
Introduction

Cell death is a necessary and natural process that occurs 

under both physiological and pathological conditions in 

all tissues. Th is process is also a critical mechanism in 

immune tolerance and in contraction of normal immune 

responses to exogenous antigens. Apoptosis is the pre-

dominant pathway for cell death, but cells can also under go 

death through necrosis and necroptosis, a programmed 

cell death independent of caspase activation [1]. Apop-

totic cells must be quickly removed from tissues so that 

they elicit neither infl ammation nor immune responses. 

Ineffi  cient clearance of apoptotic cells and subsequent 

accumulation of apoptotic cell debris provoke a chronic 

infl ammatory response and may lead to breakdown of 

self-tolerance [2].

Autoimmunity in systemic lupus erythematosus (SLE) 

is believed to be driven by autoantigens. Certain key 

autoantigens are demonstrable on blebs of apoptotic 

cells. Considerable evidence supports the notion that SLE 

autoimmunity could be related to impaired or delayed 

clearance of apoptotic cells. Persistent apoptotic cells 

may progress to secondary necrotic cell death, a process 

associated with danger signals, accessible modifi ed 

autoantigens, and initiation of autoimmune reactions.

Clearance of apoptotic cells

Effi  cient recognition and clearance of apoptotic cells 

involve many ligands, receptors, and bridging molecules 

between dying cells and phagocytes. In vitro studies have 

indicated that this process is tightly controlled and 

remarkably complex.

Early apoptotic cells express eat-me signals through 

asymmetric distribution of aminophospholipids such as 

phosphatidylserine (PS), phosphatidylethanolamine, and 

phosphatidylcholine to the outer leafl et. PS is the best-

characterized eat-me signal, and externalization of PS 

alone is effi  cient enough to initiate the engulfment of 

apoptotic cells by macrophages (Mφs) [3]. In addition, 

apoptotic cells actively secrete chemoattractant factors 

known as fi nd-me signals to the environment to attract 

phagocytes, such as Mφs and dendritic cells (DCs). Th e 

covalent dimer of ribosomal protein S19 was the fi rst 

identifi ed fi nd-me signal of apoptotic cells [4], but its 

mechanism of action is still unclear. Apoptotic thymo-

cytes release nucleotides (ATP and UTP) in a caspase-

dependent manner to attract monocytes [5], so that 

release of nucleotides can be blocked by the caspase 

inhibitor zVAD-fmk. A diverse fi nd-me signal has been 

identifi ed and is reviewed elsewhere [6]. Interestingly, a 

recent study reported that the 75 to 80 kDa iron-binding 

protein lactoferrin could serve as an anti-attraction 

(keep-out) signal by diff erent apoptotic cell lines. 

Lactoferrin mediates strong inhibition of neutrophil 

migration but not Mφ migration [7]. SIRP-α, another 

keep-out signal, was reported by Tsai and Discher [8]. 

CD47-SIRP-α signaling negatively regulates phagocytosis 

through inhibition of the downstream signaling events of 

phagocytic receptors. Loss of function or blocking of 

either molecule causes removal of viable cells that are not 

normally phagocytosed [9].

Recognition and binding of fi nd-me signals on the 

apoptotic cells initiate the engulfment of apoptotic cells. 

Receptors such as CD36, scavenger receptor A, and PS 

receptor can directly bind to the eat-me molecules and 
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initiate phagocytosis, while other receptors require the 

help of bridging molecules (reviewed in [10,11]). Tyro-3, 

Axl, and Mertk (TAM) receptor tyrosine kinases bind to 

apoptotic cells with the aid of two vitamin K-dependent 

factors, growth arrest specifi c protein 6 and protein S 

[12,13]. Mice lacking Mertk have impaired clearance of 

apoptotic cells and develop lupus-like autoimmunity, 

while TAM triple-knockout mice suff er from more severe 

disease [14,15]. Th ese mice develop a systemic auto-

immune disorder with swollen joints and footpads, skin 

lesions, and glomerular immune complex deposition. A 

broad spectrum of autoantibodies is detectable in the 

serum. TAM receptor signaling normally not only 

facilitates apoptotic clearance, but also downregulates 

proinfl ammatory Mφs and DCs. Activation of TAM 

receptor signals leads to a broad inhibition of Toll-like 

receptor (TLR)-induced cytokines through the IFNAR-

STAT1 cassette to induce TLR suppressors SOCS1 and 

SOCS3 [16].

