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Abstract 

Objectives Machine learning models can support an individualized approach in the choice of bDMARDs. We devel‑
oped prediction models for 5 different bDMARDs using machine learning methods based on patient data derived 
from the Austrian Biologics Registry (BioReg).

Methods Data from 1397 patients and 19 variables with at least 100 treat‑to‑target (t2t) courses per drug were 
derived from the BioReg biologics registry. Different machine learning algorithms were trained to predict the risk 
of ineffectiveness for each bDMARD within the first 26 weeks. Cross‑validation and hyperparameter optimization were 
applied to generate the best models. Model quality was assessed by area under the receiver operating characteristic 
(AUROC). Using explainable AI (XAI), risk‑reducing and risk‑increasing factors were extracted.

Results The best models per drug achieved an AUROC score of the following: abatacept, 0.66 (95% CI, 0.54–0.78); 
adalimumab, 0.70 (95% CI, 0.68–0.74); certolizumab, 0.84 (95% CI, 0.79–0.89); etanercept, 0.68 (95% CI, 0.55–0.87); 
tocilizumab, 0.72 (95% CI, 0.69–0.77).

The most risk‑increasing variables were visual analytic scores (VAS) for abatacept and etanercept and co‑therapy 
with glucocorticoids for adalimumab. Dosage was the most important variable for certolizumab and associated 
with a lower risk of non‑response. Some variables, such as gender and rheumatoid factor (RF), showed oppo‑
site impacts depending on the bDMARD.

Conclusion Ineffectiveness of biological drugs could be predicted with promising accuracy. Interestingly, individual 
parameters were found to be associated with drug responses in different directions, indicating highly complex inter‑
actions. Machine learning can be of help in the decision‑process by disentangling these relations.
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Introduction
Rheumatoid arthritis (RA) is an autoimmune inflam-
matory joint disease affecting 0.5–1% of the population 
worldwide [1]. The last decades have seen great advances 
in our knowledge of the pathogenesis, which has led to 
an expanded armamentarium of therapeutical options 
(and vice versa) [2, 3]. Today’s therapeutical management 
of RA is governed by several concepts. The paradigm of 
treating early and using a window of opportunity to pre-
vent joint destruction has become commonly accepted 
policy [4]. Likewise, a treatment strategy with a clearly 
defined clinical target is advocated in guidelines interna-
tionally under the catchphrase “treat to target” (t2t) [5]. 
In addition, a patient-tailored approach is pursued in 
order to forestall unwanted side effects, and respective 
research is undertaken under the notion of “precision 
medicine” [6].

Precision medicine is a multilayered system, where 
certain characteristics stemming from an array of items 
derived from medical history details to serological or 
imaging markers to genomic as well as other -omics 
are chosen to create a model of predicting the clinical 
response to certain treatments. In this respect, clinical 
practice favors easily attainable items and gender, disease 
activity, and duration of symptoms have been identified 
as parameters distinguishing refractory from treatment 
amenable rheumatoid arthritis in general [7].

In several reports focusing on the prediction of the 
response to specific disease-modifying drugs (DMARD), 
genetic biomarkers have surfaced, e.g., the PDE3A–
SLCO1C1 locus rs3794271 as marker of a positive 
response to aTNF-therapy (anti-tumor necrosis fac-
tor therapy) [8, 9]. A platform combining the molecular 
signature of RA patients and clinical data to predict the 
response to aTNF was introduced in 2021 [10]. Its valid-
ity and practicability in academic centers as well as pri-
vate practices was reported recently proving superiority 
to the clinical standard guided by recommendations [11]. 
However, for many practices, this approach may not be 
feasible due to financial and organizational aspects. Con-
centrating on readily available patient data, e.g., a pre-
dictive role of sex was implied for RA patients on aTNF, 
favoring male patients in early RA [12].

Machine learning techniques have been used sporadi-
cally to predict treatment responses. In this respect, the 
Korean College of Rheumatology Biologics and Tar-
geted Therapy Registry (KOBIO) was investigated by 
two studies applying different predictive models for sev-
eral bDMARDS to predict remission at 1-year follow-up 
[13, 14] in RA patients as well as patients with spondy-
larthritis. Lee et al. found random forest method model 
to have the best prediction performance altogether with 
AUROC values of 0.638 (95% CI, 0.576–0.658) [13]. 

