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Abstract

Rheumatoid arthritis (RA) is an autoimmune disease of unknown
etiology, characterized by the presence of inflammatory synovitis
accompanied by destruction of joint cartilage and bone.
Treatment with vasoactive intestinal peptide (VIP) prevents
experimental arthritis in animal models by downregulation of
both autoimmune and inflammatory components of the disease.
The aim of this study was to characterize the protective effect of
VIP on bone erosion in collagen-induced arthritis (CIA) in mice.
We have studied the expression of different mediators
implicated in bone homeostasis, such as inducible nitric oxide
synthase (iNOS), cyclooxygenase-2 (COX-2), receptor activator
of nuclear factor-κB (RANK), receptor activator of nuclear
factor-κB ligand (RANKL), osteoprotegerin (OPG), IL-1, IL-4, IL-
6, IL-10, IL-11 and IL-17. Circulating cytokine levels were
assessed by ELISA and the local expression of mediators were
determined by RT-PCR in mRNA extracts from joints. VIP

treatment resulted in decreased levels of circulating IL-6, IL-1β
and TNFα, and increased levels of IL-4 and IL-10. CIA-mice
treated with VIP presented a decrease in mRNA expression of
IL-17, IL-11 in the joints. The ratio of RANKL to OPG decreased
drastically in the joint after VIP treatment, which correlated with
an increase in levels of circulating OPG in CIA mice treated with
VIP. In addition, VIP treatment decreased the expression of
mRNA for RANK, iNOS and COX-2. To investigate the
molecular mechanisms involved, we tested the activity of NFκB
and AP-1, two transcriptional factors closely related to joint
erosion, by EMSA in synovial cells from CIA mice. VIP treatment
in vivo was able to affect the transcriptional activity of both
factors. Our data indicate that VIP is a viable candidate for the
development of treatments for RA.

Introduction
Rheumatoid arthritis (RA) is an autoimmune disease charac-
terized by synovial inflammation, erosion of bone and cartilage,
and severe joint pain [1-5]. Immunization of DBA-1 mice with
type II collagen in complete Freund adjuvant induces the
development of an inflammatory, erosive arthritis (collagen-
induced arthritis (CIA) [6] accompanied by infiltration of the
synovial membrane and synovial cavity as well as by extensive

local bone and cartilage destruction and loss of bone mineral
density [7]. This condition in mice mimics many of the clinical
and pathological features of human RA. A link between the
immune system and bone resorption is supported by the find-
ing that several cytokines, such as tumor necrosis factor
(TNF)α, IL-1β, IFNγ, IL-6, IL-11, and IL-17 with regulatory
effects on immune function also contribute to bone homeosta-
sis by enhancing bone resorption [8]. These cytokines have
R1034
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been identified in the rheumatoid synovium and could promote
synovial membrane inflammation and osteocartilaginous
resorption via stimulation of osteoclastic mediators [4,5,9,10].

A better understanding of the pathogenesis of bone erosion in
RA relates to the discovery of osteoclast-mediated bone
resorption that is regulated by the receptor activator of nuclear
factor-κB (RANK) ligand (RANKL) [2-5,11,12]. RANKL is
expressed by a variety of cell types involved in RA, including
activated T cells and synoviocytes [8]. These cells, in the pres-
ence of cytokines like TNFα and macrophage colony stimulat-
ing factor, contribute to osteoclast differentiation and
activation [8]. On the other hand, osteoprotegerin (OPG),
which is a member of the TNF-receptor family expressed by
osteoblasts, is a decoy receptor for RANKL [11,13]. OPG
inhibits bone resorption and binds with strong affinity to its lig-
and, RANKL, thereby preventing RANKL binding to its recep-
tor, RANK [11,13,14].

Vasoactive intestinal peptide (VIP) is a 28 amino acid peptide
of the secretin/glucagon family present in the central and
peripheral nervous system. It is also produced by endocrine
and immune cells [15,16]. This peptide elicits a broad spec-
trum of biological functions, including anti-inflammatory and
immunoregulatory properties, that lead to the amelioration or
prevention of several inflammatory and autoimmune disorders
in animal models and in human RA [17-23]. VIP has also been
implicated in the neuro-osteogenic interactions in the skele-
ton. This function is supported by its presence in nerve fibers
in the periosteum, the epiphyseal growth plate and the bone
marrow [24]. The biological effects of VIP are mediated by G
protein-coupled receptors (VPAC1 and VPAC2) that bind VIP
and pituitary adenylate cyclase-activating polypeptide
(PACAP) with equal affinity, and a PACAP selective receptor
(PAC1) [25]. We have extensively studied the expression and
distribution of these receptors in the immune system in cells of
central and peripheral lymphoid organs [16-19]. Osteoclasts
and osteoblasts have been shown to express different sub-
types of VIP receptors [26,27]. The hypothesis that VIP may
contribute to the regulation of osteoclast formation and activa-
tion has been investigated in different in vitro systems [28].
This study has shown a dual and opposite effect of VIP on
osteoclast differentiation and activation [28]. Because bone
resorption is a major pathological factor in arthritis and treat-
ment with VIP significantly reduced the incidence and severity
of arthritis in the CIA model [22], the aim of this study was to
analyze the effects of VIP treatment in vivo on different media-
tors that interfere with bone homeostasis in this animal model.

