal-
pain2/Bax/Caspase3 pathway.

Although the in  vivo experiments using the lumbar 
instability model and in  vitro experiments using the 
CMS-treated AFCs model proved that aberrant mechan-
ical loading activates Piezo1 to induce AFCs apoptosis in 
IVDD, it should be noted that it cannot completely simu-
late the situation in IVDD given the complex biomechan-
ics alteration during the progress of IVDD. For example, 
Bonnevie reported that the release of residual strain 
in the degenerative intervertebral disc is related to the 
AFCs apoptosis [7]. Besides, the aberrant compressive 

Fig. 7  Knockdown of Piezo1 alleviated the lumbar instability induced IVDD in rats. a Representative H&E staining of rats in the Ctrl group, 
IVDD + BPS group, IVDD + Lv-Ctrl group, and IVDD + Lv-Piezo1 group. (scale bar = 600 μm). b Representative Sirius red staining observed by 
polarized light microscopy of rats in the Ctrl group, IVDD + BPS group, IVDD + Lv-Ctrl group, and IVDD + Lv-Piezo1 group (scale bar = 1000 μm). 
c Representative MRI detection of the L4/L5 disc (red dotted box) of rats in the Ctrl group, IVDD + BPS group, IVDD + Lv-Ctrl group, and 
IVDD + Lv-Piezo1 group. d Representative Tunel staining (red) of AF tissue of rats in the Ctrl group, IVDD + BPS group, IVDD + Lv-Ctrl group, and 
IVDD + Lv-Piezo1 group (scale bar = 100 μm). e Histological scoring of H&E staining results of rats in the Ctrl group, IVDD + BPS group, IVDD + Lv-Ctrl 
group, and IVDD + Lv-Piezo1 group (n = 3). f The percentage of thin collagen fibers (green), intermediate collagen fibers (yellow), or thick collagen 
fibers (red) in AF of rats in the Ctrl group, IVDD + BPS group, IVDD + Lv-Ctrl group, and IVDD + Lv-Piezo1 group (n = 3). g Pfirrmann grades of rats 
shown by MRI in the Ctrl group, IVDD + BPS group, IVDD + Lv-Ctrl group, and IVDD + Lv-Piezo1 group (n = 3). h Ratio of apoptotic cells of AF tissue 
of rats shown by Tunel staining in the Ctrl group, IVDD + BPS group, IVDD + Lv-Ctrl group, and IVDD + Lv-Piezo1 group (n = 3). **P < 0. 01, ***P < 0.001, 
****P < 0.0001

(See figure on next page.)
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Fig. 7  (See legend on previous page.)



Page 16 of 19Liu et al. Arthritis Research & Therapy          (2023) 25:117 

overload contributes to AFCs apoptosis and aggravates 
IVDD, as shown by the static or transient disc bending 
models [81, 82], and static or dynamic axis compressive 
models [83, 84]. In addition, asymmetric loading has 
been reported to elicit AFCs apoptosis and subsequent 
IVDD [8]. Moreover, aberrant shear stress is also a non-
negligible biomechanical factor that can result in IVDD 
and AF tissue disruption, although no direct evidence 
demonstrates that aberrant shear stress can lead to AFCs 
apoptosis [85]. The unbalanced dynamic and static forces 
stimulated by the lumbar instability model can result in 
AFCs apoptosis and exacerbate IVDD, but we surmise it 
only accounts for a portion of aberrant mechanical load-
ing-induced degenerative alteration and AFCs apoptosis. 
However, given that Piezo1 participates in the cellular 
response to a variety of mechanical loading including 
compression, stretch, and shear force, there exists a cer-
tain possibility that piezo1 responses to these aberrant 
mechanical loadings and participates in AFCs apoptosis 
and IVDD progression.

In summary, we explored the expression of Piezo1 in 
AF tissue and the role of Piezo1 in CMS-stimulated AFCs 
for the first time. We verified that aberrant mechani-
cal loading could initiate AFCs apoptosis to promote 
IVDD, which is mediated by activating Piezo1 and sub-
sequent calcium signaling pathway to active downstream 

Calpain2/Bax/Caspase3 axis. Knocking down Piezo1 
could alleviate the progress of IVDD initiated by lumbar 
instability surgery. Therefore, Piezo1 is a crucial factor in 
inducing AFCs apoptosis and Piezo1 is expected to be a 
potential therapeutic target in treating IVDD.

Conclusions
Piezo1 is highly expressed in AF tissue and AFCs. Aber-
rant mechanical loading could induce AFCs apoptosis by 
activating Piezo1 and downstream Calpain2/Bax/Cas-
pase3 pathway to induce IVDD. Knocking down Piezo1 
could effectively alleviate the progress of IVDD. There-
fore, Piezo1 possesses the potential to become a thera-
peutic target in treating IVDD in the future.
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Fig. 8  Schematic diagram of aberrant mechanical loading-induced AFCs apoptosis via activating Piezo1 channel
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Additional file 1: Figure S1. The expression of Piezo2 in AF tissue and 
AFCs. (a) Representative immunofluorescent staining pictures detecting 
the expression of Piezo2 channel in AF tissue of the Ctrl group and IVDD 
group (scale bar = 150 μm). Piezo2 appeared green and nuclei were coun-
terstained with Hoechst 33358 (blue). (b) Representative immunofluores-
cent staining pictures detecting the expression of Piezo2 channel in AFCs 
of the Ctrl group and CMS group (scale bar = 50 μm). Piezo2 appeared 
green and nuclei were counterstained with Hoechst 33358 (blue). Figure 
S2. Verification of Piezo1 knockdown by Lv-Piezo1 (n = 3). Verification of 
Calpain1 and Calpain2 knockdown by si-CAPN1 and siCAPN2 (n = 3). Fig‑
ure S3. Statistic data of western blotting. (a-d) Western blotting analysis 
showing the Calpain1, Calpain2, Bax, Cleaved-Caspase3 expression in the 
Ctrl group, CMS group, CMS + Lv-Ctrl group, and CMS + Lv-Piezo1 group 
(n = 3). (e-f ) Western blotting analysis showing   the Bax, Cleaved-Cas-
pase3 expression in the CMS + Yoda1 group, CMS + Yoda1 + si-Ctrl group, 
CMS + Yoda1 + si-CAPN1 group, and CMS + Yoda1 + si-CAPN2 group 
(n = 3). **P<0.01, ***P<0.001, ****P<0.0001. Table S1. Histological grading 
scale system. 
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