Defective clearance of apoptotic cells can result in 

accumulation of apoptotic debris. In the thymus and 

bone marrow, most developing T cells and B cells under-

go apoptosis due to failure of positive and negative selec-

tion. Th ose apoptotic cells have to be cleared effi  ciently in 

a non-infl ammatory way. Tisch and colleagues demon-

strated a key role of Mertk on T-cell central tolerance by 

enhancing negative selection of autoreactive T cells 

specifi c for pancreatic β cells [17]. Nonobese diabetic 

mice lacking Mertk failed to develop diabetes due to an 

increased thymic negative selection of β-cell-specifi c 

T  cells and an increased capacity of DCs to induce 

thymocyte apoptosis [17].

In germinal centers, clonal selection of high-affi  nity 

B cells results in large numbers of apoptotic cells, includ-

ing autoreactive cells. Clearance of these cells is essential 

to maintain peripheral tolerance. Specialized phagocytes 

that clear dying cells are referred to as tingible body 

macrophages (TBMφs) in the germinal center. Nagata’s 

group revealed a critical role of milk fat globule epidermal 

growth factor 8 (MFG-E8) in integrin-mediated TBMφ 

phagocytosis of apoptotic cells [18]. MFG-E8 promotes 

the phagocytosis of apoptotic cells by serving as a 

bridging molecule between apoptotic cells and phago-

cytes. Without MFG-E8, mice developed autoimmune 

disease associated with defective apoptotic cell clear-

ance in the germinal center. Alternatively, when apop-

totic cell clearance was disturbed with MFG-E8 mutant 

protein D89E, autoantibodies against phospholipids and 

nuclear proteins were induced in mice [19]. Later, the 

same group reported a reduced level of MFG-E8 in 

some childhood-onset and adult SLE patients and a dose-

dependent inhibition of Mφ uptake of apoptotic cells by 

human MFG-E8 [20]. Aberrant splicing of MFG-E8 was 

also reported in SLE patients. Repeated administration of 

the same mutant MFG-E8 into mice induced anti-

cardiolipin and antinuclear autoantibodies [21]. Similarly, 

we discovered a primary role of Mertk on TBMφ 

clearance of apoptotic B cells in the germinal center. 

Large numbers of apoptotic bodies accumulated outside 

TBMφs in Mertk–/– mice immunized with NP-chicken γ-

globulin [22].

Th e T-cell immunoglobulin mucin (TIM) gene family 

has recently been shown crucial for clearance of 

apoptotic cells, autoimmune regulation, and tolerance 

induction. Tim-1 and Tim-4 specifi cally bound PS on the 

surface of apoptotic cells [23]. Tim-4–/– mice show defects 

in apoptotic cell clearance by peritoneal Mφs and B-1 

cells. Tim-4–/– mice develop autoantibodies against 

dsDNA associated with hyperreactive T cells and B cells 

[24]. Tim-3, on the other hand, recognizes apoptotic cells 

via the FG loop in the IgV domain. Inhibition of apoptotic 

cell engulfment by CD8+ DCs through anti-Tim-3 mAb 

results in reduced autoantigen cross-presentation in vivo 

and in vitro. Administration of Tim-3 and Tim-4 mAb 

induces autoantibody production in animals [25].

Danger signals from later apoptotic cells/necrotic 

cells

Phagocytic clearance of apoptotic cells can infl uence 

immune responses dramatically by enhancing or suppres-

sing infl ammation, depending on additional immune 

stimuli (Figure 1). DCs may present self-derived antigen 

if appropriate danger signals are provided. Defective or 

prolonged clearance of apoptotic cells allows them to 

progress to secondary necrosis, a stage where danger 

signals may accumulate. Our knowledge about danger 

signals released from apoptotic cells, however, is rather 

limited. Nucleic acid, proteins, infl ammatory cytokines, 

and metabolic intermediates are all well-accepted danger 

signals in other contexts [26]. We highlight recently 

described key danger signals in the present review.

