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Abstract

Introduction Rheumatoid arthritis (RA) is a chronic inflammatory
and destructive joint disease characterized by overexpression of
pro-inflammatory/pro-destructive genes and other activating
genes (for example, proto-oncogenes) in the synovial membrane
(SM). The gene expression in disease is often characterized by
significant inter-individual variances via specific synchronization/
desynchronization of gene expression. To elucidate the
contribution of the variance to the pathogenesis of disease,
expression variances were tested in SM samples of RA patients,
osteoarthritis (OA) patients, and normal controls (NCs).

Method Analysis of gene expression in RA, OA, and NC
samples was carried out using Affymetrix U133A/B
oligonucleotide arrays, and the results were validated by real-
time reverse transcription-polymerase chain reaction. For the
comparison between RA and NC, 568 genes with significantly
different variances in the two groups (P ≤ 0.05; Bonferroni/Holm
corrected Brown-Forsythe version of the Levene test) were
selected. For the comparison between RA and OA, 333 genes
were selected. By means of the Kyoto Encyclopedia of Genes
and Genomes, the pathways/complexes significantly affected

by higher gene expression variances were identified in each
group.

Results Ten pathways/complexes significantly affected by
higher gene expression variances were identified in RA
compared with NC, including cytokine–cytokine receptor
interactions, the transforming growth factor-beta pathway, and
anti-apoptosis. Compared with OA, three pathways with
significantly higher variances were identified in RA (for example,
B-cell receptor signaling and vascular endothelial growth factor
signaling). Functionally, the majority of the identified pathways
are involved in the regulation of inflammation, proliferation, cell
survival, and angiogenesis.

Conclusion In RA, a number of disease-relevant or even
disease-specific pathways/complexes are characterized by
broad intra-group inter-individual expression variances. Thus,
RA pathogenesis in different individuals may depend to a lesser
extent on common alterations of the expression of specific key
genes, and rather on individual-specific alterations of different
genes resulting in common disturbances of key pathways.

Introduction
Human rheumatoid arthritis (RA) is characterized by chronic

inflammation and destruction of multiple joints, perpetuated by
an abnormally transformed and invasive synovial membrane
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(SM), forming the so-called pannus tissue [1]. Many activated
cell types contribute to the development and progression of
RA. Monocytes/macrophages, dendritic cells, T and B cells,
endothelial cells, and synovial fibroblasts are major compo-
nents of the pannus [2-8] and participate in maintaining joint
inflammation, degradation of extracellular matrix (ECM) com-
ponents, and invasion of cartilage and bone [2,4] as well as
fibrosis of the affected joints [9].

The extended analysis of gene expression profiles in RA SM
during the last decades has revealed several relevant gene
groups affecting development and progression of the disease.
Central transcription factors involved as key players in RA
pathogenesis are AP-1, NF-κB, Ets-1, and SMADs [10-12].
These factors show binding activity for their cognate recogni-
tion sites in the promoters of inflammation-related cytokines
(for example, tumor necrosis factor-alpha [TNF-α], interleukin
[IL]-1β, and IL-6 [3]) and matrix-degrading enzymes (for exam-
ple, matrix metalloproteinase [MMP]-1 and MMP-3 [13,14]).
The latter contribute to tissue degradation by destruction of
ECM components, including aggrecan or collagen type I-IV, X,
and XI [15].

The analysis of those comprehensive expression data has
become feasible due to the implementation of microarray-
based methods [16]. Therefore, a variety of comparisons can
be performed, including differences in gene expression among
different groups and/or individuals. In contrast to conventional
differential gene expression analyses, the determination of
inter-individual gene expression variances, often affecting
gene expression of members of the same patient/donor group,
is generally not considered in rheumatology, although those
variances are known to be a characteristic of many diseases.
In trisomy 21, for instance, inter-individual expression vari-
ances affect a number of tightly regulated genes. In addition,
the variances are independent of the respective level of gene
expression, and although only a minority of genes are affected,
these genes are thought to be involved in the symptoms of tri-
somy 21 with the highest phenotypical differences [17]. Sig-
nificant inter-individual expression variances have also been
reported to affect the expression of telomerase subunits in
malignant glioma [18] as well as protein tyrosine kinases and
phosphatases in human basophils in asthma and inflammatory
allergy [19]. The latter implies that such alterations may also
play an important role within inflammatory diseases, reflected
in either synchronization (that is, a loss of inter-individual gene
expression variances) or desynchronization (that is, increased
inter-individual gene expression variances) of gene expression
within a group of different individuals/patients.

In RA, differences in gene expression profiles for specific
genes among two subgroups of RA patients have been
reported, but within these subgroups, the differences are lim-
ited to distinct expression levels without significant intra-sub-
group expression variances [12]. To the best of our

knowledge, there are as yet no reports on broad intra-group
inter-individual gene expression variations among RA patients.

Interestingly, although the majority of reports show expression
variances in tissues from patients with different diseases, vari-
ances have also been reported in normal tissues (for example,
the human retina [20] or human B-lymphoblastoid cells [21]).
In contrast to expression variations in diseases, the variations
in normal donors are generally limited to a small number of
genes (for example, 2.6% in the human retina [20]). To analyze
inter-individual mRNA expression variances in RA, the occur-
rence of gene-specific expression differences in the SM was
analyzed using the Bonferroni/Holm corrected Brown-For-
sythe version of the Levene test for variance analysis [22-24]
on the basis of genome-wide mRNA expression data in RA (n
= 12), osteoarthritis (OA) (n = 10), and normal control (NC) (n
= 9) synovial tissue.