An earlier conducted study [14] found AUROC values 
between 0.511 and 0.694 with Ridge classifier perform-
ing the best for one drug (golimumab).

The goal of our study was to develop models to pre-
dict the risk of non-response for specific bDMARDs 
considering a 6-month prediction time window, using 
solely clinical routine data, and in addition to explain the 
impact of each clinical feature contributing to the model 
outcomes.

Methods
A high-level overview of the data collection and process-
ing chain is illustrated in Fig. 1 and explained in the fol-
lowing section.

Patient‑derived data
Patient data were obtained from the Austrian Registry for 
Biologicals, Biosimilars, and targeted synthetic DMARDs 
in the treatment of inflammatory rheumatic disease—
BioReg, which was established in 2010 for the purpose of 
monitoring those drugs’ safety and efficacy. The registry 
includes patients suffering from rheumatoid arthritis, 
psoriatic arthritis, and spondylarthritis [15].

BioReg is a nationwide registry with 8 private rheu-
matology practices and 12 hospitals spread through-
out Austria at the time of the study. Patients with the 
above  mentioned inflammatory rheumatic diseases are 
included at the start of a new biological treatment. Inclu-
sion criteria of the registry are thus the presence of RA, 
psoriatic arthritis, or spondylarthritis, age above 18, and 
the start of a new bDMARD. Exclusion criteria are the 
presence of other rheumatic diseases and age under 18.

For the present study, data from 1397 patients suffer-
ing from RA who were treated with bDMARDs collected 
from 2010 until 2021 were retrieved. One patient can 
occur multiple times in the data as the patient can be 
enrolled to multiple treat-to-target courses. The patient 
baseline characteristics are presented in Table  1. To 
obtain markers predicting the response, only the baseline 
visits were considered.

Exclusion criteria
The originally available raw dataset contained 62 vari-
ables for feature generation. We applied several measures 
to reduce dimensionality, since the datasets per medi-
cation were relatively small and to avoid the “curse of 
dimensionality,” which refers to the problem that more 
data is often required to represent the variability of a 
dataset in high-dimensional space. A list of this set of 
variables, the missing rate, and the reason for exclusion 
(e.g., missing rate, clinical relevance, correlation higher 
than 0.8 with other variables or weak association with the 
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outcome label) is presented in the supplemental material 
in Supplementary Table S1.

After applying the extraction criteria to the raw data-
set, the correlation between all variables was assessed 
and variables were excluded, if the correlation threshold 
exceeded 0.8.

Due to high correlation of SDAI (Simplified Disease 
Activity Index) and CDAI (Clinical Disease Activity 
Index) with tender and swollen joint counts, SDAI and 
CDAI were excluded to avoid redundancy. The variable 
encoding the smoking status was excluded due to very 
weak association with the ineffectiveness of the treat-
ment shown in Table 1.

bDMARDs with less than 100 treat to target (t2t) 
courses were excluded from the analysis. After obtaining 
data from the selected bDMARDs, variables were kept, 
if they reached a completeness rate of at least 67%. This 
resulted in a slightly different set of variables, depend-
ing on the respective bDMARD. After performing the 
machine learning modeling, an AUC < 0.65 of the models 
(see below) was set as threshold for further evaluation, 
since lower AUCs are considered often as poor, weak, or 
low by medical researchers [16]. Applying those exclu-
sion criteria resulted in a cohort underwent treatment 
with abatacept, adalimumab, certolizumab, etanercept, 
or tocilizumab.

Statistical analysis
After obtaining the cleaned dataset, patient character-
istics for the whole cohort were evaluated: Two-sample 

t-test was conducted for numerical variables and chi-
squared for categorical variables to assess whether the 
variables are significantly associated with the outcome 
of therapy. In addition, the same analysis was applied per 
medication to evaluate whether similar patterns could be 
observed after performing the machine learning analysis.