Materials and methods
Animals
Male DBA/1J mice 6–10 weeks of age were purchased from
The Jackson Laboratory (Bar Harbor, ME, USA). Water and
food were provided ad libitum and all experiments were

approved by the Institutional Animal Care and Use Committee
of Complutense University in the Faculty of Biology.

Induction, assessment and treatment of collagen-
induced arthritis
Native bovine type II collagen (Sigma, St. Louis, MO, USA)
was dissolved in 0.05 M acetic acid at 4°C overnight then
emulsified with an equal volume of complete Freund adjuvant
(DIFCO, Detroit, Michigan, USA). Mice were injected intrader-
mally at the base of the tail with 0.15 ml of the emulsion con-
taining 200 µg of type II collagen. At 21 days after primary
immunization, mice were boosted intraperitoneally with 200
µg type II collagen in PBS. The analysis of mice was con-
ducted every other day, with signs of arthritis onset monitored
using paw swelling and clinical score as representative param-
eters. The study was conducted in a blinded manner by two
independent examiners who determined the level of paw
swelling by measuring the thickness of the affected hind paws
with 0–10 mm callipers. Arthritis symptoms were assessed by
using a scoring system (grade 0, no swelling; grade 1, slight
swelling and erythema; grade 2, pronounced edema; grade 3,
joint rigidity and ankylosis). Each limb was observed and
graded with a maximum possible score of 12 per animal.

Three groups of animals were used in each experiment: con-
trol animals (no arthritic mice); a group of arthritic animals
injected intraperitoneally with 1 nmol of VIP (Neosystem,
Strasbourg, France) every other day between days 25 and 35
after primary immunization; and a group of arthritic mice
injected with PBS instead of the VIP treatment.

Histopathology
Thirty-five days after the first immunization, paws were fixed
with 10% (w/v) paraformaldehyde, decalcified in 5% (v/v) for-
mic acid, and embedded in paraffin. Sections (5 µm) were
stained with hematoxylin-eosin-safranin O. Histopathological
changes were scored in a blinded manner, using the following
parameters. Cartilage destruction was graded on a scale of 0
to 3, from the appearance of dead chondrocytes (empty lacu-
nae) to the complete loss of joint cartilage. Bone erosion was
graded on a scale of 0 to 3, from normal appearance to com-
pletely eroded cortical bone structure.

RNA extraction
Mice were sacrificed on day 35 after the first immunization and
hind paws were homogenized using a tissue tearer. RNA was
extracted using the Ultraspec phenol kit (Biotecx, Houston,
TX, USA) as recommended by the manufacturer, resuspended
in DEPC water and quantified by measuring the A260/280
nm.

Quantitative real-time RT-PCR
Quantitative RT-PCR analysis was performed using the
SYBR® Green PCR Master Mix and RT-PCR kit (Applied Bio-
systems, Foster City, CA, USA) as suggested by the
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manufacturer. Briefly, reactions were performed in 20 µl with
20 ng RNA, 10 µl 2× SYBR Green PCR Master Mix, 6.25 U
MultiScribe reverse transcriptase, 10 U RNase inhibitor and
0.1 µM primers. The sequences of primers used and acces-
sion numbers of the genes analyzed are summarized in Table
1. Amplification conditions were 30 minutes at 48°C, 10 min-
utes at 95°C, 40 cycles of denaturation at 95°C for 15 s, and
annealing/extension at 60°C for 1 minute.

For relative quantification we used a method that compared
the amount of target normalized to an endogenous reference.
The formula used was 2-∆∆Ct, representing the n-fold differen-
tial expression of a specific gene in a treated sample com-
pared with the control sample, where Ct is the mean of
threshold cycle (at which the amplification of the PCR product
is initially detected). ∆Ct was the difference in the Ct values for
the target gene and the reference gene, β-actin (in each
sample assayed), and ∆∆Ct represents the difference
between the Ct from the control and each datum. Before using
this method, we performed a validation experiment comparing
the standard curve of the reference and the target to demon-
strate that efficiencies were approximately equal [29]. The cor-
rect size of the amplified products was checked by
electrophoresis.

Cytokine determination in serum samples: ELISA assay
The amounts of IL-6, TNFα and IL-10 in serum were deter-
mined with a mouse capture ELISA assay. Briefly, a capture
monoclonal anti-mouse IL-6, TNFα or IL-10 antibody (Pharmin-
gen, Becton Dickinson Co, San Diego, USA) was used to coat
micro titre plates (ELISA plates; Corning, NY, USA) at 2 µg/ml

at 4°C for 16 h. After washing and blocking with PBS contain-
ing 3%(w/v) bovine serum albumin, serums were added to
each well for 12 h at 4°C. Unbound material was washed off
and a biotinylated monoclonal anti-human IL-6, TNFα or IL-10
antibody (Pharmingen, Becton Dickinson Co, San Diego,
USA) was used at 2 µg/ml for 45 minutes. Bound antibody
was detected by addition of avidin-peroxidase for 30 minutes
followed by incubation of the ABTS substrate solution.
Absorbance at 405 nm was measured 20 minutes after addi-
tion of substrate. A standard curve was constructed using var-
ious dilutions of mouse rIL-6, rTNFα or rIL-10 in PBS
containing 10% (v/v) fetal bovine serum. The amounts of
cytokine in the serum were determined by extrapolation of
absorbance to the standard curve. The intra-assay and inter-
assay variability for the determination was <5%. For IL-1β
determination, murine IL-1β Quantikine® M (R&D Systems,
Minneapolis, USA) was employed according to the manufac-
turer's recommendations and absorbance was measured at
450 nm. For IL-4 determination, murine IL4 Eli-pair kit (Dia-
clone Research, Besancon, France) were used according to
the manufacturer's recommendations and absorbance was
measured at 450 nm.