High mobility group box 1 protein

High mobility group box 1 (HMGB1) is an evolutionary 

conserved ubiquitously expressed chromosomal protein 

consisting of two positively charged DNA binding 

domains, called HMG boxes A and B.

HMGB1 binds to and helps to stabilize dsDNA, 

ssDNA, distorted DNA, and nucleosomes. HMGB1 can 

be actively secreted from living cells and passively 

secreted from dying cells during late apoptosis and 

necrosis (reviewed in [27]). HMGB1 released from apop-

totic cells undergoes post-translational oxidative modifi -

ca tion and acts as a proinfl ammatory mediator [28]. 

HMGB1 has been found to be elevated signifi cantly in 

sera from lupus patients [28]. Th e precise patho-

physiological role of HMGB1 in lupus, however, remains 

to be further elucidated. In UV-induced skin lesions of 
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experimental cutaneous lupus, HMGB1 increased 

coincident with clinical activity [29,30]. HMGB1 can 

interfere with apoptotic clearance by blocking cell surface 

PS, causing accumulation of apoptotic cells and worsen-

ing disease. HMGB1 can also increase production of 

IFNα by plasmacytoid DCs through TLR9 and RAGE, or 

of cytokines from activated B cells through TLR2. 

HMGB1 has been identifi ed as an autoantigen in lupus 

patients, and thus may itself be a target in autoimmune 

responses. Anti-HMGB1 autoantibodies are positively 

correlated with the SLE disease activity index [31]. 

Patients shown to have positive autoantibodies for 

HMGB1 presented with signifi cantly higher SLE disease 

activity index values.

Microparticles

Microparticles (MPs), also known as plasma membrane-

derived vesicles, are small membrane-bound vesicles 

released from dying cells via blebbing and shedding. MPs 

incorporate cytoplasmic proteins such as cytokines, 

growth factors, acute phase proteins, and DNA and RNA.

Increased numbers of plasma MPs have been docu-

mented in SLE patients with secondary anti-phos pholipid 

syndrome [32,33]. Pisetsky and Lipsky proposed an 

autoadjuvant model for MPs as a revised version of the 

waste disposal hypothesis of SLE [34]. In this model, 

nucleic-acid-containing MPs act as autoadjuvants in both 

central tolerance and peripheral B-cell activation in 

normal individuals. MPs loaded with DNA and RNA 

enhance their stimulatory capacity and ensure eff ective 

central deletion during B-cell development. In individuals 

with SLE, MP may particularly promote the survival of 

DNA-specifi c and RNA-specifi c autoreactive B cells due to 

their eff ectiveness in stimulating B cells through their 

immunoglobulin receptors. Recently, Antwi-Baff our and 

colleagues revealed a dose-dependent competition of MPs 

with apoptotic cells for PS receptor on Mφs [35]. Th e fact 

that MPs express high concentrations of PS on their outer 

leafl et makes them potent inhibitors of phagocytosis of 

normal apoptotic cells. Th is may result in secondary 

necrosis and subsequent increase of apoptotic debris.

To our knowledge, there is no universally accepted 

defi nition for MPs. A wide range of MP sizes (0.02 to 

2  μm) has been reported by diff erent groups in the 

literature [34,36]. MPs bear many surface adhesion 

molecules, making them likely to adhere to leukocytes or 

endothelial cells. Th is and other physical characteristics 

of MPs add to diffi  culties in their quantitative analysis, 

emphasizing the need for attention to collecting, 

processing, and storage of samples containing MPs. Flow 

cytometry-based assays are routinely used in the fi eld, 

while electron or confocal microscopy may be better for 

Figure 1. Distinct balance of apoptotic cell clearance. Normal clearance of apoptotic cells (left side, blue) involves sequential signals and plays 

an important role in tolerance induction and maintenance. Infl ammatory clearance of apoptotic cells (right side, red) involves multi-infl ammatory 

stimuli, breaks down tolerance, and drives autoimmunity including systemic lupus erythematosus. Blue blebs: early apoptotic cells modify surface 

markers and release signals to regulate chemotaxis and phagocytosis. Red blebs: later apoptotic cells and necrotic cells lose the cell membrane 

integrity, leading to the release of danger signals and modifi ed autoantigens. dRP S19, dimer of ribosomal protein S19; HMGB1, high mobility group 

box 1; IL, interleukin; LTF, lactoferrin; MP, microparticle; NET, neutrophil extracellular trap; PC, phosphatidylcholine; PE, phosphatidylethanolamine; 