Machine learning modeling
Predicting non-responders within a t2t course can be 
translated into a binary classification problem; ineffec-
tiveness was chosen as the independent outcome variable 
to be predicted, where ineffectiveness was defined by the 
experience and assessment of the rheumatologist. Since 
treatment success for therapy with bDMARDs is assessed 
within the first 6 months according to EULAR (European 
Alliance of Associations for Rheumatology) recommen-
dations [17], 6  months were selected as the time hori-
zon for prediction. The baseline visits of the t2t courses 
were categorized according to whether they were found 
to be effective or ineffective within the first 6 months of 
treatment.

Data were split into a training set (90% of the origi-
nal dataset) and a test set (10% of the original data-
set). To avoid data leakage between the two datasets, 
it was ensured that one patient was included in either 
the test-set or training-set. In addition, it was ensured 
that distributions of the therapy outcomes (ineffective 
or not) were similar among training and test set (strati-
fied split). Iterative imputation, a method that predicts 
the missing variable as a function of other variables, 

Fig. 1 A Data preparation. Data were selected based on number of t2t courses. Variables were selected if the missing rate did not exceed 
33%. B Machine learning pipeline: Data was labeled, depending on the outcome of the therapy course. Iterative imputation was applied, 
on the hold‑out‑set (test‑set) and on the training set. Sampling strategies were applied, and the AUC (area under the curve) was collected for each 
model configuration. The final, re‑trained model was explained via applying SHAP (SHapley Additive exPlanations)
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was applied to input variables to handle missing data 
points. The hyperparameters, i.e., those parameters 
that are set before each training step, were optimized 
by using a model grid, with fixed hyperparameters (grid 
search).

The model grid contained 17 base models with different 
configurations described in the supplemental material in 
Table S3. We applied nested five-fold cross-validation on 
the training set, by iterating over an outer loop for model 
evaluation and iterating over an inner loop within each 
outer iteration step for hyperparameter tuning in order 
to avoid overfitting. Also, during the cross-validation 
process, split was performed group-wise, i.e., per patient.

Since the outcome distribution was highly imbalanced, 
we also incorporated different sampling strategies into 
the machine learning (ML) pipeline: synthetic minor-
ity over-sampling for numerical and categorical features 
(SMOTE-NC) of the minority class (“ineffective”) and 
random undersampling of the majority class (“effective”).

As a selection metric for the best model during 
nested-cross-validation, we collected the area under 
the receiver operating characteristic (AUC) for each 
medication, cross-validation-fold, test set, and sam-
pling strategy, since AUC provides a generic metric to 
judge the overall model performance. The collection of 
model performance metrics per medication and model 

Table 1 Characteristics of t2t courses

aTNF anti-tumor necrosis factor, CRP C-reactive protein, DAS28 Disease Activity Score 28, ESR erythrocyte sedimentation rate, TJC tender joint count, HAQ Health 
Assessment Questionnaire, SJC swollen joint count, VAS-Pat. visual analogue scale patient, VAS-Ph. visual analogue scale physician, Anti-CCP anti-cyclic citrullinated 
peptide, MTX methotrexate, IV Administration, intravenous administration, GC glucocorticoid

Ineffective

Overall No Yes P‑Value

T2T courses (n) 1843 1724 119

BMI, mean (SD), (kg/m2) 26.4 (4.8) 26.5 (4.8) 26.4 (4.4) 0.830

Age, mean (SD), year 56.1 (13.6) 56.0 (13.6) 58.5 (13.5) 0.054

Gender, n (%) M 407 (22.1) 380 (22.0) 27 (22.7) 0.960

F 1436 (77.9) 1344 (78.0) 92 (77.3)

Disease duration, mean (SD), year 10.4 (8.7) 10.4 (8.7) 11.4 (9.6) 0.257

IV administration, n (%) No 1610 (87.4) 1507 (87.4) 103 (86.6) 0.897

Yes 233 (12.6) 217 (12.6) 16 (13.4)

MTX co‑therapy, n (%) No 824 (44.7) 766 (44.4) 58 (48.7) 0.413

Yes 1019 (55.3) 958 (55.6) 61 (51.3)