Materials and methods
Patients and tissue samples
SM samples were obtained within 10 minutes following tissue
excision upon joint replacement/synovectomy from RA (n =
12) and OA (n = 10) patients at the Department of Orthoped-
ics, University Hospital Jena, Waldkrankenhaus 'Rudolf Elle'
(Eisenberg, Germany). Tissue samples from joint trauma sur-
gery (n = 9) were used as NCs (Table 1). After removal, tissue
samples were frozen and stored at -70°C. Informed patient
consent was obtained and the study was approved by the Eth-
ics Committee of University Hospital Jena (Jena, Germany).
RA patients were classified according to the American Col-
lege of Rheumatology criteria [25], OA patients according to
the respective criteria for OA [26].

Isolation of total RNA
Tissue homogenization, total RNA isolation, treatment with
RNase-free DNase I (Qiagen, Hilden, Germany), and cDNA
synthesis were performed as described previously [27].

Microarray data analysis
RNA probes were labeled according to the instructions of the
supplier (Affymetrix, Santa Clara, CA, USA). Analysis of gene
expression was carried out using U133A/B oligonucleotide
arrays. Hybridization and washing procedures were performed
according to the supplier's instructions and microarrays were
analyzed by laser scanning (Hewlett-Packard Gene Scanner;
Hewlett-Packard Company, Palo Alto, CA, USA). Back-
ground-corrected signal intensities were determined using the
MAS 5.0 software (Affymetrix). Subsequently, signal intensi-
ties were normalized among arrays to facilitate comparisons
between different patients. For this purpose, arrays were
grouped according to patient/donor groups (RA, n = 12; OA,
n = 10; and NC, n = 9). The arrays in each group were normal-
ized using quantile normalization [28]. Original data from
microarray analyses were deposited in the Gene Expression
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Omnibus of the National Center for Biotechnology Information
(Bethesda, MD, USA) (accession number GSE12021 [29]).

Real-time reverse transcription-polymerase chain 
reaction
The data obtained by Affymetrix microarrays were validated for
six selected genes (IL13, MAPK8, SMAD2, IL2RG, PLCB1,
and ATF5) using real-time reverse transcription-polymerase
chain reaction (RT-PCR). PCRs were performed as previously
described using a Mastercycler® ep realplex (Eppendorf,
Hamburg, Germany) and SYBR-green. To normalize the
amount of cDNA in each sample, the expression of the house-
keeping gene GAPDH (glyceraldehyde 3-phosphate dehydro-
genase) was determined [27]. Product specificity was
confirmed by (a) melting curve analysis, (b) agarose gel elec-
trophoresis, and (c) cycle sequencing of the PCR products.

Statistical analysis of gene expression variance
This analysis did not concentrate on differently expressed
genes, but on genes with different variances in the three
patient groups [30]. The assumption of homogeneity of vari-
ance can be rejected by a variance analysis according to Lev-
ene [22]. The Brown-Forsythe version of this test was used
[23]. For independent groups of data, the null hypothesis (that
is, variances are equal) was tested.

To control the stability of the variance, the variance calculation
was tested for 2, 3, 5, 7, and 10 samples per group. For fewer
than 5 samples, the calculation did not reach stable results,
but stable results were achieved for more than 5 patients. In
addition, the results of the statistical tests were influenced by

the number of samples in each group (that is, small groups did
not reach statistical significance).

The P value can be obtained by calculating the value of the
cumulative distribution function at the point F. This is equiva-
lent to the integral of the probability density function of the nor-
mal distribution over the interval [0, F]. To prevent the
accumulation of false-positives due to multiple comparisons,
the very strict Bonferroni correction was used [31]. Alterna-
tively, the less conservative Holm correction was applied for
the correction of the data [24]. The application of the Holm
correction yielded results comparable to those obtained by
Bonferroni correction and pointed out only very few new
genes.

The variance-fold is defined as the quotient of the variance of
one group (for example, OA patients) and the variance of
another group (for example, RA patients). If the variance in the
second group is higher than 1, the result is the multiplicative
inverse and the algebraic sign is inverted. This way, all groups
can be compared:

The application of a variance filter before testing of the data
(excluding variance-fold values between 2.5 and -2.5 from the
analysis) yielded equivalent results compared with the initial
data analysis including the a posteriori application of the Bon-
ferroni or the Holm correction. Following Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis (see below), the

Table 1

Clinical characteristics of the patients at the time of synovectomy/sampling

Patients, total Gender, male/
female

Age, years Disease 
duration, years

Rheumatoid 
factor, +/-

ESR, mm/hour CRPa, mg/L Number of 
ARA criteria 

for RA

Concomitant 
medication 
(number)

Rheumatoid 
arthritis

12 3/9 65.9 ± 2.9 15.8 ± 4.2 10/2 42.6 ± 6.2 31.9 ± 7.2 5.3 ± 2.1 MTX (5)

Prednis. (10)

Sulfas. (3)

NSAIDs (9)

