
Page 1 of 13
(page number not for citation purposes)

Available online http://arthritis-research.com/content/9/5/220

Abstract
Rheumatoid arthritis (RA) is one of the inflammatory joint diseases
in a heterogeneous group of disorders that share features of
destruction of the extracellular matrices of articular cartilage and
bone. The underlying disturbance in immune regulation that is
responsible for the localized joint pathology results in the release of
inflammatory mediators in the synovial fluid and synovium that
directly and indirectly influence cartilage homeostasis. Analysis of
the breakdown products of the matrix components of joint cartilage
in body fluids and quantitative imaging techniques have been used
to assess the effects of the inflammatory joint disease on the local
remodeling of joint structures. The role of the chondrocyte itself in
cartilage destruction in the human rheumatoid joint has been
difficult to address but has been inferred from studies in vitro and
in animal models. This review covers current knowledge about the
specific cellular and biochemical mechanisms that account for the
disruption of the integrity of the cartilage matrix in RA.

Rheumatoid arthritis
Rheumatoid arthritis (RA) is an inflammatory joint disease that
most frequently affects the anatomical components of
articular and juxta-articular tissues of diarthrodial joints. The
diarthrodial joints join two opposing bone surfaces that are
covered by a specialized hyaline cartilage providing a low-
friction, articulating interface. The synovium lines the joint
cavity and is the site of production of synovial fluid, which
provides the nutrition for the articular cartilage and lubricates
the cartilage surfaces. In RA, the synovial lining of diarthrodial
joints is the site of the initial inflammatory process [1,2]. This
lesion is characterized by proliferation of the synovial lining
cells, increased vascularization, and infiltration of the tissue

by inflammatory cells, including lymphocytes, plasma cells,
and activated macrophages [3-5]. With the growth and
expansion of the synovial lining, there is eventual extension of
the inflammatory tissue mass to the adjacent articular
cartilage with progressive overgrowth of the articular surface
and formation of the so-called pannus, which is derived from
the Latin word meaning ‘cloth’ and the Greek word meaning
‘web’. At the interface between the RA synovium and articular
cartilage, tongues of proliferating cells can be seen
penetrating the extracellular matrix of the cartilage. Similarly,
at the interface between the inflamed synovium and adjacent
subchondral bone, there is evidence of local activation of
bone resorption with destruction of the mineralized bone
matrix, accompanied by cells expressing phenotypic features
of osteoclasts, including calcitonin receptor mRNA, cathepsin
K, and tartrate-resistant acid phosphatase (TRAP) [6,7]. RA
synovium produces a broad spectrum of factors possessing
the capacity to stimulate cartilage matrix destruction and
bone erosion [3,4]. Although there is an association between
inflammation and the development of joint damage, the
destruction may progress in spite of attenuated inflammatory
activity, and cartilage and bone erosions may develop in the
absence of overt clinical signs of inflammation [8-11]. Recent
evidence from human and animal studies indicates that
although the specific cellular mechanisms of cartilage and
bone destruction are different, TNF-α, IL-1, and additional
proinflammatory cytokines and mediators can drive elements
of both processes [10,12]. The recent development of assays
for specific biological markers that reflect quantitative and
dynamic changes in the synthetic and degradation products
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of cartilage and bone matrix components has offered the
possibility of identifying patients at risk for rapid joint damage
and also the possibility of early monitoring of the efficacy of
disease-modifying anti-rheumatic therapies [13-15]. This
review will focus on the unique ways in which the
chondrocyte responds to the inflammatory milieu and
contributes to the disease process in the cartilage.

The chondrocyte in adult articular cartilage
Adult human articular cartilage, which covers the articulating
surfaces of long bones, is populated exclusively by
chondrocytes that are somewhat unique to this tissue. The
collagen network of the interterritorial cartilage matrix is
composed of types II, IX, and XI collagens, which provide
tensile strength and promote the retention of proteoglycans.
Type XI collagen is part of the type II collagen fibril, and type
IX integrates with the surface of the fibril with the non-
collagen domain projecting outward, permitting association
with other matrix components. The other major component,
the large aggregating proteoglycan aggrecan, which is
attached to hyaluronic acid polymers via link protein, bestows
compressive resistance. A large number of other non-
collagen molecules are present in the interterritorial matrix;
these molecules include several small proteoglycans such as
biglycan, decorin, fibromodulin, the matrilins, and cartilage
oligomeric matrix protein (COMP). The chondrocytes are
surrounded by a pericellular matrix composed of type VI
collagen microfibrils that interact with hyaluronic acid,
biglycan, and decorin and maintain chondrocyte attachment,
but little or no fibrillar collagen. Under physiological
conditions, the chondrocytes maintain a stable equilibrium
between the synthesis and the degradation of matrix
components, with a half-life of more than 100 years for type II
collagen [16] and a half-life for aggrecan core protein in the
range 3 to 24 years [17]. The glycosaminoglycan
components of aggrecan and other cartilage matrix
constituents also are synthesized by chondrocytes under
conditions of low turnover, and the matrix turnover may be
more rapid in the immediate pericellular zones.

