PublisherInfo						
PublisherName		BioMed Central				
PublisherLocation		London				
PublisherImprintName		BioMed Central				

PGI₂ and TXA₂in vascular injury

ArticleInfo				
ArticleID		266		
ArticleDOI	$\begin{bmatrix} \vdots \end{bmatrix}$	10.1186/ar-2002-76900		
ArticleCitationID		76900		
ArticleSequenceNumber	\Box	19		
ArticleCategory	\Box	Paper Report		
ArticleFirstPage		1		
ArticleLastPage		3		
ArticleHistory	:	RegistrationDate : 2002–5–9 Received : 2002–5–9 Accepted : 2002–7–5 OnlineDate : 2002–7–11		
ArticleCopyright		Biomed Central Ltd2002		
ArticleGrants				

ArticleContext	: 130754411	
----------------	-------------	--

Jose L Pablos, Affi

Aff1 Hospital 12 de Octubre, Madrid, Spain

Keywords

cardiovascular disease, COX-2, NSAIDs, prostacyclin, thromboxane

Context

Cyclooxygenases participate in the pathogenesis of atherothrombotic lesions by two opposing mechanisms. Platelet cyclooxygenase-1 (COX-1) participates in the synthesis of thromboxane A₂ (TxA₂), a potent vasoconstrictor and platelet activator, and endothelial cyclooxygenase-2 (COX-2) mediates the synthesis of prostacyclin (PGI₂), a vasodilator and platelet inhibitor. Nonsteroidal anti-inflammatory drugs (NSAIDs) and aspirin exert differential effects on platelet-endothelium interactions that are dependent upon their relative capacity to inhibit COX-1 and COX-2 isoenzymes. Potent and sustained inhibition of COX-1 by low dose aspirin provides efficient anti-thrombotic prophylaxis. Different NSAIDs can induce transient and variable inhibition of COX-1-dependent TxA₂ synthesis, and all NSAIDs and COX-2 selective drugs inhibit COX-2 dependent PGI₂ synthesis, but the clinical relevance of both effects is still unclear. These authors explored the role of TxA2/PGI2 balance in the response to vascular injury using TxA₂ and PGI₂ receptor knockout mice.

Significant findings

Catheter-induced vascular injury was enhanced in mice genetically deficient in the PGI₂ receptor, whereas it was depressed in those mice genetically deficient in the TxA₂ receptor or treated with a TxA₂ receptor antagonist. The augmented response to vascular injury was abolished in mice deficient in both receptors.

Comments

The results of Cheng *et al.* are consistent with the well known role of TxA₂ in vascular disease and demonstrate a role in counterbalancing TxA₂ platelet activation for PGI₂ synthesized in response to vascular injury. However, the authors' extrapolation regarding the clinical use of NSAIDs versus COX-2 selective inhibitors is not clear because most NSAIDs lack the potent inhibition and anti-platelet effect provided by aspirin. These data in knockout mice remind us of the need to ensure anti-platelet prophylaxis in patients with cardiovascular disease, particularly before using either NSAIDs or COX inhibitors, but further studies on the potential clinical effects of PGI₂ inhibition by both types of drugs are still warranted.

Methods

Carotid-induced injury, histomorphometric analyses.

References

1. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, Fitzgerald GA: Role of Prostacyclin in the Cardiovascular Response to Thromboxane A₂. Science . 2002, 296: 539-541.