Osteoarthritis

10 2/8 71.9 ± 2.0 6.2 ± 2.7 1/9 22.9 ± 4.0 7.6 ± 2.9 0.1 ± 0.1 NSAIDs (4)

None (7)

Normal 
controls

9 7/2 49.9 ± 6.7 0.4 ± 0.3 ND ND ND 0.0 ± 0.0 None

aNormal range: <5 mg/L. For the parameters of age, disease duration, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and 
number of American Rheumatism Association (ARA) (now American College of Rheumatology) criteria for rheumatoid arthritis (RA), mean ± 
standard error of the mean is given. For the remaining parameters, numbers are provided. +/-, positive/negative; MTX, methotrexate; ND, not 
determined; NSAID, nonsteroidal anti-inflammatory drug; Prednis., prednisolone; Sulfas., sulfasalazine.
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same pathways/complexes were indicated and only the rank-
ing of selected pathways/complexes was changed (for exam-
ple, the ranking of cytokine–cytokine receptor interactions and
the mitogen-activated protein kinase [MAPK] pathway were
inverted).

Analysis of inter-individual gene expression variances
Relevant genes were selected using different criteria: (a) a sig-
nificance level of P ≤ 0.05 (Bonferroni/Holm corrected Brown-
Forsythe version of the Levene test) for variance-fold values
and (b) a cutoff value for absolute variance-fold levels of
greater than 2.5 for higher variances in RA, OA, and NC,
respectively. Using these criteria, 568 genes were selected for
the comparison between RA and NC (307 with higher vari-
ances in RA and 261 with higher variances in NC) while 542
genes were used for the comparison OA versus NC (314 with
higher variances in OA and 228 with higher variances in NC).
Finally, 333 genes were selected for the comparison between
RA and OA (186 with higher variances in RA and 147 with
higher variances in OA). All selected genes are presented in
Supplementary Table 1 (sorted according to absolute vari-
ance-fold values). Inter-individual variances of gene expression
among the different groups were analyzed using predefined
pathways and functional categories annotated by KEGG [32].

Mapping of probesets onto gene names
Gene names used for KEGG inputs follow the nomenclature
of the HUGO Genome Nomenclature Committee [33] and are
mostly derived from the Affymetrix annotation feature 'Gene
Symbol' for the respective probeset. If required, correspond-
ing RefSeqs were manually inspected.

Statistical KEGG analysis
To ensure that only KEGG pathways with a significant enrich-
ment of more variant genes were obtained for further analyses,
the χ2 test statistic was used. Following the calculation of the
expected frequency of affected genes in each pathway, the
difference between the expected frequency and the absolute
frequency was determined. All pathways with a difference of
less than 2 were ignored. As a second criterion of the multi-
level test, P values of less than or equal to 0.15 were consid-
ered statistically significant [34]. Pathways with insignificant P
values were examined in detail and subdivided into two or
more sub-pathways if possible. In some cases, P values for
selected sub-pathways decreased considerably.

Results
Analysis of inter-individual gene expression variances in 
rheumatoid arthritis, osteoarthritis, and normal control 
synovial membrane
For the comparison of inter-individual gene expression vari-
ances between RA SM (n = 12) and NC SM (n = 9), 568
genes were used (307 with significantly higher variances in
RA and 261 with significantly higher variances in NC; P ≤
0.05, Bonferroni/Holm corrected Brown-Forsythe version of

the Levene test), resulting in the identification of 129 affected
KEGG pathways/complexes in total (Supplementary Table 1a;
shown for IL13 and CXCL13 in Figure 1). These pathways
include 10 pathways significantly affected by higher gene
expression variances in RA and 6 pathways significantly
affected by higher gene expression variances in NC (in both
cases P ≤ 0.15, χ2 test).

For the comparison of OA (n = 10) and NC (n = 9) SM, 542
genes were used (314 with significantly higher variances in
OA and 228 with significantly higher variances in NC; Supple-
mentary Table 1b). A total of 128 affected KEGG pathways/
complexes were identified, including 7 pathways significantly
affected by higher gene expression variances in OA and 4
pathways significantly affected by higher gene expression var-
iances in NC.

The comparison of RA (n = 12) and OA (n = 10) SM was per-
formed with 333 genes (186 with significantly higher vari-
ances in RA and 147 with significantly higher variances in OA;
Supplementary Table 1c). This comparison culminated in the
identification of 114 pathways, 3 of which were significantly
affected by higher gene expression variances in RA and 4 of
which were significantly affected by higher gene expression
variances in OA.

Real-time reverse transcription-polymerase chain 
reaction validation
Validation of the microarray data by real-time RT-PCR was
attempted in RA, OA, and NC samples for the genes IL13,
MAPK8, SMAD2, IL2RG, PLCB1, and ATF5. In three cases
(50%), the results of microarray analyses and real-time RT-
PCR were equivalent for RA versus NC (MAPK8: variance-
fold 9.8 versus 5.2; IL2RG: variance-fold 5.6 versus 8.9;
ATF5: variance-fold 1.7 versus 2.3); in addition, two cases
(33%) tended to result in comparable variance-fold values for
microarray and real-time RT-PCR (IL13: variance-fold 12 ver-
sus 1.3; SMAD2: variance-fold 5 versus 1.1). In only one case
(PLCB1; 17%), microarray analyses and real-time RT-PCR
validation showed contradictory results (higher variance in NC
versus higher variance in RA). For OA versus NC, comparable
results were achieved (only IL2RG and ATF5 showed contra-
dictory results).