PS, phosphatidylserine; TGF-β, transforming growth factor beta.
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visualization, characterization, and morphological study 

[36]. An ELISA-based assay was also developed for 

platelet-derived MPs by Osumi and colleagues [37].

Neutrophil extracellular traps

Neutrophil extracellular traps (NETs), extended chroma-

tin networks released from activated neutrophils, con-

stitute an intricate mechanism used by neutrophils to 

capture and kill invading microorganisms [38]. In SLE 

patients, neutrophils are activated and express genes 

induced by type I interferons [39,40]. SLE patients pro-

duce antibodies against NETs and against neutrophil 

proteins such as myeloperoxidase and proteinase-3 [41]. 

Impaired recognition and clearance of apoptotic neutro-

phils may due to reduced expression of CD44 on neutro-

phils in SLE [42]. NETs are made of DNA, histones, and 

neutrophil proteins. Timely removal of NETs is essential 

to avoid self-antigen presentation. Zychlinsky and 

colleagues found that impaired degrada tion of NETs in 

SLE patients correlates with lupus nephritis. Diffi  culty in 

NET clearance is due to the presence of DNase 1 

inhibitors and prevention of DNase 1 access to NETs by 

anti-NET antibodies [39].

DNase I

DNase I facilitates chromatin breakdown during apop-

tosis and has been implicated in the pathophysiology of 

SLE since the 1950s. Lupus-prone NZB/NZW mice have 

signifi cantly lower serum and urine concentrations of 

DNase I compared with normal mice [43], which may 

allow more immune complexes to persist in the kidney 

and further promote disease progression. An elegant 

study with the same model showed that reduced levels of 

renal DNase I coincided with defi cient fragmentation of 

chromatin from dead cells, implying that the lack of this 

enzyme may have caused delayed clearance [44]. Further-

more, DNase-I-defi cient mice developed a SLE-like 

syndrome with antinuclear antibodies, immune complex 

deposition, and glomerulonephritis [45]. Consistent with 

these fi ndings, lower serum DNase I activity was demon-

strated in SLE patients compared with patients with 

rheumatoid arthritis and scleroderma and compared 

with healthy controls [45,46]. In this regard, two DNase-

I-defi cient SLE patients with high serum titers of anti-

dsDNA antibodies were reported [47]. Attempts to use 

DNase I as a therapeutic agent in SLE were carried out by 

several groups and were mildly encouraging [48,49].

Disturbed apoptotic cell clearance in SLE patients

Much of the preceding evidence for apoptotic clearance 

impairment in SLE comes from mouse models of lupus. 

In human lupus, apoptotic cell bodies unengulfed by 

lymph node TBMφs have been observed in vivo. Free 

apoptotic debris found attached to follicular DCs might 

provide survival signals to autoreactive B cells generated 

from random somatic hypermutation [50]. Signifi cantly 

increased numbers of circulating endothelial cells in SLE 

patients have been interpreted to refl ect an enhanced 

apoptotic rate, and possibly decreased clearance of these 

cells [51]. Freshly isolated or cultured lymphocytes from 

SLE patients showed a signifi cantly increased fraction of 

cells undergoing apoptosis in comparison with normal 

control individuals or rheumatoid arthritis patients, with 

a correlation between SLE disease activity and the rate of 

in vitro apoptosis. Extracellular nucleosomes were also 

increased in proportion to the rate of apoptosis [52]. In 

juvenile-onset SLE, neutrophil apoptosis is signifi cantly 

increased, and this is thought to be due to an imbalance 

in proapoptotic and antiapoptotic factors in both 

neutrophils and sera from the patients [53].