Under normal conditions, chondrocyte proliferation is limited,
and penetration of other cell types from the joint space or
subchondral bone is restricted. In the absence of a vascular
supply, the chondrocyte must rely on diffusion from the
articular surface or subchondral bone for the exchange of
nutrients and metabolites. Glucose serves both as the major
energy source for the chondrocytes and as an essential
precursor for glycosaminoglycan synthesis. Facilitated
glucose transport in chondrocytes is mediated by several
distinct glucose transporter proteins (GLUTs) that are either
expressed constitutively (GLUT3 and GLUT8) or inducible by
cytokines (GLUT1 and GLUT6) [18,19]. Chondrocytes do
not contain abundant mitochondria, but they maintain active
membrane transport systems for exchange of cations,
including Na+, K+, Ca2+, and H+, whose intracellular
concentrations fluctuate with charge, biomechanical forces,

and alterations in the composition of the cartilage matrix [20].
Furthermore, chondrocyte metabolism operates at low oxygen
tension, ranging from 10% at the surface to less than 1% in
the deep zones of the cartilage. Chondrocytes adapt to low
oxygen tensions by upregulating hypoxia-inducible factor
(HIF)-1α, which can stimulate the expression of GLUTs [19]
and angiogenic factors such as vascular endothelial growth
factor (VEGF) [21,22], as well as ascorbate transport [23]
and several genes associated with cartilage anabolism and
chondrocyte differentiation, including Sox9 and type II
collagen [24]. By modulating the intracellular expression of
survival factors such as HIF-1α, chondrocytes have a high
capacity to survive in the avascular cartilage matrix and to
respond to environmental changes.

Joint inflammation and cartilage remodeling
in RA
Cartilage destruction in RA occurs primarily in areas
contiguous with the proliferating synovial pannus [25,26]. In
the cartilage–pannus junction, there is evidence of
attachment of both fibroblast-like and macrophage-like
synovial cell types, which can release proteinases capable of
digesting the cartilage matrix components [27]. A distinctive
fibroblast-like cell type, the so-called ‘pannocyte’, present in
RA synovium exhibits anchorage-independent growth and
can invade cartilage in the absence of an inflammatory
environment [2]. Nevertheless, there is evidence of loss of
proteoglycan throughout the cartilage matrix, particularly in
the superficial zone in contact with the synovial fluid at sites
not directly associated with the pannus [28,29]. This has
been attributed to the release of inflammatory mediators and
degradative enzymes released by polymorphonuclear leuko-
cytes and other inflammatory cells in the synovial fluid. In early
RA, however, the loss of proteoglycan occurs throughout the
cartilage matrix, and selective damage to type II collagen
fibrils can be observed in middle and deep zones [30,31],
suggesting that the chondrocyte may also participate in
degrading its own matrix by releasing autocrine–paracrine
factors.

Of the matrix metalloproteinases (MMPs) involved in the
degradation of cartilage collagens and proteoglycans in RA,
the MMPs of the collagenase and stromelysin families have
been given greatest attention because they specifically
degrade native collagens and proteoglycans. Active
stromelysin also serves as an activator of latent collagenases
[32]. MMPs are localized at sites of degradation in cartilage
derived from patients with RA [33]. Collagenases 1, 2, and 3
(MMP-1, MMP-8, and MMP-13, respectively), gelatinases
(MMP-2 and MMP-9), stromelysin-1 (MMP-3), and membrane
type I MMP (MT1-MMP; MMP–14) are present in active RA
synovium [34,35]. Although elevated levels of MMPs in the
synovial fluid probably originate from the synovium, intrinsic
chondrocyte-derived chondrolytic activity is present at the
cartilage–pannus junction as well as in deeper zones of
cartilage matrix in some RA specimens [36]. For example,
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MMP-1 does not derive from the RA synovial pannus but is
produced by chondrocytes [37]. MMP-10, similarly to
MMP-3, activates procollagenases and is produced by both
the synovium and chondrocytes in response to inflammatory
cytokines [38]. In contrast, MMP-14, produced principally by
the synovial tissue, is important for synovial invasiveness, and
inhibition of the expression of this membrane proteinase by
antisense mRNA has been shown to reduce cartilage
destruction [39].