Determination of osteoprotegerin in serum
Mouse OPG in serum was assayed using a commercial murine
OPG ELISA kit (mouse OPG/TNFSRSF11B immunoassay,
R&D Systems). The standard curve was generated by serial
dilution of a 2000 pg/ml stock provided by the manufacturer.
Serum samples were diluted 1:5 with provided buffer and the
assay was performed following the manufacturer's directions.
Optical density was read at 450 nm with a reference filter set

Table 1

Primer sequences for several factors involved in bone regulation and for β-actin

Gene name Genebank accession number Sequence position Primers Sequence

β-Actin NM007393 694–831 Bactin.for
Bactin.rev

5'-AGAGGGAAATCGTGCGTGAC-3'
5'-CAATAGTGATGACCTGGCCGT-3'

IL-11 NM008350 350–450 IL-11.for
IL-11.rev

5'-TGATGTCCTACCTCCGGCAT-3'
5'-TTCCAGTCGGGCTTGCAG-3'

IL-17 NM010552 146–246 IL-17.for
IL-17.rev

5'-CCTCAAAGCTCAGCGTGTCC-3'
5'-GAGCTCACTTTTGCGCCAAG-3'

COX-2 NM011198 854–954 COX-2.for
COX-2.rev

5'-GGTGGAGAGGTGTATCCCCC-3'
5'-ACTTCCTGCCCCACAGCA-3'

iNOS NM010927 872–972 iNOS.for
iNOS.rev

5'-AACAATGGCAACATCAGGTCG-3'
5'-CCAGCGTACCGGATGAGCT-3'

OPG U94331 831–931 OPG.for
OPG.rev

5'-AGAGCAAACCTTCCAGCTGC-3'
5'-CGCTGCTTTCACAGAGGTCA-3'

RANK AF19046 1422–1440 RANK.for
RANK.rev

5'-TGCCTACAGCATGGGCTTT-3'
5'AGAGATGAACGTGGAGTTACTGTTT3'

RANKL AF53713 606–680 RANKL.for
RANKL.rev

5'-TGGAAGGCTCATGGTTGGAT-3'
5'-CATTGATGGTGAGGTGTGCAA-3'

COX-2, cyclooxygenase-2; iNOS, inducible nitric oxide synthase; OPG, osteoprotegerin; RANK, receptor activator of nuclear factor-κB; RANKL, 
receptor activator of nuclear factor-κB ligand.
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to 540 nm. The intra-assay variability was <5.5% and the limit
of detection was 4.5 pg/ml.

Electrophoretic mobility shift assays
Mice were sacrificed at day 35 after primary immunization, the
rear limbs were removed, and the synovial membrane of the
knee joints was carefully separated from the bone and carti-
lage by microscopic dissection. Cell suspensions were pre-
pared by digestion of the synovial tissue in the presence of
RPMI 1640, 250 mg/ml Colagenase D (Roche, Indianapolis,
USA) and 0.1 mg/ml DNase I (Roche) for 2 h at 37°C, then
samples were tapped through a 60 µm wire mesh. Nuclear
extracts were prepared by the mini-extraction procedure of
Schreiber et al. [30] with slight modifications. Briefly, 107 syn-
ovial cells centrifuged at 1,800 × g for 10 minutes. The cell
pellets were homogenized with 0.4 ml of buffer A (10 mM
HEPES pH 7.9, 10 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 1
mM dithiothreitol (DTT), 0.5 mM phenylmethylsulphonylfluo-
ride (PMSF), 10 µg/ml aprotinin, 10 µg/ml leupeptin, 10 µg/ml
pepstatin, 1 mM NaN3, 5 mM NaF and 1 mM Na3VO3). After
15 minutes on ice, Nonidet P-40 was added to a final 0.5%
concentration, the tubes were gently vortexed for 15 s and
nuclei were sedimented and separated from cytosol by centrif-
ugation at 12,000 × g for 40 s. Pelleted nuclei were washed
once with 0.2 ml of ice-cold buffer A, and the soluble nuclear
proteins were released by adding 0.1 ml of buffer C (20 mM
HEPES pH 7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 25%
(w/v) glycerol, 1 mM DTT, 0.5 mM PMSF, 10 µg/ml aprotinin,
10 µg/ml leupeptin, 10 µg/ml pepstatin and 1 mM NaN3).
After incubation for 30 minutes on ice, followed by centrifuga-
tion for 10 min at 12,000 × g at 4°C, the supernatants contain-
ing the nuclear proteins were harvested, the protein
concentration was determined by the Bradford method, and
aliquots were stored at -80°C for later use in EMSAs.