UVB has long been associated with apoptosis induction 

and lupus fl ares. Caricchio and colleagues revealed a 

dose-dependent immunological fate of UVB-induced 

apoptosis: non-infl ammatory apoptosis from low-dose 

UVB, and proinfl ammatory apoptosis from higher-dose 

UVB [54]. Later, Reefman and colleagues compared the 

apoptotic/necrotic rate of 14 SLE patients with 16 

controls in response to 200 MJ/cm2 UVB irradiation. 

Although sensitivity of SLE to UVB was not related to the 

numbers of apoptotic or necrotic keratinocytes in the 

skin [55], UVB-induced skin lesions were associated with 

apoptotic keratinocytes [56]. In another study, Fas-medi-

ated apoptosis was thought to account for the low numbers 

of bone marrow CD43+ cells in active SLE, although 

relatively small numbers of patients were studied [57].

An in vitro defect in apoptotic cell clearance has been 

described in SLE. Mφs cultured from SLE patients 

display morphological abnormalities with impaired 

phagocytosis of apoptotic cells [50,58]. Mφs derived from 

SLE monocytes or stem cells were smaller with less 

ability to diff erentiate and with impaired adhesion [58]. 

Moreover, sera from SLE patients possessed an enhanced 

capacity to induce apoptosis [59]. In this study, sera from 

37 sex-matched and age-matched SLE patients and a 

total of 37 other autoimmune/infectious disease and 

healthy donors were sampled; the apoptosis-inducing 

eff ect of the sera on normal monocytes or lymphocytes 

was compared. Th e apoptosis-inducing eff ect was signi fi -

cantly higher in sera from SLE patients than controls. 

Subsequent studies showed that the SLE sera-induced 

apoptosis is caspase dependent but death receptor 

independent [60]. Although the apoptosis-inducing 

factor has not yet been identifi ed, the existence of these 

factors may give rise to apoptotic cells in SLE and worsen 

the pathogenic condition. Interestingly, Dransfi eld and 

colleagues found that glucocorticoid-treated Mφs have 

increased capacity to phagocyte apoptotic neutrophils, 

apparently due to enhanced protein S signaling of the 
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Mertk [61]. In this regard, we recently reported low levels 

of protein S in certain subsets of SLE patients [62]. 

Together, the data may support an important role of 

Mertk in the ineffi  cient clearance of apoptotic cells in 

certain SLE patients. A follow-up investigation of levels 

of TAM receptors in SLE patients may help in under-

standing the distinct role of TAM receptors in the patho-

genesis of SLE.

Th ere are strong links between apoptotic clearance 

defi ciency and SLE, yet no direct etiological role has been 

established for impairment of apoptotic clearance in 

human SLE. Th e initiating phase of SLE may be multi-

factorial and individually variable, while the presence of 

excessive apoptotic debris may have profound pathogenic 

relevance and correlation with disease activity. It has 

been shown that the presence of antinuclear antibodies, 

reactive with apoptotic debris, may render apoptotic cells 

proinfl ammatory and thus create a vicious cycle produc-

ing further autoantibodies and infl ammation [63]. In this 

regard, the lupus erythematosus cell exemplifi es this 

phenomenon of phagocytosis of autoantibody-coated 

apoptotic cells. Lupus erythematosus cells were dis-

covered over 60 years ago, and the LE prep, where lupus 

white blood cells are observed to undergo spontaneous 

phagocytosis of debris in vitro, was the standard test for 

lupus until about 30 years ago [64].

Conclusions

Clearance of apoptotic cells is a daunting challenge to the 

immune system, which has multiple redundant receptor–

ligand systems to effi  ciently eliminate senescent and 

superfl uous apoptotic cells. It is now well established in 

animal models that this process may fall short under 

certain circumstances, leading to abnormally persistent 

and potentially immunogenic apoptotic and necrotic cells. 

Both in vivo and in vitro evidence supports the notion that 

certain human autoimmune diseases, particu larly SLE, 

may also arise from impaired apoptotic cell clearance. 

Better understanding of the immuno biology of apoptotic 

cell clearance may lead to new therapeutic approaches to 

lupus and related autoimmune diseases.
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