Other MMPs, including MMP-16 and MMP-28 [40,41], and a
large number of members of the reprolysin-related proteinases
of the ADAM (a disintegrin and metalloproteinase) family,
including ADAM-17/TACE (TNF-α converting enzyme) [42],
are expressed in cartilage, but their roles in cartilage damage
in RA have yet to be defined [32,43,44]. Although several of
the MMPs, including MMP-3, MMP-8, and MMP-14, are
capable of degrading proteoglycans, ADAMTS (ADAM with
thrombospondin-1 domains)-4 and ADAMTS-5 are now
regarded as the principal mediators of aggrecan degradation
[45,46]. ADAMTS-4 is expressed constitutively, whereas
ADAMTS-5 is more prominently regulated by inflammatory
cytokines. However, the activities of MMPs and aggre-
canases are complementary [47]. Of the aggrecanases, so
far only aggrecanase-2, ADAMTS5, seems to be associated
with increased susceptibility to osteoarthritis, as shown in
Adamts5-deficient mice [48,49]. Tissue inhibitor of metallo-
proteinases (TIMP)-3, but not TIMP-1, TIMP-2, or TIMP-4, is a
potent inhibitor of ADAMTS-4 and ADAMTS-5 in vitro [50].
That capacity of transforming growth factor (TGF)-β to
increase TIMP gene expression may partly account for its
protective effects against cartilage breakdown mediated by
MMP and by ADAMTS [51,52].

Other proteinases, including the urokinase-type plasminogen
activator and the cathepsins B, L, and D, which degrade
various cartilage matrix components and may be produced by
the chondrocytes themselves, also contribute to breakdown
of the cartilage matrix [53,54]. Cathepsin K is expressed in
synovial fibroblasts on the cartilage surface at the cartilage–
pannus junction and is upregulated by inflammatory cytokines
[55]. Among the known cathepsins, cathepsin K is the only
proteinase that is capable of hydrolyzing types I and II
collagens at multiple sites within the triple-helical regions, and
its requirement for acidic pH may be provided by the micro-
environment between the synovial pannus and the cartilage
[56].

Degraded cartilage matrix components are to be considered
both diagnostic markers of cartilage damage and potential
autoantigens in the induction and maintenance of RA synovial
inflammation [13,15]. Molecules originating from the articular
cartilage, including aggrecan fragments, which contain
chondroitin sulfate and keratan sulfate, type II collagen
fragments, collagen pyridinoline cross-links, and COMP, are
usually released as degradation products as a result of

catabolic processes. Specific antibodies that detect either
synthetic or cleavage epitopes have been developed to study
biological markers of cartilage metabolism in RA body fluids
(reviewed in [14]). These include the C2C antibody
(previously known as Col2-3/4CLong mono), which has been
used to detect cleavage of the triple helix of type II collagen in
experimental models of RA and in RA cartilage [57]. Similarly,
the degradation of aggrecan in cartilage has been
characterized by using antibodies 846, 3B3– and 7D4 (which
detect chondroitin sulfate neoepitopes), 5D4 (which detects
keratan sulfate epitopes), and the VIDIPEN and NITEGE
antibodies (which recognize aggrecanase and MMP cleavage
sites, respectively), within the interglobular G1 domain of
aggrecan [45,54].

Several studies have shown that COMP levels reflect
processes in cartilage that are distinct from inflammatory
aspects of the disease and serve as a general indicator of
cartilage turnover [58]. YKL-40/HC-gp39, also known as
chitinase 3-like protein 1 (CH3L1), is a specific histological
marker in inflamed RA synovium that forms immune
complexes with HLA-DR4 [59]. The immune response to
YKL-40, which is biased toward the regulatory, suppressor
T-cell phenotype in healthy individuals, is shifted from an anti-
inflammatory to a proinflammatory phenotype in patients with
RA [60]. In cartilage, CH3L1 is induced by inflammatory
cytokines. It inhibits cytokine-induced cellular responses and
may function as a feedback regulator [61,62]. A related
member of the chitinase family, YKL-39, may be a more
specific serum marker as a cartilage-derived autoantigen
[63,64]. Another novel molecule is the cartilage-derived
retinoic-acid-sensitive protein (CD-RAP), also known as
melanoma inhibitory activity, which is found at high levels in
synovial fluids from patients with mild RA and decreases with
disease progression [65].