Other DMARD co‑therapy, n (%) No 1545 (83.8) 1454 (84.3) 91 (76.5) 0.033
Yes 298 (16.2) 270 (15.7) 28 (23.5)

GC co‑therapy, n (%) No 1156 (62.7) 1105 (64.1) 51 (42.9)  < 0.001
Yes 687 (37.3) 619 (35.9) 68 (57.1)

Previous aTNF therapy, n (%) No 1233 (66.9) 1168 (67.7) 65 (54.6) 0.004
Yes 610 (33.1) 556 (32.3) 54 (45.4)

HAQ, mean (SD) 1.0 (0.7) 1.0 (0.7) 1.2 (0.7) 0.015
Rheuma‑factor‑positivity, n (%) No 480 (30.0) 443 (29.6) 37 (35.6) 0.241

Yes 1120 (70.0) 1053 (70.4) 67 (64.4)

VAS‑Pat., mean (SD), mm 39.6 (24.4) 38.7 (24.2) 51.1 (24.6)  < 0.001
VAS‑Ph., mean (SD), mm 28.7 (20.1) 28.4 (20.1) 32.4 (20.4) 0.047
Anti‑CCP, n (%) No 409 (33.2) 380 (32.8) 29 (39.2) 0.317

Yes 823 (66.8) 778 (67.2) 45 (60.8)

TJC, mean (SD) 4.5 (4.7) 4.4 (4.6) 6.0 (5.8) 0.006
SJC, mean (SD) 3.0 (2.9) 2.9 (2.9) 3.6 (2.8) 0.020
CRP, mean (SD), mg/dL 8.9 (15.4) 8.6 (15.0) 11.9 (19.8) 0.102

ESR, mean (SD), mm/h 19.1 (17.9) 18.9 (17.7) 22.5 (20.8) 0.094

DAS28‑ESR, mean (SD) 3.8 (1.5) 3.8 (1.5) 4.1 (1.5) 0.101

Smoker, n (%) Current 161 (8.7) 151 (8.8) 10 (8.4) 0.978

Past 87 (4.7) 81 (4.7) 6 (5.0)

Never 1595 (86.5) 1492 (86.5) 103 (86.6)
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configuration can be found in the supplemental mate-
rial in Table S3. The overall accuracy, i.e., the correctly 
predicted instances divided by all instances, was not 
evaluated, due to the imbalance of the dataset: Given a 
non-responder-rate of < 10%, a model that would always 
predict therapy response would still have a good (> 90%) 
accuracy, which could be misleading when evaluating the 
model-performance.

Explainability
To evaluate the impact of the individual parameters on 
the outcome, we used the python library SHAP (“SHap-
ley Additive exPlanations”), a game-theoretic approach 
for feature importance evaluation. In its original field, 
game theory, these numbers (“Shapley values”) reflect the 
contributions of a player in a coalition of players to the 
game-outcome. In machine learning, they reflect the con-
tribution of a variable to the prediction model outcome 
[18]. Moreover, SHAP reflects interactions between vari-
ables and can reveal patterns via global explanations, by 
summarizing all local explanations of local predictions 
per instance.

All statistical analyses were conducted in python 3.9, 
using the python packages scikit-learn for machine learn-
ing, SHAP for feature importance analysis, and the table-
one library for descriptive statistics [19].

Results
Data from 1397 patients suffering from rheumatoid 
arthritis at the beginning of a treatment course with a 
new bDMARDs were extracted from the BioReg. Taking 
the exclusion criteria into account, the number of treat-
ment courses amounted to 1843.

Treat‑to‑target (T2T) course characteristics
In Table 1, the characteristics of the first visit of each t2t 
course (as instance to be predicted) are summarized and 
grouped by the target variable “Ineffective.” Overall, co-
therapy with other DMARDs than methotrexate (MTX), 
glucocorticoid (GC)-co-therapy, previous therapy with 
aTNF, higher scores in visual analogue scale (VAS) 
namely VAS patient (VAS-Pat) or VAS physician (VAS-
Ph), and higher values in disease activity (reflected by 
tender joint count/TJC and swollen joint count/SJC) were 
significantly more frequent in ineffective t2t courses.

