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Abstract

In a chronically hypoxic tissue such as cartilage, adaptations to
hypoxia do not merely include cell survival responses, but also
promotion of its specific function. This review will focus on des-
cribing such hypoxia-mediated chondrocyte function, in particular
in the permanent articular cartilage. The molecular details of how
chondrocytes sense and respond to hypoxia and how this pro-
motes matrix synthesis have recently been examined, and specific
manipulation of hypoxia-induced pathways is now considered to
have potential therapeutic application to maintenance and repair of
articular cartilage.

Introduction

Oxygen is essential to life for all higher organisms. Molecular
oxygen is required as an electron acceptor in the generation
of cellular energy (ATP) through the process of oxidative
phosphorylation, and it is also used as a substrate in various
enzymatic reactions [1]. Oxygen homeostasis is, therefore, a
basic requirement and complex systems have evolved to
maintain this at the cell, tissue and whole organism levels.
These include increased reliance on anaerobic glycolysis in
the formation of ATP within the cell; increased angiogenesis
and blood supply (through vasodilation) to affected organs;
and systemic changes such as enhanced erythropoiesis and
increased ventilation [2,3].

Cartilage develops in a hypoxic environment [4], and indeed
proximity to a blood supply appears to be a determining
factor in the formation of bone over cartilage [5,6]. In
addition, due to the absence of vasculature, articular cartilage
(unlike most tissues) is maintained and functions in a low
oxygen environment throughout life [7-10]. The resident cells,
the chondrocytes, are the only cell type present in the tissue
and appear to have developed specific mechanisms to
promote tissue function in response to this chronic hypoxia,
for example, by inducing increased expression of cartilage
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matrix components [11-13], and through the inhibition of
angiogenesis [14]. In addition to mediating the ubiquitous
hypoxia responses, hypoxia-inducible factors (HIFs) also
appear to be critical to these tissue-specific responses in
chondrocytes.

Hypoxia-inducible factors

In the mid-1990s a major breakthrough was made in our
understanding of the molecular mechanisms mediating
cellular responses to hypoxia with the discovery of HIF-1 [15].
The stability and function of HIF is regulated post-trans-
lationally by hydroxylation of specific amino acid residues. In
the presence of sufficient molecular oxygen, HIF is degraded
almost as soon as it is made due to hydroxylation of specific
proline residues that target the HIF-o. subunit for Von Hippel-
Lindau tumour suppressor protein (pVHL)-mediated proteo-
somal degradation. Conversely, when oxygen levels are
limiting (typically <6%), hydroxylation is inhibited and HIF-o
escapes degradation, and is free to heterodimerise with the
constitutively expressed HIF-f subunit (also called Aryl
hydrocarbon nuclear translocator (ARNT)). This complex
translocates to the nucleus, binding specific consensus
sequences (-RCGTG-) within the promoter of its target genes
and thus activating their transcription (Figure 1).

Other HIF-a. members were subsequently discovered, namely
HIF-20, which is structurally similar to HIF-10, and more
recently HIF-3o.. The latter was shown to produce at least six
different isoforms following alternative splicing [16]. HIF-1a
and HIF-20. have the same fundamental protein structure, a
basic-helix-loop-helix (bHLH) domain at the amino terminus,
an intermediate PER-ARNT-SIM (PAS) domain, and a trans-
activation domain (TAD). HIF3-o lacks the last of these, and it
has been suggested that it could act as a dominant negative
for HIF-1oc and HIF-200 [16,17].

DMOG = dimethyloxaloylglycine; FIH = Factor inhibiting HIF; HAC = human articular chondrocyte; HIF = hypoxia-inducible factor; MSC =
mesenchymal stem cell; PHD = prolyl hydroxylase domain; pVHL = Von Hippel-Lindau tumour suppressor protein.
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Hypoxia-inducible factor (HIF) function. HIFs are transcription factors regulated post-transcriptionally by oxygen levels in the cell through hydroxylation on
specific proline and asparaginyl amino acid residues. These HIF-specific hydroxylases are the direct oxygen sensors as they use molecular oxygen (in
addition to iron and oxoglutarate) to function. Prolyl hydroxylase domain (PHD) enzymes hydroxylate specific proline residues, which target the HIF-o.
subunit for Von Hippel-Lindau tumour suppressor protein (VHL)-mediated proteosomal degradation. In addition, Factor inhibiting HIF (FIH) hydroxylates a
specific asparaginyl residue, which prevents recruitment of co-activator p300/CBP, and thus decreases HIF's transcriptional activity. When oxygen levels
are limiting (that is, in hypoxia), these hydroxylases are inhibited, and hence HIF-o. escapes degradation, and can heterodimerise with HIF-1[3 and migrate
to the nucleus to activate transcription of target genes through binding to their hypoxia response elements (HREs).