Mediators of cartilage degradation in RA
There is evidence that the chondrocytes may not only
participate in the destruction of the cartilage matrix by
responding to the proinflammatory cytokines released from
the synovium but may themselves also be the source of pro-
inflammatory cytokines that, by means of autocrine or
paracrine mechanisms, increase tissue catabolism and
suppress anabolic repair processes. The resultant dis-
equilibrium in remodeling probably contributes to the rapid
loss of cartilage matrix components characteristic of the RA
joint lesion. Our understanding of basic cellular mechanisms
regulating chondrocyte responses to inflammatory cytokines
has been inferred from numerous studies in vitro with cultures
of cartilage fragments or isolated chondrocytes and is
supported by studies in experimental models of inflammatory
arthritis such as collagen-induced arthritis (CIA) and antigen-
induced arthritis (AIA) in mice. Less information has been
derived from direct analysis of cartilage or chondrocytes
obtained from patients with RA in whom cartilage damage is
extensive.
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Inflammatory cytokines
Alterations in products of cartilage matrix turnover and levels
of matrix-degrading proteinases and inhibitors described
above are accompanied by changes in the levels of various
cytokines in the rheumatoid synovial fluids (Fig. 1). Numerous
studies in vitro and in vivo indicate that IL-1 and TNF-α are
the predominant catabolic cytokines involved in the
destruction of the articular cartilage in RA [10,66,67]. The
first recognition of IL-1 as a regulator of chondrocyte function
stems largely from work in culture models showing that
activities derived from synovium or monocyte-macrophages
induce the production of cartilage-degrading proteinases
(reviewed in [66]). IL-1 has the capacity to stimulate the
production of most, if not all, of the proteinases involved in
cartilage destruction and it colocalizes with TNF-α, MMP-1,
MMP-3, MMP-8, and MMP-13, and type II collagen cleavage

epitopes in regions of matrix depletion in RA cartilage
[34,57]. Originally known as cachectin, TNF-α produces
many effects on chondrocytes in vitro that are similar to those
of IL-1, including stimulation of the production of matrix-
degrading proteinases and suppression of cartilage matrix
synthesis. IL-1 is 100-fold to 1,000-fold more potent on a
molar basis than TNF-α, but strong synergistic effects occur
at low concentrations of the two cytokines together [10].

The concept that TNF-α drives acute inflammation, whereas
IL-1 has a pivotal role in sustaining both inflammation and
cartilage erosion, has been derived from work in transgenic or
knockout mouse models [67]. For example, the spontaneous
development of a chronic destructive arthritis in mice
deficient in IL-1 receptor antagonist (IL-1Ra) established the
importance of IL-1 in arthritis [68]. In the original study
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Figure 1

Cytokine networks and cellular interactions in cartilage destruction in rheumatoid arthritis. This scheme represents the progressive destruction of
the cartilage associated with the invading synovial pannus in rheumatoid arthritis. As a result of immune cell interactions involving T and B
lymphocytes, monocyte/macrophages, and dendritic cells, several different cytokines are produced in the inflamed synovium as a result of the influx
of inflammatory cells from the circulation and synovial cell hyperplasia. The upregulation of proinflammatory cytokines produced primarily in the
synovium, but also by chondrocytes, results in the upregulation of cartilage-degrading enzymes, of the matrix metalloproteinase (MMP) and ADAM
with thrombospondin-1 domains (ADAMTS) families, at the cartilage–pannus junction. Chemokines, nitric oxide (NO), and prostaglandins (PGs)
also contribute to the inflammation and tissue catabolism. SDF, stromal cell-derived factor 1; TNF, tumor necrosis factor; TGF, transforming growth
factor; IFN, interferon; Treg, regulatory T lymphocytes; Th, T helper cells.



showing that transgenic or dysregulated overexpression of
the TNF-α in causes polyarthritis in mice, chondrocytes were
found to express the human transgene [69]. When
backcrossed with arthritis-susceptible DBA/1 mice, a more
severe, erosive arthritis developed during successive genera-
tions [70]. Because few chondrocytes remained in older mice
with advanced arthritis and the extracellular matrix of the
cartilage was relatively preserved, it was proposed that the
chondrocytes may die early in the life of the mice by TNF-α-
driven apoptosis before significant proteoglycan degradation
can occur [70]. The higher potency of IL-1 compared with
TNF-α in driving cartilage erosion is supported by studies
showing that blockade of IL-1 is more effective than TNF-α
neutralization in CIA mice [71] and that IL-1 is a secondary
mediator in TNF-α transgenic mice [72]. Later studies in the
human RA/SCID (severe combined immunodeficiency) mouse
chimera indicated that TNF-α is a key molecule in the
inflammatory changes that occur in the rheumatoid synovium,
whereas cartilage damage occurs independently of this
cytokine [73]. Despite these findings in animal models, anti-
TNF therapy in patients with RA has been more successful in
preventing cartilage and bone destruction. This could be
related to the pharmacokinetic properties of IL-1Ra. It has
been suggested that alternative approaches for targeting IL-
1, including the use of soluble receptors and neutralizing
antibodies, need to be tested [67,74]. Supporting the
concept that IL-1 drives cartilage destruction are the findings
of a recent study by Schett’s group in which crossing the
arthritic human TNF transgenic (hTNFtg) mice with mice
deficient in IL-1α and IL-1β protected against cartilage
erosion without affecting synovial inflammation [75].