Assessing the p-values per medication revealed a more 
differentiated picture as presented in Table 2. The follow-
ing variables were associated with significantly higher 
risk of non-response depending on the medication: GC 
co-therapy for (adalimumab) ADA and (etanercept) ETA, 
VAS-Pat for all drugs except ADA, VAS-Ph for (abata-
cept) ABA and (tocilizumab) TOC, previous therapy with 

aTNF for (certolizumab) CERT and TOC, SJC for TOC, 
DAS-28-ESR for TOC.

Higher dosage for CERT was associated with lower risk 
of ineffectiveness.

Model quality metrics
The area under the receiver operating characteristics 
for cross-validation per bDMARD could be calculated 
for ADA, ABA, CERT, ETA, and TOC (Fig.  2), ranging 
from 0.66 to 0.84. The model with the highest prognos-
tic quality could be generated for CERT with an AUC of 
0.84 (95% CI, 0.79–0.89). The most stable models with 
the lowest standard deviations (SD) over the 5 folds were 
generated for CERT with an AUC of 0.84 (SD: 0.05) and 
TOC with AUC of 0.72 (SD: 0.05).

Table  3 lists the models with the highest predictive 
quality and the associated strategy. Except for TOC, 
maximum AUC was achieved by addressing class imbal-
ance: random undersampling combined with a Ridge 
classifier model achieved highest AUC for ABA, while 
the highest AUC for CERT was achieved by a combina-
tion of oversampling and a support vector classifier. For 
ADA, the best model performance was achieved by over-
sampling and XGBoost (extreme gradient boosting). For 
ETA, oversampling and random forest outperformed the 
other model and sampling combinations.

Variable importance
The respective best performing models per bDMARD 
weighted the considered variables differently, as shown 
in the SHAP-summary plots in Fig. 3. A list of the most 
impactful variables encompassed different items or items 
in a different order for each individual bDMARD.

VAS scores were the common most predictive factor 
in abatacept (VAS-Ph) and etanercept (VAS-Pat). Co-
therapy with GC had the highest impact on the ineffec-
tiveness of adalimumab and VAS-Pat for certolizumab 
calculated by the SHAP explainer. The direction of VAS-
Pat was identical for all bDMARDs, linking a higher fea-
ture level to a higher degree of ineffectiveness. In the case 
of CERT, a smaller dosage was linked to more probable 
ineffectiveness. Previous aTNF therapy was most predic-
tive for ineffectiveness in case of TOC.

An interesting observation concerns the consistency 
of the direction of individual parameters across almost 
all bDMARDs. Whereas GC-co-therapy showed the 
same direction of effect with a higher GC dosage increas-
ing the probability of ineffectiveness for all bDMARDs 
except for ETA, male gender was predictive not only for 
ineffectiveness with ABA but also for effectiveness with 
ADA. Likewise, a higher rheumatoid factor predicted 
ineffectiveness in ABA, whereas in CERT, a lower RF was 
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linked to a worse clinical response (Fig. 3), although these 
observations were not statistically significant (Table 2).

Discussion
In our study, we proved the feasibility of developing accu-
rate machine learning models to predict with moder-
ate to good prognostic quality the non-response of RA 
patients after 6 months in a real-world setting to individ-
ual bDMARDs. Furthermore, we could provide a quanti-
fication of each variable’s impact on the respective model 
per bDMARD using the explainable AI (XAI) framework 
SHAP.

The models in our studies yielded AUROC scores from 
0.66 to 0.84 and consequently were considerably higher 
than the ones seen in the methodologically most similar 
studies [13, 14]. Herein, several machine learning mod-
els were applied to a Korean registry generating AUROC 
scores from 0.561 to 0.638 [13] and 0.511 to 0.694 [14] for 
the prediction of clinical response to bDMARDs in gen-
eral. In our study, we used similar modeling techniques 
and furthermore addressed class imbalance by combining 

under- and oversampling techniques with different pre-
diction models, which resulted in an improved model 
performance. Moreover, selecting drugs with more than 
100 t2t courses and predicting missing data points by 
treating other features as input variables improved the 
training base and helped to build a robust model pipeline.