KEGG pathways identified in the comparison between 
rheumatoid arthritis and normal control
Pathways significantly affected by inter-individual gene 
expression variances in rheumatoid arthritis
Ten pathways/complexes significantly affected by inter-indi-
vidual mRNA expression variances were identified in the com-
parison between RA and NC, 7 of which were specific for RA,
that is, did not appear in the comparison between OA and NC
(for example, cytokine–cytokine receptor interactions; Figure
2). The occurrence of gene expression variances in the com-
plete MAPK, transforming growth factor-beta (TGF-β), and
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apoptosis pathways/complexes did not reach statistical signif-
icance. Interestingly, within these pathways, significantly
affected sub-pathways/sub-complexes could be identified: the
classical TGF-β sub-pathway (Figure 3), the classical and the
c-jun kinase (JNK)/p38 MAPK sub-pathway(s) (Figure 4), and
the sub-complex of anti-apoptosis (Figure 5). A complete list
of significantly affected pathways/complexes is presented in
Table 2.

Pathways significantly affected by inter-individual gene 
expression variances in normal control
Six pathways/complexes significantly affected by inter-individ-
ual mRNA expression variances were identified in NC
compared with RA, including the cell cycle and the Wnt (wing-
less-type MMTV integration site family) signaling pathway. All
pathways/complexes were specific for NC. A complete list of
significantly affected pathways/complexes is presented in
Table 3.

Figure 1

Gene-specific inter-individual gene expression variancesGene-specific inter-individual gene expression variances. The graph shows the individual gene expression level of rheumatoid arthritis (RA) (n = 12) 
and osteoarthritis (OA) (n = 10) patients as well as normal control (NC) donors (n = 9) for IL13 and CXCL13 (cytokine–cytokine receptor interac-
tions). The mean gene expression (blue line) and the intra-group inter-individual variances in RA and NC synovial membrane (red bar) are indicated, 
resulting in significantly enhanced variances among patients within the RA group (P < 0.001, Bonferroni/Holm corrected Brown-Forsythe version of 
the Levene test).
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KEGG pathways identified in the comparison between 
osteoarthritis and normal control
Pathways significantly affected by inter-individual gene 
expression variances in osteoarthritis
Seven pathways/complexes significantly affected by inter-indi-
vidual mRNA expression variances were identified in OA com-
pared with NC. Among these pathways/complexes, six were
specific for OA, including the complexes of apoptosis. A com-
plete list of significantly affected pathways/complexes is pre-
sented in Table 4.

Pathways significantly affected by inter-individual gene 
expression variances in normal control
Four pathways/complexes significantly affected by inter-indi-
vidual mRNA expression variances were identified in NC com-
pared with OA. Three of those were specific for NC, including
the Toll-like receptor signaling pathway. A complete list of sig-

nificantly affected pathways/complexes is presented in Table
5.

KEGG pathways identified in the comparison between 
rheumatoid arthritis and osteoarthritis
Pathways significantly affected by inter-individual gene 
expression variances in rheumatoid arthritis
Three pathways/complexes significantly affected by inter-indi-
vidual mRNA expression variances were identified in RA com-
pared with OA. All pathways/complexes were specific for RA,
including the vascular endothelial growth factor (VEGF) and
the B-cell receptor signaling pathways. A complete list of
significantly affected pathways/complexes is presented in
Table 6.

Figure 2

Inter-individual mRNA expression variances among cytokine–cytokine receptor interactions in rheumatoid arthritis (RA) compared with normal con-trol (NC)Inter-individual mRNA expression variances among cytokine–cytokine receptor interactions in rheumatoid arthritis (RA) compared with normal con-
trol (NC). The graph shows genes affected by significant intra-group inter-individual mRNA expression variances in RA compared with NC (P ≤ 0.05; 
Bonferroni/Holm corrected Brown-Forsythe version of the Levene test; labeled in red) among Kyoto Encyclopedia of Genes and Genomes (KEGG) 
cytokine–cytokine receptor interactions, including the respective sub-pathways (P ≤ 0.15, χ2 test; labeled in red). Cellular processes with potential 
influence on or relevance for RA pathogenesis (for example, inflammation, proliferation, and cell survival) are labeled in blue, and anti-inflammatory/
anti-destructive processes are labeled in black.
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Pathways significantly affected by inter-individual gene 
expression variances in osteoarthritis
Four pathways/complexes significantly affected by inter-indi-
vidual mRNA expression variances were identified in OA com-
pared with RA (for example, the complex of oxidative
phosphorylation). All of them were specific for OA. A complete
list of significantly affected pathways/complexes is presented
in Table 7.

Discussion
The present microarray-based and real-time RT-PCR-vali-
dated, genome-wide mRNA expression analysis in RA, OA,
and NC SM by KEGG mapping shows that gene-specific,
significant, intra-group/inter-individual variances in gene
expression profiles occur in RA. These variances affect a vari-
ety of genes involved in numerous pathways/complexes
potentially relevant for RA pathogenesis. Since significant var-
iance-fold values are observed for many genes with compara-

ble mean expression levels among different patient/donor
groups (data not shown), the manifestation of gene expression
variances does not necessarily depend on the respective
mean mRNA expression level.