Cytokine networks
IL-1 and TNF-α can also induce chondrocytes to produce
several other proinflammatory cytokines, including IL-6, leukemia
inhibitory factor (LIF), IL-17, and IL-18, and chemokines
[76,77] (Fig. 1). IL-6 seems to perform a dual function by
increasing products that downregulate inflammation such as
IL-1Ra, soluble TNF receptor (sTNFR), and TIMPs, while also
enhancing immune cell function and inflammation [41,78].
The inhibition of proteoglycan synthesis and other chondro-
cyte responses in vitro require the soluble IL-6 receptor α
(sIL-6Rα), which permits the synergistic stimulation of MMP
expression by IL-1 and IL-6 [79]. IL-6 blockade is under
current investigation in animal models and clinical trials
[80,81]. The use of the IL-6 gene promoter as an inducible
adenoviral gene delivery system proposed for the local
treatment of arthritis would presumably target cartilage
destruction as well as inflammation [82]. Other members of
the IL-6 family that act through receptors that heterodimerize
with gp130 may also modulate chondrocyte function. IL-11
shares several actions of IL-6, including the stimulation of
TIMP production without affecting MMP production [79] and
may actually inhibit cartilage destruction [83]. Leukemia
inhibitory factor (LIF), similarly to the other chondrocyte-
derived autocrine factors described above, may participate in

a positive feedback loop by increasing the production of IL-6
by chondrocytes. Oncostatin M (OSM), which is a product of
macrophages and activated T cells, can act alone or
synergistically with IL-1 to stimulate the production of MMPs
and aggrecanases by chondrocytes [38,79,84]. Direct
evidence supporting a role for OSM in contributing to
cartilage loss in inflammatory arthritis is provided by studies in
animal models [85,86].

IL-17A, one of at least six family members, is primarily a
product of T helper type 17 (Th17) cells, a newly described
subset of T cells, which is a potent inducer of catabolic
responses in chondrocytes by itself or in synergy with other
cytokines [87,88]. IL-17 can drive T-cell-dependent erosive
arthritis in the TNF-deficient and IL-1Ra knockout mice, and
treatment of mice with CIA or AIA with neutralizing IL-17
antibody effectively inhibits cartilage destruction in those
models of RA [89-92].

The IL-1R/Toll-like receptor (TLR) superfamily of receptors
has a key role in innate immunity and inflammation. Studies in
arthritis induced with streptococcal cell wall showed that joint
inflammation and cartilage proteoglycan loss is predominantly
dependent on TLR-2 signaling [93]. Human articular
chondrocytes can express TLR-1, TLR-2, and TLR-4, and
activation of TLR-2 by IL-1, TNF-α, peptidoglycans, lipopoly-
saccharide, or fibronectin fragments increases the production
of MMPs, nitric oxide (NO), prostaglandin E (PGE), and
VEGF [94-96]. In arthritis mediated by immune complex,
TLR-4 regulates early-onset inflammation and cartilage
destruction by IL-10-mediated upregulation of Fcγ receptor
expression and enhanced production of cytokines [97].
Because the IL-18 receptor shares homology with IL-1RI and
has a TLR signaling domain, therapeutic strategies similar to
those for targeting IL-1 signaling have been explored [78,98].
In animal models, IL-18, by means of TLR-2, promotes joint
inflammation in a partly TNF-α-dependent manner and
induces IL-1-driven cartilage destruction [99]. IL-18 has
effects similar to IL-1 in human chondrocytes, and stimulates
chondrocyte apoptosis, although studies do not suggest a
pivotal role in cartilage destruction in RA [100-102]. Of the
other members of the IL-1 family recently identified by DNA
database searches, IL-1F8 seems to be capable of
stimulating the production of IL-6, IL-8, and NO by human
chondrocytes, but at 100-fold to 1,000-fold higher
concentrations than that of IL-1 [103]. IL-32, a recently
discovered cytokine that induces TNF-α, IL-1β, IL-6, and
chemokines and is expressed in the synovia of patients with
RA, contributes to TNF-α-dependent inflammation and a loss
of cartilage proteoglycan [104].