Double-stranded oligonucleotides (50 ng) corresponding to
the NFκB and AP-1 sites (5'-AGTTGAGGGGACTTTC-
CCAGGC-3' and 5'-CGCTTGATGACTCAGCCGGAA-3',
respectively), were end-labeled with γ32P-ATP (Amersham
Pharmacia Biotech, NJ, USA) by using T4 polynucleotide
kinase (Invitrogen, Carlsbad, CA, USA). For EMSAs with syn-
ovial cell nuclear extracts, 20,000 to 50,000 cpm of double-
stranded oligonucleotides, corresponding to approximately
0.5 ng, were used for each reaction. The binding reaction mix-
tures (15 µl) were set up containing: 0.5 ng DNA probe, 8 µg
nuclear extract, 2 µg poly(dI-dC)•poly(dI-dC) and binding
buffer (50 mM NaCl, 0.2 mM EDTA, 0.5 mM DTT, 5% (w/v)
glycerol and 10 mM Tris-HCl pH 7.5). The mixtures were incu-
bated on ice for 15 minutes before adding the probe followed
by another 20 minutes at room temperature, electrophoresed
on a vertical 4% non-denaturing polyacrylamide gel using TGE
buffer (50 mM Tris-HCl pH 7.5, 0.38 M glycine and 2 mM
EDTA) and autoradiographed. For supershift assays, nuclear
extracts were incubated for 15 minutes at room temperature
with the specific antibody (1 µg of anti-p65, anti-p50, anti-

cRel, anti-cFos, anti-cJun or anti-JunB) (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA,) before the addition of the radi-
olabeled probe.

Western blot analysis of IκB-α and phosphorylated cJun 
in cytoplasm extracts from synovial cells
For western blotting, the cytoplasm fraction (see above) con-
taining 60 µg of protein were subjected to reducing SDS-
PAGE (12.5%). After electrophoresis, the gel was electroblot-
ted in Tris-glycine buffer containing 40% methanol onto a
reinforced nitrocellulose membrane (Amersham). The mem-
brane was blocked with TBS-T buffer (10 mM Tris, pH 8.0,
150 mM NaCl, 0.05% (w/v) Tween 20) containing 5% (v/v)
milk powder for 1 h at room temperature, then incubated with
primary antibodies at 1:500 dilutions, rabbit anti-mouse IgG
against IκB-α (Santa Cruz) or with mouse IgG against phos-
phorylated-cJun (Santa Cruz), in TBS-T containing 1% (w/v)
milk powder for 2 h at room temperature. The membrane was
washed with TBS-T and incubated with secondary antibody:
peroxidase-conjugated goat anti-rabbit IgG (Santa Cruz) or rat
anti-mouse IgG (Santa Cruz) at 1:5000 dilutions for 1 h at
room temperature. After washing three times in TBS-T for 5
minutes each, and once in TBS for 5 minutes, the membrane
was drained quickly and subjected to the enhanced chemilu-
miniscence detection system (PIERCE). The X-ray films were
exposed for 5 to 20 minutes.

Statistical analysis
All data were expressed as mean ± SEM. Multiple-sample
comparison (analysis of variance) was used to test differences
between groups for significance. A value of p < 0.05 was con-
sidered to be significant. The program Statgraphics plus 5.0
(Statpoint Inc, Virginia, USA) was used for all statistical
calculations.

Results
VIP modulates serum levels of cytokines implicated in 
bone homeostasis
We have previously reported the beneficial effects of VIP in a
CIA model [22]. VIP improves clinical symptoms, decreasing
the incidence and severity of CIA in mice. Notably, histopatho-
logical analysis of joints showed that inflammation, cartilage
destruction and bone erosion were abrogated. A link between
inflammation and bone homeostasis has been attributed to the
effects of cytokines such as IL-1, TNFα, and IL-6 on bone
resorption. Other cytokines, such as IL-4 and IL-10 have been
shown to have protective effects if they are administered sys-
temically [31]. We have previously reported that VIP treatment
modulates the expression of different cytokines in the joints of
CIA mice [22].

Treatment of established CIA with VIP (1 nmol every other day
per animal) resulted in suppression of disease activity (Table
2). Both cartilage pathology and bone destruction were
reduced in VIP treated animals by the end of the experiment as
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revealed by histology. Furthermore, treatment reduced serum
levels of IL-1β, TNFα, and IL-6, while circulating levels of IL-4
and IL-10 were higher in the VIP treated group (Fig. 1).

Affect of VIP treatment on mRNA expression of 
inflammatory mediators and cytokines related to bone 
destruction
Bone degradation in the vehicle treated CIA group was seen
as a reduction in the development of bone trabeculae and the
presence of osteoclasts located at the sites of bone destruc-
tion. Osteoclasts implicated in bone resorption are controlled

by an intricate interplay between several systemic factors and
an array of local factors such as cytokines, inflammatory medi-
ators and growth factors. As well as IL-1β, TNFα, and IL-6,
local inflammatory mediators, such as prostaglandin E-2
(PGE-2), and nitric oxide (NO), as well as IL-11 and IL-17,
have been shown to promote osteoclast differentiation and
activation.