HIFs in developing cartilage

Data have emerged in recent years highlighting the impor-
tance of HIF-1a in the developing growth plate in the mouse
[18]. Schipani and colleagues [4] first demonstrated that the
developmental growth plate was hypoxic, and deletion of HIF-
1o led to chondrocyte death coupled with decreased
expression of the CDK inhibitor p57, thus strongly suggesting
that HIF-1ou is essential for chondrocyte survival and growth
arrest. More recent data have highlighted HIF-1a's role in
regulation of differentiation of the limb bud mesenchyme and
in joint development [18]. Hypoxia was also shown to
increase matrix synthesis of isolated epiphyseal chondrocytes
in a HIF-10-dependent manner [19]. HIF-20. was shown to be
elevated during chondrocyte differentiation and to be present
in the articular cartilage in a study by Stewart and colleagues
[20]. Deletion of VHL (which results in overexpression of HIF-
10 and HIF-20) increases matrix deposition by chondrocytes
during growth plate development [21]. The role of HIFs in the
permanent articular cartilage has been little studied. How-
ever, a recent study has reported induction of osteoarthritis in
BALB/c mice after intra-articular injection of the anti-angio-
genic compound 2-methoxyoestradiol [22]. Although promising,
2-methoxyoestradiol is not a specific HIF-targeting compound
and its mechanism of action is not clear, although it is thought
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to be related to disruption of microtubule assembly in the cell
[28]. In addition, HIF-20. was not investigated in this study,
but presumably was also affected by 2-methoxyoestradiol
treatment in a manner similar to HIF-10.

Despite the above-mentioned important findings in the mouse,
extending these data to humans is fraught with difficulties. A
major concern with regard to hypoxia is the different thickness
between human and mouse cartilage. For example, being
merely a few cells in thickness, appreciable oxygen diffusion is
possible in mouse knee articular cartilage; whereas the
equivalent site in humans is several millimetres thick. As a
consequence, the oxygen concentration in human articular
cartilage may be significantly lower than that in the mouse [7-
10,24]. In addition, the mechanical loads experienced by
mouse and human knees are obviously hugely different [25].
Hence, although extremely useful for developmental studies,
for the understanding of adult articular cartilage in humans, the
mouse model is limited.

Role of HIFs in hypoxic induction of the
human articular chondrocyte phenotype
It has long been known that the chondrocyte phenotype is
unstable in culture [26-28]. Moreover, chondrocyte pheno-
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Hypoxia enhances chondrogenic differentiation of mesenchymal stem cells (MSCs). Clonally derived MSCs were isolated from the bone marrow of
5-week-old mice. After 1 week in chondrogenic medium (containing 5 ng/ml transforming growth factor-f3) at different oxygen concentrations, cultures
were stained for cartilage-specific type Il collagen. Enhanced collagen Il staining was observed in cultures exposed to reduced oxygen concentrations.

typic alterations are observed in cartilage pathology, such as
osteoarthritis [29]. Controlling the chondrocyte phenotype
remains, therefore, a major challenge for cartilage repair
strategies. Being the only cell type within the tissue, the
chondrocytes are solely responsible for secreting the
specialised extracellular matrix that gives the tissue its bio-
mechanical function. Articular cartilage is under two perma-
nent stresses, mechanical and hypoxic. Although it is widely
accepted that loading and compression applied to cartilage
are potent regulators of chondrocyte physiology [30-33], the
role of hypoxia on chondrocyte function is less well estab-
lished. A general response of articular chondrocytes to their
hypoxic environment is their reliance on anaerobic metabo-
lism to generate cellular energy (ATP), and oxygen consump-
tion of the tissue is accordingly low [34]. In addition, hypoxia