IL-4, IL-10, and IL-13 are generally classified as inhibitory or
modulatory cytokines because they are able to inhibit many of
the cartilage catabolic processes induced by proinflammatory
cytokines [105]. Their therapeutic application has been
proposed to restore the cytokine balance in RA [106,107].
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The efficacy of IL-4, IL-10, and IL-13 in retarding cartilage
damage may be related, in part, to their stimulatory effects on
IL-1Ra production [108,109]. Despite the capacity of IL-4 to
inhibit the effects of proinflammatory cytokines on chondro-
cyte function [110,111], differential effects have been
observed in mice, depending on the model used [112,113].
Gene transfer of IL-10 in combination with IL-1Ra inhibits
cartilage destruction by a mechanism involving activin, a
TGF-β family member [114]. IL-10 is part of the response
induced by immunomodulatory neuropeptides that have
recently been shown to inhibit inflammation and cartilage and
bone destruction by downregulating the Th1-driven immune
response and upregulating IL-10/TGF-β-producing regulatory
T (Treg) lymphocytes [115]. IL-13 decreases the breakdown
of collagen and proteoglycans by inhibiting IL-1- and OSM-
induced MMP-3 and MMP-13 expression [116]. Local gene
transfer of IL-13 inhibits chondrocyte death and MMP-
mediated cartilage degradation despite enhanced inflamma-
tion in the immune-complex arthritis model [117].

Mediators and mechanisms in the responses
of chondrocytes to inflammatory cytokines
In addition to inducing the synthesis of MMPs and other
proteinases by chondrocytes, IL-1 and TNF-α upregulate the
production of NO by means of inducible nitric oxide
synthetase (iNOS, or NOS2), and that of PGE2 by stimulating
the expression or activities of cyclooxygenase (COX)-2,
microsomal PGE synthase-1 (mPGES-1), and soluble
phospholipase A2 (sPLA2). Although PGE2 and NO have
been well characterized as proinflammatory mediators, there
is evidence of crosstalk between them in the regulation of
chondrocyte function (reviewed in [118]). COX-2 is also
involved in the chondrocyte response to high shear stress,
associated with decreased antioxidant capacity and
increased apoptosis [119]. In the production of prosta-
glandins, mPGES-1, which is induced by IL-1 in chondro-
cytes, is a major player [120,121]. In addition to opposing the
induction of COX-2, iNOS, and MMPs and the suppression
of aggrecan synthesis by IL-1, activators of the peroxisome
proliferator-activated receptor γ (PPAR-γ), including the endo-
genous ligand 15-deoxy-Δ12,14-prostaglandin J2 (PGJ2), inhibit
the IL-1-induced expression of mPGES-1 [122,123]. Recent
evidence indicates that PPAR-α agonists may protect
chondrocytes against IL-1-induced responses by increasing
the expression of IL-1Ra [124].

Adipokines, which were originally identified as products of
adipocytes, have recently been shown to have roles in
cartilage metabolism [125]. White adipose tissue has been
proposed as a major source of both proinflammatory and anti-
inflammatory cytokines, including IL-Ra and IL-10 [126].
Leptin expression is enhanced during acute inflammation,
correlating negatively with inflammatory markers in RA sera
[127], and has been proposed to serve as a link between the
neuroendocrine and immune systems [128]. The elevated
expression of leptin in OA cartilage and in osteophytes, and

its capacity to stimulate insulin-like growth factor (IGF)-1 and
TGF-β1 synthesis, suggest a role for this adipokine in
anabolic responses of chondrocytes [129]. Leptin synergizes
with IL-1 or interferon-γ to increase NO production in
chondrocytes [130], and leptin deficiency attenuates
inflammatory processes in experimental arthritis [131]. It has
been proposed that the dysregulated balance between leptin
and other adipokines, such as adiponectin, promotes
destructive inflammatory processes [132].

Several additional mediators that affect chondrocyte metabo-
lism have been described. The IL-1-induced SOCS3
(suppressor of cytokine signaling 3) acts as a negative
feedback regulator during desensitization toward IGF-1 in the
absence of NO by inhibiting the phosphorylation of insulin
receptor substrate (IRS)-1 [133]. Recent evidence indicates
that RAGE, the receptor for advanced glycation end products
(AGEs), interacts preferentially with S100A4, a member of the
S100 family of calcium-binding proteins, in chondrocytes and
stimulates MMP-13 production through the phosphorylation of
Pyk2, mitogen-activated protein kinases, and NF-κB [134].
The fibroblast activation protein α (FAP-α), a membrane serine
proteinase, which colocalizes in synovium with MMP-1 and
MMP-13 and is induced by IL-1 and OSM in chondrocytes,
may have a role in collagen degradation [135,136]. Many of
these proteins may be activated during the chondrocyte
response to abnormal stimuli and may serve as endogenous
mediators of cellular responses to stress and inflammation.