To study the local expression of these factors we performed
quantitative RT-PCR of the enzymes involved in the synthesis
of these mediators (cyclooxygenase-2 (COX-2) and inducible

Figure 1

Cytokine circulating levels in mice at the end of treatment in the collagen-induced arthritis (CIA) modelCytokine circulating levels in mice at the end of treatment in the collagen-induced arthritis (CIA) model. IL-1β, tumor necrosis factor (TNF)α, IL-6, Il-
10 or IL-4 were measured (mean ± SEM) by ELISA in arthritic animals and the same animals treated with VIP. On day 10 of VIP treatment, differ-
ences between the arthritic group and the CIA group treated with vasoactive intestinal peptide (VIP) were statistically significant (*p < 0.05, **p < 
0.01, ***p < 0.001). Results are the mean ± SEM of two separate experiments with 10 animals per group.

Table 2

Effect of VIP treatment of mice with collagen-induced arthritis

Clinical score Cartilage destruction Bone erosion

CIA 5.08 ± 0.24 2.8 ± 0.07 2.13 ± 0.12

CIA + VIP 1.56 ± 0.17a 0.61 ± 0.22a 0.25 ± 0.11a

Clinical score (mean ± SEM) was assessed on a scale of 0 to 6. Cartilage destruction and bone erosion (mean ± SEM) was graded on a scale 
from 0 to 3. On day 10 of vasoactive intestinal peptide (VIP) treatment, differences between the arthritic group and the collagen-induced arthritis 
(CIA) group treated with VIP were statistically significant (ap < 0.001).
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nitric oxide synthase (iNOS)) as well as IL-11 and IL-17 in
mRNA extracted from the joints. COX-2 and iNOS expression
increased 25-fold and almost 2-fold, respectively, in the joints
of CIA mice compared with the joints of control (non-CIA)
mice (Fig. 2a). Also, IL-11 and IL-17 mRNA expression
showed a four-fold increase in CIA mice (Fig. 2b). In CIA mice
treated with VIP, the mRNA levels of COX-2, IL-11, and IL-17
in the joints were reduced compared with vehicle treated CIA
mice, being similar to those of control (non-CIA) mice. The inhi-
bition of iNOS expression was even higher.

VIP modulates the RANK/RANKL/OPG system in the 
arthritic joint
As noted above, a link between the activation of the immune
system and bone destruction is consistent with the finding that
several cytokines contribute to bone resorption via stimulation
of osteoclastic mediators. Mechanisms involved in this proc-
ess operate by modulating the expression of RANK, RANKL
and OPG. To study the modulation of the RANK/RANKL sys-
tem and the ratio of RANKL to OPG by VIP during CIA devel-
opment we performed quantitative RT-PCR in mRNA extracts
from the joints of the different groups of animals. We also
detected circulating OPG levels by ELISA in serum samples.
The mRNA expression of RANK and RANKL was heavily stim-
ulated in joints after CIA induction (Fig. 3a). In particular, CIA

Figure 2

mRNA expression of inflammatory mediators and cytokines related to bone destructionmRNA expression of inflammatory mediators and cytokines related to bone destruction. (a) Expression of mRNA for cyclooxygenase-2 (COX-2) and 
inducible nitric oxide synthase (iNOS) in the hind paws was measured by quantitative real-time PCR and corrected by mRNA expression for β-actin 
in each sample (see Materials and methods). (b) Expression of mRNA for IL-11 and IL-17 in the hind paws was measured by quantitative real-time 
PCR and corrected by mRNA expression for β-actin in each sample (see Materials and methods). On day 10 of vasoactive intestinal peptide (VIP) 
treatment, differences between the arthritic group and the CIA group treated with VIP were statistically significant (*p < 0.05, **p < 0.01, ***p < 
0.001). Results are the mean ± SEM of two separate experiments with 10 animals per group.
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induction was accompanied by a 50-fold increase in RANKL
expression in the affected joints. Though we also found a small
increase in OPG mRNA in the same animals, no significant dif-
ferences in OPG expression levels were detected after CIA
induction. In spite of this small difference in its expression at
the local level, however, the OPG circulating levels were sig-
nificantly higher after CIA induction (Fig. 3b). On the other

hand, the RANKL/OPG ratio was strongly enhanced in CIA
mice (Table 3). VIP treatment of CIA mice resulted in a signif-
icant reduction in the expression of both RANK and RANKL,
the mRNA levels of which in joints fell to near control values
(non-CIA mice). Although in VIP treated mice OPG mRNA lev-
els were slightly increased, a seven-fold drop in the RANKL/
OPG ratio was observed (Table 3). The circulating levels of
OPG were also significantly higher in VIP treated mice com-
pared with CIA mice (Fig. 3b).

VIP prevents in vivo NFκB translocation and inhibits c-
Jun N-terminal kinase
Crucial events in signalling by RANKL and other osteoclastic
cytokines are the translocation of NFκB to the nucleus and the
activation of c-Jun N-terminal kinase (JNK), which leads to the
activation of AP-1 [32,33]. A central role for these transcrip-
tion factors is supported by the fact that both are activated by
the tumor necrosis factor receptor-associated factor (TRAF)
family of signal transducers and selective inhibition of NFκB
blocks osteoclastogenesis and prevents inflammatory bone
destruction in vivo [32,34]. Previous studies have shown that
VIP induces a downregulation of NFκB transcriptional activity
in human monocytes in culture [35,36], as well as an AP-1