has specifically been shown to promote tissue function by
upregulating expression of cartilage matrix genes in isolated
bovine [13,35] and human articular chondrocytes (HACs)
[36]. Similar results have been reported for human meniscal
cells [37]. Applying the technique of RNA interference, we
subsequently demonstrated that HIF-2a, but not HIF-10, was
critical for this hypoxic induction of cartilage matrix synthesis
in HACs [11]. Furthermore, the main matrix genes, such as
those encoding Col-2a1, aggrecan and Col-9, are not direct
HIF targets, but are upregulated by hypoxia through cartilage-
specific transcription factor SOX9. Whether HIF-20. directly
targets SOX9 in HACs remains unknown. However, mouse
stromal cells (ST2) transfected with a Sox9 promoter
construct showed upregulation under hypoxia [38], and when
putative hypoxia response element sequences (located within
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Hydroxylase inhibition, like hypoxia, upregulates SOX9 in human articular chondrocytes by an HIF-20. dependent mechanism. (a) The non-specific
hydroxylase inhibitor dimethyloxaloylglycine (DMOG) upregulates hypoxia-inducible factor (HIF)-1c, HIF-20, and SOX9 transcription factors in
human articular chondrocytes. (b) Like hypoxia, DMOG induction of SOX9 in human articular chondrocytes is HIF-2c, but not HIF-10., dependent.
Luc, luciferase; siRNA, small interfering RNA. (c) Relative mRNA levels of HIF-targeting prolyl hydroxylase domain (PHD) enzymes in human
articular chondrocytes (from n = 7 patients) exposed to both hypoxia and normoxia. ***P < 0.001. Error bars indicate standard deviation about the

mean.

the first 500 bp) were mutated, hypoxic induction was
abolished. These results have been supported more recently
in micromass culture experiments, which showed, using
chromatin immunoprecipitation, recruitment of HIF-1o to the
Sox9 promoter precisely on the same hypoxia response
element-containing site [39].

Hypoxia, HIFs and mesenchymal stem cells
for cartilage repair

The ability of mesenchymal stem cells (MSCs) to differentiate
into chondrocytes (in vitro and in vivo) and to be readily
expanded in tissue culture without loss of multilineage poten-
tial has made them very attractive candidates for cell-based
articular cartilage repair. In addition, unlike articular chondro-
cytes, the use of MSCs is not hindered by the availability of
suitable healthy tissue since MSCs can be isolated from a
variety of tissues [40-42]. Implantation of MSCs in an animal
model of osteoarthritis has resulted in engraftment of the cells
in the meniscus, fat pad, and synovium, with regeneration of
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the medial meniscus [43]. In addition, degeneration of the
articular cartilage and osteophytic remodelling were reduced
in MSC implanted joints compared with control joints. Similar
results have been reported in the treatment for focal defects
in articular cartilage [44]. In a clinical trial MSCs were trans-
planted using hydroxyapatite ceramic scaffolds to treat
severe osteochondral damage after septic arthritis of the
knee [45]. Successful cartilage-like tissue regeneration was
observed by a second athroscopy.

Recent studies have reported that hypoxia enhances
chondrogenic differentiation of MSCs (in comparison to
control cultures at ambient oxygen tension) [38,46]. In
addition, Lennon and colleagues have also reported that low
oxygen enhanced in vivo chondrogenesis of rat MSCs [47].
Our laboratory investigated the effects of oxygen tension
(20%, 5%, and 1% O,) on the chondrogenic differentiation of
both murine and human MSCs when cultured in the presence
of 5ng/ml transforming growth factor-33. Chondrogenic
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Hypoxia-inducible factor (HIF)-20-mediated induction of cartilage matrix synthesis by human articular chondrocytes (HACs) may be possible
through the inhibition of specific HIF-20. targeting prolyl hydroxylase domain (PHD) enzymes.

differentiation took 3 to 4 days in reduced oxygen tensions,
and 1 week in cultures exposed to 20% oxygen. Furthermore,
low oxygen tension significantly enhanced the number of
chondrogenic nodules formed, as well as the intensity of
cartilage-specific type Il collagen staining, in comparison to
20% cultures (Figure 2). Interestingly, when cultures were
exposed to reduced transforming growth factor-3 levels
(1 ng/ml), chondrogenic nodules formed in only 5% and 1%
O, (that is, not 20%; unpublished data), suggesting hypoxia
plays an essential role in the onset of chondrocyte differen-
tiation from MSCs. However, a fundamental problem with the
use of MSCs for cartilage repair is that they readily become
terminally differentiated, with production of type X collagen
[48]. Obviously, for the permanent articular cartilage this is
undesirable. Since type X collagen production occurs with a
concomitant decrease in SOX9 expression in joint develop-
ment [49], it is tempting to speculate that hypoxia may delay
or inhibit terminal differentiation of MSCs through induction
and maintenance of SOX9 levels.