To our knowledge, gene expression variances in RA samples
have been reported only for distinct subgroup-specific differ-
ences in gene expression profiles of RA patients [12]. Conse-
quently, the present data demonstrate for the first time broad
intra-group/inter-individual gene expression variances in RA
SM samples, previously observed in other severe diseases
such as trisomy 21, malignant glioma, and inflammatory allergy
[17-19]. It has been hypothesized that expression variances of
regulatory key genes contribute to the individual phenotype of
the given disease [17], whether independent of or depending
on the expression level.

Figure 3

Inter-individual mRNA expression variances in the transforming growth factor-beta (TGF-β) signaling pathway in rheumatoid arthritis (RA) compared with normal control (NC)Inter-individual mRNA expression variances in the transforming growth factor-beta (TGF-β) signaling pathway in rheumatoid arthritis (RA) compared 
with normal control (NC). The graph shows genes affected by significant intra-group inter-individual mRNA expression variances in RA compared 
with NC (P ≤ 0.05; Bonferroni/Holm corrected Brown-Forsythe version of the Levene test; labeled in red) in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) TGF-β signaling pathway. Among the three TGF-β family sub-pathways, the classical TGF-β sub-pathway is significantly affected 
by gene expression variances (P ≤ 0.15, χ2 test; indicated in red). TGF-β-regulated cellular processes with potential influence on or relevance for RA 
pathogenesis (for example, angiogenesis and cell survival) are labeled in blue.
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Currently, the causes for gene expression variances among
RA patients are unknown. Possible external reasons may
include the higher average age of the individuals in the RA
group as well as medication influencing immunological proc-
esses and the expression of immunologically relevant genes
(for example, methotrexate, prednisolone, sulfasalazine, and/or
nonsteroidal anti-inflammatory drugs [35,36]) or differences in
nutrition, with general effects on individual gene expression
[37]. The inflammatory status of the respective joint at the time
of surgical intervention may also substantially influence gene
expression in the RA SM [38]. However, an analysis of the
differential gene expression shows that the present RA group
is generally characterized by an expression profile highly com-
patible with previous gene expression studies [39], including

the overexpression of several transcription factors (for exam-
ple, FOS, FOSB, JUN, and STAT1 [10-12]), cytokines/chem-
okines (for example, IL2, IL4, CCL23, and CCL25 [40]),
signal transduction molecules (for example, MAPK9,
MAP3K2, PTPN7, and AKT2 [41,42]), cell cycle regulators
(for example, CDC12, CCNB2, and CCNE2 [43]), and heat
shock proteins (DNAJ molecules; [44]; data not shown), indi-
cating that the present RA cohort is representative for RA
patients in general.

Regarding internal molecular changes in the individuals, a par-
ticipation of mutations or single nucleotide polymorphisms in
different genes is plausible, either directly [45,46] or via
mutated regulators (for example, transcription factors, mRNA

Figure 4

Inter-individual mRNA expression variances in the mitogen-activated protein kinase (MAPK) signaling pathway in rheumatoid arthritis (RA) compared with normal control (NC)Inter-individual mRNA expression variances in the mitogen-activated protein kinase (MAPK) signaling pathway in rheumatoid arthritis (RA) compared 
with normal control (NC). The graph shows genes affected by significant intra-group inter-individual mRNA expression variances in RA compared 
with NC (P ≤ 0.05; Bonferroni/Holm corrected Brown-Forsythe version of the Levene test; labeled in red) in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) MAPK signaling pathway. Among the three MAPK family sub-pathways, the classical and the c-jun kinase (JNK)/p38 MAPK sub-
pathways were significantly affected by gene expression variances (P ≤ 0.15, χ2 test; indicated in red). MAPK-regulated cellular processes with 
potential influence on or relevance for RA pathogenesis (for example, proliferation, inflammation, and anti-apoptosis) are labeled in blue.
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stability modifiers, and so on [47]). This also includes broader
genomic rearrangements (for example, chromosomal
translocations or polysomies [48,49]) as well as epigenomic
modifications (for example, gene/promoter methylation [50]).
In addition, the individual composition of cell types in the ana-
lyzed SM samples may influence the mRNA expression profile,
depending on the inflammatory status and/or cell proliferation,
potentially resulting in enhanced immigration/proliferation of T
cells, B cells, or synovial fibroblasts [51].

In RA compared with NC, 10 KEGG pathways/complexes are
specifically and significantly affected by gene expression vari-
ances. As expected, the importance of immunological proc-
esses for RA progression [8] is reflected in several pathways
directly involved in such networks (Toll-like, T cell, and Fc ε
receptor signaling [52-54]). In the SM, alterations in immuno-
logical pathways/complexes may contribute to the develop-

ment of local (and systemic) inflammation, reflecting the highly
inflamed status of the joint as one of the major characteristics
of RA [2,55].