Figure 3

Vasoactive intestinal peptide (VIP) modulates the pattern of expression of the RANK/RANKL/OPG system in joints from mice with collagen-induced arthritis (CIA)Vasoactive intestinal peptide (VIP) modulates the pattern of expression of the RANK/RANKL/OPG system in joints from mice with collagen-induced 
arthritis (CIA). (a) Expression of mRNA for receptor activator of nuclear factor-κB (RANK), receptor activator of nuclear factor-κB ligand (RANKL) or 
osteoprotegerin (OPG) in the hind paws was measured by quantitative real time PCR and corrected by mRNA expression for β-actin in each sample 
(see Materials and methods). (b) Serum levels of OPG in control, CIA or VIP-treated CIA mice were determined by ELISA. On day 10 of VIP treat-
ment, differences between the arthritic group and the CIA group treated with VIP were statistically significant (**p < 0.01, ***p < 0.001). Results are 
the mean ± SEM of two independent experiments with 10 animals per group

Table 3

Ratio of RANKL to OPG in mice with collagen-induced arthritis

CIA CIA + VIP

RANKL 51.20 ± 3.57 13.08 ± 2.45a

OPG 1.46 ± 0.27 2.46 ± 0.92

RANKL/OPG 35.09 ± 3.18 5.30 ± 0.95a

The mRNA expression for RANKL and OPG in hind paws of mice 
with collagen-induced arthritis (CIA) was measured by quantitative 
real time PCR and corrected by mRNA expression for β-actin in each 
sample. On day 10 of vasoactive intestinal peptide (VIP) treatment, 
differences between the arthritic group and the CIA group treated 
with VIP were statistically significant (ap < 0.001). Results are the 
mean ± SEM of two independent experiments with 10 animals per 
group. OPG, osteoprotegerin; RANKL, receptor activator of nuclear 
factor-κB ligand.
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binding decrease, and a marked change in the composition of
the AP-1 complexes from c-Jun/c-Fos to JunB/c-Fos [36,37].
To investigate the molecular mechanism underlying the bone
protective effect of VIP in CIA we studied the activities of
NFκB and AP-1 in nuclear extracts of cell suspensions from
joints by EMSA and in cytoplasmic extracts by western blot-
ting. NFκB binding activity was greatly reduced in mice treated
with VIP compared with vehicle treated CIA mice (Fig. 4a).
Supershift experiments indicated that in vehicle treated CIA
mice, the DNA protein complex appeared to contain p50, p65
and cRel (Fig. 4b); however, the residual binding activity
detected in mice treated with VIP consisted of p50

homodimers (Fig. 4c). NFκB binding activity inhibition in VIP
treated mice might be attributed to a reduction in IκBα phos-
phorylation degradation, since IκBα protein levels were
increased in the cytoplasm as determined by western blot (Fig.
4d).

AP-1 DNA binding activity was higher in CIA mice and was not
affected by VIP treatment, as determined by EMSA in nuclear
extracts of cell suspensions from joints (Fig. 5a). Transcrip-
tional activity of the AP-1 complex, however, is different in CIA
mice and VIP treated animals. The supershift assay showed
that the AP-1 complex in CIA is formed of transcriptionally

Figure 4

Effect of vasoactive intestinal peptide (VIP) on NFκB binding and IκB degradation in synovial cells from mice with collagen-induced arthritis (CIA)Effect of vasoactive intestinal peptide (VIP) on NFκB binding and IκB degradation in synovial cells from mice with collagen-induced arthritis (CIA). 
(a) EMSA results from nuclear extracts of synovial cells from CIA or VIP-treated CIA mice, using a radiolabeled oligonucleotide containing the NFκB 
consensus binding site. (b) Supershift assay on nuclear extracts of CIA mice using anti-p50, anti-p65 or anti-cRel. (c) Supershift assay (20-fold 
amplified) on nuclear extracts of VIP-treated CIA mice using anti-p50, anti-p65 or anti-cRel. (d) Western blot analysis showing immunoreactive IκBα 
(36 kDa) in cytoplasmic fractions of synovial cells from CIA and VIP-treated CIA mice. A representative experiment of three is shown.
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active c-Jun/c-Fos heterodimers (Fig. 5b), while in VIP treated
animals the AP-1 complex is formed by the transcriptionally
inactive heterodimer c-Fos/Jun-B (Fig. 5c). The shift in the
composition of the AP-1 complex may be mediated by
inhibition of JNK activity because the western blot analysis
indicated that phospho-c-Jun decreases in the cytoplasm after
VIP treatment (Fig. 5d).

Discussion
Data presented in this report indicate that VIP treatment pre-
vents bone erosion in the CIA model of RA. Several mecha-
nisms may account for this effect. VIP inhibits local and
systemic levels of pro-inflammatory mediators implicated in
bone resorption, such as IL-1β, IL-6, IL-11, IL-17, TNFα, PGE
and NO, while the circulating levels of cytokines with bone
protective effects, such as IL-4 and IL-10, are increased. On
the other hand, VIP modulates the RANK/RANKL/OPG sys-
tem, which is biased toward bone formation. Finally, osteoclast
function may be inhibited as it depends on NFkB and AP-1
transcription factor activity, which is impaired in VIP treated
mice.