An important facet of our study is the characteriza-
tion of feature importance including the direction of 
the respective feature importance on drug responsive-
ness. Although XAI methods are controversial regard-
ing individual predictions (local explainability) [20], XAI 
methods can be used to explain how machine learning 
models work globally. Such global explanations can be 
combined with descriptive analysis to obtain insights on 
the importance of specific variables. In this respect, we 
found GC-co-therapy, VAS scores, and disease activity to 
be associated with higher risks of ineffectiveness in the 
whole cohort, regardless of the individual drug. Our find-
ings are in line with the literature and add more detail, 
e.g., the significance of patient reported features, such 
as VAS patient (depicted in the SHAP Plots in Fig.  3) 

Table 2 P‑values grouped by drug. Factors with p < 0.05 and red color‑code were associated with higher risk of non‑response 
significantly. Only one factor (dosage) with p < 0.05 was associated with lower risk of non‑response significantly. Dosage was 
normalized to mg/kg/day or mg/day depending on the medication
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as important feature in all investigated bDMARDs as 
described in the study conducted by Lee et al. [13].

The importance of global assessments by patient and 
physician is reflected by the incorporation of these 
items into the different remission definitions based on 
the disease activity indices DAS28, SDAI, and CDAI. 
The central role of patients’ global assessment (PGA) 

was underscored in a report comparing CDAI and 
SDAI to the (most stringent) Boolean remission using 
data of 3 large clinical trials with adalimumab; the dif-
ference between CDAI and SDAI vs. Boolean remission 
was caused by higher patients’ VAS scores, leading to 
a redefined Boolean remission to allow a higher VAS 
score [21, 22].

Fig. 2 Area under the receiver operating characteristics for fivefold cross‑validation
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In a recent paper by Capelusnik and Aletaha, the 
authors investigated predictors of response in three 
different large RCTs of aTNF including > 1300 patients 
after 30  weeks of treatment confirming the earlier 
notion of an inverse relationship of high baseline dis-
ease activity with a lower chance of achieving state tar-
gets (i.e., remission or low activity). In a more detailed 
analysis, PGA, among other values, was found signifi-
cantly associated with a lower chance of response. Also, 
in our study, a higher PGA was predictive of a higher 
risk of bDMARD failure, which was significant in aTNF 
as well as in abatacept and tocilizumab. Also applying 
machine learning to predict response to DMARDs in 
RA established PGA to be an important predictor of 
remission in two recent reports [13, 23]. Duong et  al. 
investigated predictors for methotrexate therapy and 
described a high PGA to be in the top 3 individual 
components predicting a poor response. As mentioned 
above, also in the Korean registry, patient-reported 
outcome, i.e., the PGA in RA, was revealed as the most 
important feature in the random forest as well as in the 
XGBoost model [13].

Remarkably, opposite effects of variables could also 
be observed, e.g., for gender and rheumatoid factor, 
although these effects did not reach statistical signifi-
cance as demonstrated in Table 2.

The possible influence of gender/sex on drug 
responsiveness has come into focus in the last years. 
Besides proposed measures to adequately address this 
matter in future drug development [2], different drug 
retention rates and clinical effects have also been 
investigated in rheumatoid arthritis. This leads to the 
comprehension that women overall show a diminished 
response to drugs in rheumatoid arthritis [24]. Regis-
try-derived data have demonstrated better responses 
or retention rates for male patients with rheumatoid 
arthritis to DMARDs in general and to aTNF spe-
cifically [12, 25–28]. This is in line with our findings, 
where gender was an important feature in all aTNF 
demonstrating a smaller risk of non-response for male 

patients especially in CERT and ADA. However, this 
was not statistically significant, only showing a statisti-
cal trend in CERT (p = 0.068).