RA-specific gene expression variances also occur in
cytokine–cytokine receptor interactions. Within this complex,
a striking involvement of sub-pathways can be observed, with
relevance for chemotaxis (CXC family chemokines [56]), ang-
iogenesis, proliferation, and cell survival (TGF-β family
[57,58]) as well as inflammation, joint destruction, and fibrosis
(TNF family [59,60] and IL2RG shared pathway [9,61]; Figure
2). Sub-pathways influencing tissue protection (interferon fam-
ily [62]) or anti-inflammation and anti-angiogenesis (IL13RA1
[interleukin-13 receptor alpha-1] shared pathway [63]) are
scarcely affected. Therefore, a specific influence of gene
expression variances on cytokine-mediated aspects of the RA
can be assumed [64].

Figure 5

Inter-individual mRNA expression variances in the complex of apoptosis in rheumatoid arthritis (RA) compared with normal control (NC)Inter-individual mRNA expression variances in the complex of apoptosis in rheumatoid arthritis (RA) compared with normal control (NC). The graph 
shows genes affected by significant intra-group inter-individual mRNA expression variances in RA compared with NC (P ≤ 0.05; Bonferroni/Holm 
corrected Brown-Forsythe version of the Levene test; labeled in red) in the Kyoto Encyclopedia of Genes and Genomes (KEGG) complex of apop-
tosis. Among the three apoptosis sub-complexes, the survival factor-dependent sub-complex was significantly affected by gene expression variances 
(P ≤ 0.15, χ2 test; indicated in red). Cellular processes with potential influence on or relevance for RA pathogenesis (expression of survival genes 
and cell survival) are labeled in blue.
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Although the following pathways/complexes are not signifi-
cantly affected by gene expression variances in total, embed-
ded sub-pathways include the majority of affected genes, thus
reaching statistical significance. In the TGF-β pathway, only
members of the classical TGF-β sub-pathway are significantly
affected, thus potentially influencing angiogenesis [58], cell
survival [65], and cell proliferation [66] amongst others (Figure
3). Indeed, this (sub-) pathway appears to occupy a central
position for the RA pathogenesis, due to the integration of var-
ious RA-relevant cellular functions. This is further underlined
by its prominent role within the framework of
cytokine–cytokine receptor interactions (Figure 2) and its influ-
ence on pro-inflammatory/pro-destructive features, either
independent of or via MAPK (Figures 3 and 4). Within the
MAPK signaling pathway, the 'classical' and the JNK/p38
MAPK sub-pathways – regulating proliferation, anti-apoptosis,
and inflammation – are significantly affected by gene expres-
sion variances (Figure 4). This may be an indication of a partic-
ipation of variable gene expression in inflammatory processes

via MAPK variants (especially via JNK/MAPK8 [67]) and pro-
liferation of activated cells (for example, synovial fibroblasts
and T cells) in RA [68,69] and MAPK-mediated anti-apoptosis
(Figure 4).

Regarding apoptosis, genes particularly involved in the regula-
tion of cell survival and anti-apoptosis are significantly affected
by expression variances (Figure 5) [70]. Interestingly, the
respective genes in this particular pathway also show
increased expression levels in RA SM (data not shown). Pro-
apoptotic genes are not affected in this pathway, correspond-
ing to the absence of gene expression variances within the
complex of p53-induced apoptosis (data not shown).

Depending on the individual gene expression level in each
patient, gene expression variances in regulatory pathways may
lead to enhanced inflammation [53,54], angiogenesis [71,72],
enhanced collagen synthesis and secretion [9], and/or a
reduced rate of apoptosis [73], thus potentially contributing to

Table 2

KEGG pathways/complexes significantly affected by intra-group inter-individual gene expression variance in rheumatoid arthritis 
(RA) compared with normal control (that is, higher variances in RA)

KEGG identification number Pathway/complex B (E) χ2 P value Affected genes

1 hsa04060 Cytokine–cytokine receptor 
interactiona

14 (8) 4.56 0.12 CXCL13, IFNA8, FNAR2, IL2RG, IL4, 
IL8, IL13, CXCL10, IL21R, TNFRSF17, 
TGFBR2, CD27, TNFRSF25, ACVR1B

2 hsa04010 MAPK signaling pathwaya 13 (8) 3.32 0.22 CHP, AKT2, MAP3K7IP2, PLA2G2D, 
IKBKB, NTRK2, PRKACA, MAPK8, 
PRKX, TGFBR2, CACNB1, FGF18, 
ACVR1B

2a hsa04010 MAPK signaling pathwaya (classical 
+ JNK/p38 MAPK sub-pathway)

13 (7) 4.39 0.13 CHP, AKT2, MAP3K7IP2, PLA2G2D, 
IKBKB, NTRK2, PRKACA, MAPK8, 
PRKX, TGFBR2, CACNB1, FGF18, 
ACVR1B

3 hsa05212 Pancreatic cancera 9 (2) 20.2
9

<0.01 E2F3, AKT2, IKBKB, SMAD2, MAPK8, 
BCL2L1, STAT1, TGFBR2, ACVR1B

4 hsa04620 Toll-like receptor signaling pathwaya 9 (3) 14.0
1

<0.01 AKT2, MAP3K7IP2, IFNA8, IFNAR2, 
IKBKB, IL8, CXCL10, MAPK8, STAT1

5 hsa04660 T-cell receptor signaling pathwaya 7 (3) 5.98 0.05 CHP, AKT2, IKBKB, IL4, RHOA, PDK1, 
PLCG1