Signaling mechanisms, gene transcription,
and genome analyses
Signal transduction molecules and transcription factors
activated by inflammatory mediators in chondrocytes and
synovial cells have been studied to identify potential
therapeutic targets. For example, NF-κB is a ‘master switch’
of the inflammatory cascade [137], and the signaling
intermediates in the p38 and JNK pathways have also been
targeted for future therapeutic development [138]. In addition
to NF-κB, members of the CCAAT-enhancer-binding protein
(C/EBP), Ets, and activator protein (AP)-1 families are
important for the regulation of gene expression by IL-1 and
TNF-α [43,139-142] and have been localized in rheumatoid
tissues [143,144]. The JAK/Stat3 signaling pathway is
important for signaling by gp130 cytokines [145]. Cytokine-
induced transcription factors also suppress the expression of
several genes associated with the differentiated chondrocyte
phenotype, including type II collagen (COL2A1), aggrecan,
and CD-RAP [146-148]. Chondrocyte-specific transcription
factors, including Sox9 (which regulates cartilage formation
during development [139]), have not been studied in the
context of cartilage metabolism in RA. Genomic and
proteomic analyses that have been performed in cytokine-
treated chondrocytes, in cartilage from patients with
osteoarthritis, and in rheumatoid synovium have provided
some insights into novel mechanisms that might govern
chondrocyte responses in RA [149-154]. So far, more than
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1,000 differentially expressed transcripts have been identified
in cartilage derived from patients with arthritis [155].

Chemokines
The role of chemokines in RA synovium, where they are
involved in neutrophil activation, chemotaxis, and angio-
genesis, is well established, but their potential contribution to
cartilage metabolism has been recognized only recently
[156-159]. IL-8, probably the most potent and abundant
chemotactic agent in RA synovial fluids, and other chemo-
kines, such as monocyte chemoattractant protein (MCP)-1
and RANTES, are produced primarily by the synovium and
serve as indicators of synovitis. Chondrocytes, when
activated by IL-1 and TNF-α, express several chemokines,
including IL-8, MCP-1, and MCP-4, macrophage inflammatory
protein (MIP)-1α, MIP-1β, RANTES, and GROα, as well as
receptors that enable responses to some of these
chemokines, and may feedback regulate synovial cell
responses [160,161]. High levels of stromal cell-derived
factor 1 (SDF-1) are detected in RA synovial fluids, and its
receptor, CXCR4, is expressed by chondrocytes but not
synovial fibroblasts, suggesting a direct influence of this
chemokine on cartilage damage [162]. Microarray studies
have elucidated several chemokines that are inducible in
chondrocytes by fibronectin fragments and cytokines [154].

Adhesion molecules and angiogenesis
In addition to the requirement of chemokines for the recruit-
ment of T lymphocytes and other inflammatory cells to the
subsynovial lining, adhesion receptors must be available on
synovial blood vessels for binding the circulating leukocytes
and other cell types with which they interact in the inflamed
tissue, including macrophages, dendritic cells, and fibro-
blasts. The principal families of adhesion molecules involved
are the selectins, the integrins, the cadherins, and variants of
the immunoglobulin supergene family. Although these
molecules are common to different inflammatory sites, many
of the prominent adhesion proteins expressed in the inflamed
rheumatoid synovium are also expressed in cartilage. For
example, vascular cell adhesion molecule (VCAM)-1 and
intercellular adhesion molecule (ICAM)-1, which are members
of the immunoglobulin family, are expressed by human
articular chondrocytes as well as synovial and endothelial
cells, although their function on chondrocytes may not be
significant unless damage to the matrix permits cell–cell
interactions [163]. VCAM-1, as well as VEGF, fibroblast
growth factor (FGF), and TNF-α, contributes to angiogenesis
during synovitis and to the activation of chondrocytes during
cartilage degradation [164,165]. VEGF expression is
upregulated by inflammatory cytokines in both chondrocytes
and synovial cells and by hypoxia [166,167], and Vegfb
knockout mice are protected against synovial angiogenesis in
the CIA and AIA models [168].