VIP has been shown to regulate several bone cell functions; it
affects bone resorbing activity of isolated osteoclasts and
osteoclast formation [28] as well as osteoblast anabolic
processes [24]. These effects are mediated by the presence
of different VIP receptors in both types of bone cells: VPAC1
and PAC1 have been detected in osteoclasts [26] while
VPAC2 is expressed in osteoblasts and VPAC1 is induced in
advanced cultures of this cell type [27]. In vitro studies with
isolated cells have shown contradictory results; while VIP has
been shown to promote the formation of mineralised nodules

in cultures of osteoblasts [24], it induces a transient inhibition
and a delayed stimulation of osteoclast activity [38]. Our
results show that VIP treatment in vivo in pathological condi-
tions such as RA results in the prevention of bone destruction.

Cytokine balance contributes to the onset and progression of
inflammation and skeletal destruction during RA. In this
respect, TNFα, IL-1β and IL-6 have been shown to be
dominant in the induction of inflammation and bone erosion
[39-41], while IL-4 and IL-10 have potent anti-inflammatory
effects and suppress cartilage and bone pathology in RA [31].
Both a systemic and a paracrine mode of action can be postu-
lated for these agents. Alteration of the systemic balance of
cytokines has been studied by blocking TNFα and IL-1β using
biological agents such as anti-TNFα or IL-1 inhibitors [39].
Therefore, a combined cytokine and anti-cytokine therapy has
been proposed as being the more effective for achieving an
anti-inflammatory and anti-destructive therapy for RA. VIP thus
emerges as a new, promising biological agent in this sense, as
treatment of CIA mice with this peptide shifts the systemic bal-
ance of cytokines toward a bone protecting pattern that acts
to both lower serum levels of TNFα, IL-1β and IL-6 and raise
the levels of IL-4 and IL-10, as described in this report.

Bone loss in RA is indirectly mediated mainly by cytokines pro-
duced by macrophages, fibroblasts and T cells of the synovial
tissue. These cytokines lead to the differentiation of osteoclast
precursors and activate osteoclasts. Macrophage and fibrob-
last derived inflammatory cytokines such as IL-1β and TNFα
perpetuate inflammation in a paracrine manner. In a previous
report, we have shown that VIP reduces the expression of
such mediators in the joint microenvironment of arthritic mice

Figure 5

AP-1 binding and c-Jun activation in synovial cells from mice with collagen-induced arthritis (CIA) after vasoactive intestinal peptide (VIP) treatmentAP-1 binding and c-Jun activation in synovial cells from mice with collagen-induced arthritis (CIA) after vasoactive intestinal peptide (VIP) treatment. 
(a) EMSA results from nuclear extracts of synovial cells from CIA or VIP-treated CIA mice, using a radiolabeled oligonucleotide containing the AP-1 
consensus binding site. (b) Supershift assay on nuclear extracts of CIA mice using anti-c-Jun, anti-c-Fos or anti-Jun B. (c) Supershift assay on 
nuclear extracts of VIP-treated CIA mice using anti-c-Jun, anti-c-Fos or anti-Jun B. (d) Western blot analysis showing immunoreactive phosphor-
ylated c-Jun (39 kDa) in cytoplasmic fractions of synovial cells from CIA and VIP-treated CIA mice. A representative experiment of three is shown.
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[22]. At the same time, VIP augments the local production of
the anti-inflammatory cytokine IL-10 and the IL-1 inhibitor IL-
1Ra [22]. PGE [42] and NO [43] are two potent mediators
induced by inflammatory cytokines that stimulate their osteo-
clastogic activities. They are also inhibited in the joints of VIP
treated mice, as can be deduced from the lower expression of
iNOS and COX-2.

VIP can also impair osteoclast differentiation in RA through its
effect on T cell differentiation and activation. T cells present in
the synovial tissue in RA express a Th1/Th0 pattern of cytokine
secretion [44]. Activated T cells and T cells from RA synovial
tissue express both the membrane-bound and soluble forms of
RANKL, which induce the differentiation of osteoclast precur-
sors [45]. Cytokines also participate in this process. IL-17 is a
cytokine produced by a subset of activated memory Th1/Th0
cells [46] that has been shown to be an important osteoclast
differentiation factor, inducing RANKL expression leading to
bone erosion in arthritis [10]. IL-11 also supports osteoclast
formation by increasing RANKL expression in a STAT (Signal
transducers and activators of transcription) activation depend-
ent mechanism [47]. As we have described in this report, VIP
treatment greatly reduces the local expression of both these
cytokines in the joints of arthritic mice, which may account for
the block in joint erosion induced in the CIA model. Addition-
ally, VIP shifts the immune response towards a Th2 pattern of
cytokine secretion [17], which inhibits the production of
inflammatory and Th1 cytokines [48].