6 hsa04664 Fc epsilon receptor I signaling 
pathwaya

7 (2) 9.53 0.01 AKT2, PLA2G2D, IL4, IL13, PDK1, 
PLCG1, MAPK8

7 hsa04520 Adherens junctiona 6 (2) 5.56 0.07 CSNK2A1, RHOA, SMAD2, TGFBR2, 
ACVR1B, CDH1

8 hsa05220 Chronic myeloid leukemiaa 6 (2) 5.73 0.06 E2F3, IKBKB, BCL2L1, TGFBR2, 
ACVR1B, AKT2

9 hsa04350 TGF-β signaling pathwaya 5 (3) 1.86 0.38 RHOA, SMAD2, TGFBR2, ACVR1B, 
ZFYVE9

9a hsa04350 TGF-β signaling pathwaya (classical 
TGF-β sub-pathway)

5 (2) 6.7 0.05 RHOA, SMAD2, TGFBR2, ACVR1B, 
ZFYVE9

10 hsa04210 Apoptosisa 5 (3) 2.25 0.34 AKT2, IKBKB, PRKACA, BCL2L1, CHP

10a hsa04210 Apoptosisa (anti-apoptotic sub-
complex)

5 (1) 6.7 0.03 AKT2, IKBKB, PRKACA, BCL2L1, CHP

aSpecifically affected in rheumatoid arthritis. B, absolute frequency; E, expected frequency; JNK, c-jun kinase; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; MAPK, mitogen-activated protein kinase; TGF-β, transforming growth factor-beta.
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hyperplasia of the SM [74], collagen-dependent fibrosis of the
joints [64], and a prolonged life span of activated synovial cells
in RA [73,75].

Since RA and OA samples share many aspects of their
respective mRNA expression profiles [76,77], genes in a
number of pathways show comparable variance-fold values in
both RA and OA (for example, apoptosis; Tables 2 and 4),
thus reflecting basic similarities of joint diseases. However, RA
and OA SM samples can be clearly differentiated regarding
gene expression variances in other pathways/complexes. In
OA, the pathways/complexes affected by higher expression
variances than in NC indicate an OA-specific desynchroniza-

tion of metabolic processes (Table 7). In contrast, RA-specific
pathways/complexes are involved in the regulation of VEGF-
mediated angiogenesis [74,75] and vascular permeability
[78], as well as B cell-dependent auto-immunity and inflamma-
tion [79]. The latter represents the elevated activity status of B
cells (including cytokine production and T-cell activation) and
– in connection with the affection of the anti-apoptotic sub-
pathway – the enhanced survival of self-reactive B cells
[5,6,80]. This may result in a pronounced role of B cells for dis-
ease development in RA compared with OA, which is also
reflected in the increasing impact of B cell-directed treatment
in RA [81].

Table 3

KEGG pathways/complexes significantly affected by intra-group inter-individual gene expression variance in normal control (NC) 
compared with rheumatoid arthritis (that is, higher variances in NC)

KEGG identification number Pathway/complex B (E) χ2 P value Affected genes

1 hsa03010 Ribosomea 8 (3) 27.6
2

<0.01 RPL7, RPL9, RPL21, RPL27, RPL30, RPS6, 
RPS10, RPS12

2 hsa04110 Cell cyclea 7 (4) 13.1
1

<0.01 CDKN1A, E2F1, GADD45B, ATM, SKP1A, 
CCNA2, CDC2

3 hsa04310 Wnt signaling pathwaya 7 (5) 7.8 0.01 CACYBP, PPP2R1B, PRKACB, PSEN1, SKP1A, 
TBL1XR1, FZD1

4 hsa04640 Hematopoietic cell lineagea 4 (3) 4.15 0.15 CSF1, EPOR, FLT3LG, ITGA4

5 hsa05010 Alzheimer diseasea 3 (1) 13.3 <0.01 GAPDH, LRP1, PSEN1

6 hsa01510 Neurodegenerative disordersa 3 (1) 8.18 0.01 GAPDH, NR4A2, PSEN1

aSpecifically affected in rheumatoid arthritis. B, absolute frequency; E, expected frequency; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
Wnt, wingless-type MMTV integration site family.

Table 4

KEGG pathways/complexes significantly affected by intra-group inter-individual gene expression variance in osteoarthritis (OA) 
compared with normal control (that is, higher variances in OA)

KEGG identification number Pathway/complex B (E) χ2 P value Affected genes

1 hsa04310 Wnt signaling pathway 7 (4) 3.44 0.21 CSNK2A1, SMAD2, PPP3CB, PRKACA, 
TBL1X, BTRC, RBX1

1
a

hsa04310 Wnt signaling pathway (canonical sub-
pathway)

6 (3) 4.56 0.12 CSNK2A1, BTRC, SMAD2, PRKACA, 
TBL1X, RBX1

2 hsa04210 Apoptosisa 6 (2) 8.13 0.01 AKT2, IKBKB, PP3CB, PRKACA, 
RKAR2A, BCL2L

3 hsa03010 Ribosomea 5 (2) 3.99 0.16 RPL18, RPL35A, RPL38, RPS10, RPL14

3
a

hsa03010 Ribosomea (large subunit) 4 (1) 6.49 0.04 RPL18, RPL35A, RPL38, RPL14

4 hsa04520 Adherens junctiona 5 (2) 5.57 0.07 CSNK2A1, SMAD2, ACP1, TGFBR2, 
YES1