Another feature of interest in the SHAP calculations 
was the presence of rheumatoid factor (RF), which lead 
to differential drug responsiveness depending on the spe-
cific bDMARD. Whereas a lower RF showed a trend to 
associate with a smaller risk of ineffectiveness in ABA 
and TOC, the opposite was seen in CERT, whereas the 
rest of the aTNF did not show a distinct direction of 
effect. The literature does not report consistent associa-
tions between the responsiveness to bDMARDs and RF. 
In a Taiwanese registry, overall RF positivity was associ-
ated with drug survival, which was statistically signifi-
cant for ABA but not for aTNF and TOC, suggesting RF 
positivity as a biomarker for better responsiveness to 
abatacept [29]. An earlier systematic review and meta-
analysis could not find such an association [30]. Conflict-
ing data have also been published about the relationship 
of RF and aTNF treatment, although to our knowledge, 
differences between certolizumab and other aTNF have 
not been reported [31–34]. The different observation 
period, which was 6 months in our study opposed to one 
to several years in others, especially as the effect seen in 
the reported papers appeared after 6 months, may have 
contributed to partly discrepant findings in our study to 
previous reports [35, 36].

This study has some limitations. First, the models were 
developed using a single data source, the BioReg regis-
try. Although BioReg includes data from hospital set-
tings as well as private practices, a risk of systematic bias 
remains. As the prescription of a biological or targeted 
synthetic DMARD in Austria is mainly left to the discre-
tion of the treating physician without the need to com-
ply with objective outcome parameters used in clinical 
trials, our data might harbor known as well as unknown 
confounding variables, including confounding by indi-
cation. Moreover, the target variable “ineffectiveness” in 
the registry was set solely based on the opinion of the 
treating rheumatologist, which limits generalizability 

Table 3 Best models according to highest mean AUROC score per medication

XGBoost, extreme gradient boosting; SVC, support vector classifier; RF Classifier, Random Forest Classifier; RUS, random undersampling; OVS, oversampling

Medication Ineffective Best model Sampling strategy Mean AUROC (95% CI)

No Yes

Abatacept 212 20 Ridge classifier RUS 0.66 (0.54–0.78)

Adalimumab 493 36 XG Boost OVS 0.70 (0.68–0.74)

Certolizumab 150 11 SVC OVS 0.84 (0.79–0.89)

Etanercept 530 23 RF Classifier OVS 0.68 (0.55–0.87)

Tocilizumab 339 29 XG Boost None 0.72 (0.69–0.77)
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Fig. 3 SHAP summary plots/impact of variables on model outcome. Variables are sorted in descending order of impact. Positive SHAP values 
indicate an effect in the direction of higher risk of ineffectiveness. Correspondingly, negative values indicate an effect of the factor in the direction 
of a lower risk for ineffectiveness. High values for the variables (features) are encoded in red; correspondingly low values are encoded in blue
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and comparability compared to studies, where specific 
thresholds for DAS-28-ESR or other objective measures 
were used to create a binary outcome variable. However, 
taking this approach often mirrors clinical practice. Fur-
thermore, our study sample was small, mirroring a rather 
homogenous middle European population. The overall 
small sample size may explain why smoking status shows 
weak association with ineffectiveness as only 16 patients 
were past or current smokers and showed no treatment 
response, which is not in line with literature as smoking 
is consistently reported as having high association with 
treatment outcome.

Our described methodology should therefore be evalu-
ated using independent datasets.

Embedding such models in a clinical setting to sup-
port treatment decisions raises the question of how 
an individual prediction should be presented to rheu-
matologists. A purely binary prediction with the result 
non-responder vs. responder would carry a high risk of 
misclassification, since, as can be seen in Fig.  2, a 100% 
sensitivity can never be achieved for the data examined, 
except for CERT and TOC, and this only if a high false 
positive rate is accepted. The representation of the con-
tinuous risk as well as the AUROC per drug and model 
would be preferable to a purely binary statement, which 
should be the subject of future studies. It is also impor-
tant to emphasize that this study does not exclusively 
look at bDMARD naïve patients; however, this may be 
beneficial in a real-world scenario if such models would 
be embedded in a software-assistant, supporting rheu-
matologists in their day-to-day work.

Conclusions
In conclusion, developing accurate machine learn-
ing models to identify patients with a high risk of non-
response before therapy with bDMARDs is feasible. The 
algorithms used in our study should be applied to addi-
tional data sources including larger registries to refine 
our models and evaluate feature importance to support 
treatment decision in a clinical setting.
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