Several members of the integrin family are expressed by
chondrocytes. The α1β1 and α5β1 integrins function as

receptors for fragments of collagen and fibronectin, respec-
tively. The stimulation of α5β1 integrin by integrin-activating
antibodies or fibronectin fragments results in increased MMP
production and requires reactive oxygen species [169]. In
contrast, the discoidin domain receptor-2 specifically
increases MMP-13 production by recognizing intact type II
collagen fibrils that have been denuded by proteoglycans, as
occurs in osteoarthritis [170,171], but its role in RA has not
been determined. Specific roles for the hyaluronan receptor,
CD44, in cell–matrix interactions in cartilage have also been
identified [172]. CD44 expression is upregulated on
chondrocytes in articular cartilage and synoviocytes from
patients with RA [173,174]. Hyaluronan binding to CD44
increases MMP-13 and NO production by chondrocytes
[175]. Furthermore, induction of MMP-specific cleavage of
type II collagen and NO production by the heparin-binding
fragment of fibronectin is mediated by CD44 [176].

Cadherins are adhesion molecules that mediate cell–cell
adhesion by binding a cadherin of the same cell type on an
adjacent cell. The recent identification of cadherin-11 as a
key adhesion molecule, which regulates the formation of the
synovial lining during development and the synoviocyte
function postnatally, has provided the opportunity to examine
its role in inflammatory joint disease [177]. Cadherin-11
deficiency, or treatment with cadherin-11 antibody or a
cadherin-11 fusion protein, decreased synovial inflammation
and decreased cartilage erosion in an animal model of
arthritis. Furthermore, cadherin-11 facilitated synoviocyte
invasion into cartilage-like extracellular matrix in an in vitro
model, suggesting that this molecule could serve as a
specific target for therapy against cartilage destruction in
inflammatory arthritis [178].

Bone-related factors
The potent induction by IL-17 of receptor activator of NF-κB
ligand (RANKL), which is produced by synoviocytes and
T cells in RA synovium [179] and mediates osteoclast
differentiation and activity, may partly account for the capacity
of IL-17 to induce bone destruction in an IL-1-independent
manner and bypass the requirement for TNF in the
development of inflammatory arthritis [88]. Both RANKL and
its receptor RANK, a member of the TNF receptor family, are
expressed in adult articular chondrocytes [180], but a direct
action in cartilage has not yet been identified. Although
RANKL deficiency blocks bone destruction without direct
effects on cartilage destruction in inflammatory models, it is
possible that indirect cartilage-protective effects may occur
through interference with the degradation of subchondral
bone [179,181,182].

Wnt signaling, through the canonical β-catenin pathway and
activation of T-cell factor (TCF)/Lef transcription factors,
functions in a cell-autonomous manner to induce osteoblast
differentiation and suppress chondrocyte differentiation in
early osteo-chondroprogenitors [183]. During chondro-
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genesis, Wnt/β-catenin acts at two stages, at low levels to
promote chondroprogenitor differentiation and later at high
levels to promote chondrocyte hypertrophic differentiation
and subsequent endochondral ossification [183,184].
Because ectopic Wnt/β-catenin signaling leads to enhanced
ossification and the suppression of cartilage formation during
skeletal development, the disruption of Wnt signaling in adult
cartilage would be expected to have pathological
consequences. For example, activation of β-catenin in mature
cartilage cells stimulates hypertrophy, matrix mineralization,
and expression of VEGF, ADAMTS5, MMP-13, and several
other MMPs [184]. A recent study showed limited expression
of β-catenin in joint tissues of patients with RA, but high
expression of the inhibitor of Wnt/β-catenin signaling, DKK-1,
in the inflamed synovium, especially in the synoviocytes and
synovial microvessels, and in cartilage adjacent to inflam-
matory tissue [185]. This study also showed expression of
DKK-1 in a TNF-α-dependent manner in TNF transgenic mice
and blockade of RANKL-dependent bone resorption by the
administration of DKK-1 antibody, as a result of upregulation
of the RANKL inhibitor osteoprotegerin [185] (reviewed in
[186]).

Conclusion
Significant advances have been made in recent years that
have contributed to our understanding of the cellular
interactions in the RA joint involving macrophages, T and B
lymphocytes, and synovial fibroblasts. Laboratory investi-
gations in vitro and in vivo have resulted in new findings
about the role of the chondrocyte in remodeling the cartilage
matrix in the RA joint. Although the mediators involved in
immunomodulation and synovial cell function, including
cytokines, chemokines, and adhesion molecules, have
primary roles in the inflammatory and catabolic processes in
the joint, they may also promote cartilage damage, directly or
indirectly. Despite the clinical success of anti-TNF therapy for
RA, there is still a need for therapeutic strategies that prevent
the extensive cartilage and bone loss. Recent work that has
identified novel molecules and mechanisms, as well as
providing new understanding of the contributions of known
mediators, offers the possibility of developing new therapies
for targeting cartilage destruction in inflammatory joint
disease.
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