5 hsa05212 Pancreatic cancera 5 (1) 6.22 0.04 AKT2, IKBKB, SMAD2, BCL2L1, 
TGFBR2

6 hsa04120 Ubiquitin-mediated proteolysisa 4 (2) 8.12 0.01 ANAPC5, UBE2D2, BTRC, RBX1

7 hsa05050 Dentatorubropallidoluysian atrophya 3 (1) 19.7
9

<0.01 ATN1, RERE, MAGI1

aSpecifically affected in rheumatoid arthritis. B, absolute frequency; E, expected frequency; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
Wnt, wingless-type MMTV integration site family.
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In summary, these pathways indicate limited but distinct
molecular/cellular differences between RA and OA and dem-
onstrate a major contribution of inflammation and angiogen-
esis in RA. It is reasonable to assume that the RA
pathogenesis is influenced by broad alterations of gene
expression in general. For years, only differential gene expres-
sion analyses have been performed, resulting in the identifica-
tion of some key genes but leading to the disregard of several
genes with a more limited influence on RA, whose collective
influence may still be as large as that of the already-known key
players. Therefore, besides ubiquitous elevated expression
levels of exceptional pro-inflammatory/pro-destructive key
regulators/mediators like TNF-α, IL-1β [82], or MMP-1 [83],
elevated or reduced expression levels of many different genes
in various pathways/complexes may also influence RA devel-
opment and progression. In this process, the affection of path-
ologically relevant pathways with differentially expressed
genes may be more important than the character of the
respective genes, resulting in different gene expression pro-
files among individual RA patients as reflected in the gene
expression variances of the present study. As a consequence,
synchronized or desynchronized gene expression in RA poten-
tially shifts cellular activity from the normal to an activated
status.

Regarding diagnosis and therapy of RA, the present results
indicate that a more individualized approach for different
patients may represent the future of RA treatment. Thus, the

determination of individual gene expression patterns may
facilitate the selection of the best medication or, more ambi-
tiously, may allow directed modulation of (individually)
selected pathways/complexes instead of broad suppression
of inflammation by anti-inflammatory/anti-rheumatic drugs
[84]. In addition, the present study helped to identify the TGF-
β pathway as an accessory key player in RA, due to its central
position within the regulatory networks. This suggestion is
strongly supported by an emerging number of publications
reporting a decisive impact of TGF-β on RA development/pro-
gression [57,58,85,86]. The affected pathways (and the
respective genes) reported here may provide the basis for fur-
ther analyses of the RA pathogenesis and the differences
between RA and OA on a cellular and molecular level.

Conclusion
In RA, a number of disease-relevant or even disease-specific
KEGG pathways/complexes (for example, TGF-β signaling
and anti-apoptosis) are characterized by broad intra-group
inter-individual expression variances. This indicates that RA
pathogenesis in different individuals may depend to a lesser
extent on common alterations of the expression of specific key
genes, and rather on individual-specific alterations of different
genes resulting in common disturbances of key pathways.
Numerous affected pathways, including TGF-β signaling in a
central position, are involved in inflammation, angiogenesis,
proliferation, and cell survival, thus potentially influencing char-

Table 5

KEGG pathways/complexes significantly affected by intra-group inter-individual gene expression variance in normal control (NC) 
compared with osteoarthritis (that is, higher variances in NC)

KEGG identification number Pathway/complex B (E) χ2 P value Affected genes

1 hsa04310 Wnt signaling pathway 8 (3) 6.55 0.04 CSNK1A1, DKK2, JUN, MYC, PPP2R1B, 
PRKACB, WNT5B, FZD1

2 hsa05120 Epithelial cell signaling in Helicobacter 
pylori infectiona

5 (2) 7.97 0.01 JUN, NFKBIA, ATP6V1C1, ADAM17, 
ATP6V0D1

3 hsa05211 Renal cell carcinomaa 5 (2) 7.75 0.01 AKT2, HGF, JUN, TCEB1, VEGFA

4 hsa04620 Toll-like receptor signaling pathwaya 5 (2) 4.43 0.12 AKT2, JUN, NFKBIA, TLR7, STAT1

aSpecifically affected in rheumatoid arthritis. B, absolute frequency; E, expected frequency; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
Wnt, wingless-type MMTV integration site family.

Table 6

KEGG pathways/complexes significantly affected by intra-group inter-individual gene expression variance in rheumatoid arthritis 
(RA) compared with osteoarthritis (that is, higher variances in RA)

KEGG identification number Pathway/complex B (E) χ2 P value Affected genes

1 hsa04916 Melanogenesisa 6 (3) 6.53 0.03 ADCY2, LEF1, PRKCB1, PRKX, TCF7, WNT8B

2 hsa04662 B-cell receptor signaling pathwaya 5 (2) 9.72 0.01 MALT1, PIK3CD, PLCG2, PRKCB1, CD72

3 hsa04370 VEGF signaling pathwaya 4 (2) 4.09 0.15 PLA2G2D, PIK3CD, PLCG2, PRKCB1

aSpecifically affected in rheumatoid arthritis. B, absolute frequency; E, expected frequency; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
VEGF, vascular endothelial growth factor.
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acteristic features of RA pathology.
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