The specific role of HIFs in this hypoxic induction of
chondrogenesis from MSCs deserves further exploration and,
interestingly, Hardingham and colleagues [50] have recently
shown that human MSCs isolated from the infrapatellar fat
pad showed enhanced chondrogenic differentiation in
hypoxia and, furthermore, that HIF-2¢, but not HIF-10, was
upregulated in these cultures. This supports findings in our
laboratory that specifically HIF-2a. promotes the differentiated
HAC phenotype [11].

HIF-targeting hydroxylases: the direct oxygen
sensors

The direct oxygen sensors are not the HIFs, but the
hydroxylases targeting them since the latter are enzymes that
require oxygen as a co-factor. Hydroxylation of HIF proline
residues occurs on the amino-terminal end of the trans-
activation domain (on Pro402 and Pro564 of human HIF-1o)
[61]. Three prolyl hydroxylases, prolyl hydroxylase domain
enzymes 1 to 3 (PHD-1 to PHD-3) have been shown to act in
this way [52]. An asparaginyl residue located in the carboxy-
terminal domain (on Asn803 of human HIF-10) is also
hydroxylated by a specific enzyme called Factor inhibiting HIF
(FIH). Hydroxylation by FIH inhibits transcriptional activity of
HIF by preventing recruitment of the transcriptional co-
activator p300/CBP [53,54].

The HIF targeting hydroxylases (PHD1/2/3 and FIH) belong
to a family of iron- and oxoglutarate-dependent hydroxylases,
and dimethyloxaloylglycine (DMOG; being an analogue of
oxoglutarate) can inhibit all family members. We have shown
that DMOG, like hypoxia, stabilises HIF-1a. and HIF-20 in
human articular chondrocytes, and subsequently induces SOX9
in a specifically HIF-2a-dependent manner (Figure 3a,b).
Although a useful experimental tool, DMOG is not appro-
priate for therapeutic application since, being a non-specific
hydroxylase inhibitor, it also inhibits procollagen hydroxylases
such as prolyl and lysyl hydroxylases, which are critical for
post-transcriptional processing and triple helical formation of
cartilage collagens [55]. In fact, these collagen prolyl hydroxy-
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lases are themselves upregulated by hypoxia [56], and we
have observed similar hypoxic induction of lylsyl hydroxylase
(PLODZ2) in human articular chondrocytes [12]. Interestingly,
Gelse and colleagues [22] have recently reported that
DMOG injection into murine joints led to increased intra-
cellular accumulation of collagen molecules, presumably due
to defective collagen processing and hence impaired secre-
tion. Thus, there is a critical need for development of HIF-
specific hydroxylase inhibitors if these deleterious effects on
collagen processing are to be avoided.

All three HIF-targeting prolyl hydroxylases (PHD1/2/3) have
been detected in the maturing zone of the mouse growth
plate [67]. PHD2 was shown by Pouyssegur and colleagues
to be dominant hydroxylase regulating HIF-10. [58], at least in
non-chondrocytic cell lines. Such PHD selectivity for HIF-1a
has also been shown by Applehoff and co-workers [52].
Since HIF-2a and not HIF-1a. is involved in the control of the
human chondrocyte phenotype [11], it is now important to
uncover if PHDs show selectivity for HIF-2c. in human articular
chondrocytes. Interestingly, in recent microarray experiments
on HACs, we have observed a very pronounced hypoxic
induction of PHD3 mRNA [12], although PHD2 message
was the most abundant both in hypoxia and normoxia
(Figure 3c). Nevertheless, the relative contribution of each
hydroxylase may be dependent on the prevailing oxygen
tension.

Concluding remarks

As a permanent stress, hypoxia influences general chondro-
cyte metabolism, and most importantly tissue-specific
production of cartilage matrix proteins. This raises the exciting
possibility of manipulating hypoxia-induced pathways to
promote cartilage synthesis and to stimulate repair. Thus,
manipulating potentially HIF-2a. specific PHDs in cartilage
could lead to enhanced chondrocyte function without
perturbing the HIF system in other tissues, or indeed even the
HIF-1a levels within the tissue itself (Figure 4). Since HIF-1a.
overexpression may promote the angiogenic phenotype
favouring tumourigenesis [59], in addition to induction of
catabolic cytokines [60], such isoform- and tissue-specific
HIF manipulation is obviously highly desirable. Key to the
therapeutic application of such research will be the
development of isoform-specific PHD small molecule
inhibitors.

This review is part of a series on
Hypoxia
edited by Ewa Paleolog.

Other articles in this series can be found at
http://arthritis-research.com/articles/
review-series.asp ?series=ar_hypoxia
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