Most of the osteoclastogenic factors present in RA joints are
thought to act indirectly, enhancing RANKL expression and
thereby altering the RANK/RANKL/OPG system, which is the
final regulator of bone resorption [2,3,49]. RANK is expressed
on the surface of haematopoietic osteoclast progenitors that
belong to the monocyte/macrophage lineage, and also on
mature osteoclasts, as well as on T cells and dendritic cells. In
arthritis, osteoclast precursors that express RANK recognize
RANKL through cell-to-cell interaction with osteoblasts/stro-
mal cells, and differentiate into osteoclasts [50]. In the present
study, we report a high level of RANK expression in the joints
of arthritic mice, probably induced by the recruitment of oste-
oclast precursors induced by the local production of
chemokines chemotactic for monocytes [51]. We also
describe how VIP lowers the expression of RANK in the joints
of CIA mice to the levels detected in non-arthritic control mice.
This effect may be due to the inhibition of RANK synthesis or,
alternatively, to the inhibition of monocyte recruitment; we
have reported previously that VIP inhibits the local expression
of the monocyte chemoatractant chemokines CCL3 (MIP1α)
and CCL2 (MCP-1) [22,23]. RANKL expression can be
upregulated by bone resorbing factors such as glucocorti-
coids, vitamin D, IL-1β, IL-6, IL-11, IL-17, TNFα, PGE2, or par-
athyroid hormone in osteoblasts. RANKL is expressed on the
cell surface of activated T cells and can be detected in both
synovial cells and infiltrating cells by in situ hybridization at the

onset of clinical signs of arthritis in animal models [52]. T-cell
activation in RA patients may lead to osteoclastogenesis
within the synovium, probably via RANKL secretion by
activated T cells in an environment conducive to osteoclast
differentiation from synovial macrophages. This mechanism
may contribute to the bone destruction seen in RA [14].

VIP has been reported to inhibit the expression of RANKL and
RANK induced by vitamin D in mouse bone marrow cultures
[28]. Results shown in this report indicate that VIP reduces the
expression of RANK and RANKL in the joints of arthritic mice,
and may account for the bone protective properties of VIP in
RA. On the other hand, its effects on the expression of OPG
further support the postulated bone protective property of VIP.
This molecule is secreted by stromal cells and osteoblasts and
competitively inhibits RANKL binding to RANK on the cell sur-
face of osteoclast precursor cells and mature osteoclasts,
thus inhibiting the osteoclastogenic actions of RANKL. Exces-
sive production of RANKL and/or a deficiency of OPG could,
therefore, contribute to the increased bone resorption typified
by the focal bone erosion and bone loss in RA. Our data indi-
cate that OPG circulating levels rise in CIA, as has been
reported during inflammation [14]. These levels were even
higher in VIP treated mice. In this way, the ratio of RANKL-
RANK to OPG that determines the erosive nature of RA is
greatly reduced by VIP, accounting for the bone protection
achieved by the treatment.

The molecular mechanisms underlying the discussed effects
of VIP in bone protection during RA (mainly cytokine secretion,
RANKL expression, and osteoclast differentiation) may involve
the transcription factors NFκB and AP-1. Several cell types
share these signalling pathways to express mediators impli-
cated in tissue damage and destruction. After exposure to pro-
inflammatory cytokines, the IκB kinase (IKK) signal complex is
activated in synoviocytes, leading to phosphorylation of IκB.
We describe in this report that IκB phosphorylation is inhibited
in the arthritic joints of mice treated with VIP. NFκB is activated
in this manner in the synovium of patients with RA and regu-
lates genes encoding proteins that contribute to inflammation,
including inflammatory cytokines such as TNFα, IL-1β, IL-6
and chemokines as well as enzymes such as iNOS and COX-
2. NFκB is also crucial for the differentiation of osteoclasts and
its selective inhibition blocks RANKL induced osteoclastogen-
esis both in vitro and in vivo [32]. The MAPK (Mitogen-acti-
vated protein kinases) pathway is also involved and particularly
the JNK pathway, which has been implicated in the regulation
of matrix metalloproteinases. As reported here, JNK activity in
the joints of arthritic mice is affected by VIP treatment. Our
understanding of the signal transduction pathways implicated
in RA has led to drug development programmes targeting
MAPK and NFκB inhibitors [53]. Several of these compounds,
however, have been shown to be toxic. VIP on the other hand
has been shown to target these signalling pathways and no
toxicity has been cited for this peptide. Ourselves and others
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have previously reported that VIP inhibits the nuclear translo-
cation of NFκB and also the JNK signalling pathway in LPS
(lipopolysaccharide) stimulated macrophage and monocytic
cell lines [35-37] In the present report, we describe that this
mechanism also operates in vivo and may involve other cell
types involved in the pathogenesis of RA.

In summary, the protective effect of VIP in bone destruction
during CIA could be due to different mechanisms that are not
mutually exclusive. One would be an indirect mechanism that
works via decreasing proinflammatory cytokines and other
mediators involved in the differentiation and activation of oste-
oclast-precursor cells, and increasing anti-inflammatory
cytokines. A second would be the VIP-induced modification of
the cell types present in the joint, which would decrease the
amount of Th1-lymphocytes that express RANKL. And a third
would be a VIP-induced direct effect on OPG, RANK or
RANKL expression on skeletal tissue, fibroblast or immune
cells present in the inflamed joint.

Conclusion
We have shown that VIP treatment in CIA mice reduces the
local and systemic levels of osteoclastogenic mediators, such
as TNFα, IL-1β, IL-6, IL-11, IL-17, PGE and NO. This reduction
is accompanied by a large decrease in the RANK-RANKL/
OPG ratio. Molecular mechanisms associated with these
events include a reduction in the activity of the transcription
factor NFκB and a change in the activity of AP-1. Our results
highlight the possibility of the therapeutic application of VIP in
the treatment of human RA.
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