
Ankylosing spondylitis

Ankylosing spondylitis (AS) belongs to a common group 

of arthritides called spondyloarthopathies (SpA). AS 

targets primarily the spine and pelvis and is characterized 

histopathologically by entheseal infl am mation. Disease 

progression in AS is characterized by excessive bone 

formation (ankylosis) that gradually bridges the gap 

between joints, eventually fusing joints and causing stiff -

ness, pain, signifi cant morbidity, and increased mortality 

[1].

Th e coexistence of AS and intestinal infl ammation has 

been known for some time [2]. Between 5% and 10% of 

patients with AS develop clinically diagnosed infl amma-

tory bowel disease (IBD), and a further 70% of patients 

with AS develop subclinical gut infl ammation [1,2]. In 

reactive arthritis, a member of the SpA family, infl am-

matory arthritis develops following urogenital infection 

with Chlamydia trachomatis or gastrointestinal infection 

with Campylobacter, Salmonella, Shigella, or Yersinia [3]. 

Such cause-and-eff ect relationships are not established 

for other SpAs.

Genetic overlap between ankylosing spondylitis 

and gut disease

Strong genetic overlap exists between AS and IBD, and 

the two conditions commonly occur together in families 

[4]. Danoy and colleagues [5] (2010) studied genes known 

to be associated with IBD in a large AS cohort. New loci 

and genes were identifi ed, and of particular note were 

genes involved in the interleukin-23 (IL-23) pathway, 

such as STAT3, IL-23 receptor (IL23R), and IL12B (which 

encodes IL-12p40, the share subunit of IL-23 and IL-12) 

[5-7]. How these genetic lesions infl uence gut homeo-

stasis and function remains unclear. Major diff er ences 

also exist between the genetics of IBD and AS, and AS 

has shown no association to date with NOD2/CARD15 or 

the autophagy gene ATG16L1, which are major suscep-

tibility factors in IBD, whereas IBD shows no association 

with HLA-B or ERAP1, which are the strongest AS 

susceptibility genes [8]. Although no asso ciation has been 

shown with NOD2/CARD15 and AS specifi cally, poly-

morphisms in NOD2/CARD15 have been associated with 

an increased risk of gut disease in patients with SpA [9].

The gut, barrier regulation, and intestinal 

epithelial cells

Homeostasis of the normal microbial fl ora in the gut is 

essential for intestinal health. Th e gastrointestinal tract is 

heavily populated with microbes and is the primary site 

for interaction between these microorganisms and the 

immune system [10,11]. Furthermore, microbes found in 

the gut help to shape host immune systems from an early 

age. Th e incomplete development of the immune system 

in neonates and under germ-free (GF) conditions tells us 

that microbiota sculpt the host immune system [12,13].

Maintenance of intestinal and microbial homeostasis is 

increasingly recognized as playing a pivotal role in overall 

health [14], and dysregulation of either gut or microbial 

homeostasis may play a role in autoimmunity. Physio-

logical processes in the host that maintain gut homeo stasis 

and respond to perturbance in the gut micro environ ment 

involve both the adaptive and innate immune system and 

the barrier function of the intestines themselves.

Abstract

It is increasingly clear that the interaction between 

host and microbiome profoundly aff ects health. 

There are 10 times more bacteria in and on our 

bodies than the total of our own cells, and the human 

intestine contains approximately 100 trillion bacteria. 

Interrogation of microbial communities by using classic 

microbiology techniques off ers a very restricted view 

of these communities, allowing us to see only what 

we can grow in isolation. However, recent advances 

in sequencing technologies have greatly facilitated 

systematic and comprehensive studies of the role 

of the microbiome in human health and disease. 

Comprehensive understanding of our microbiome 

will enhance understanding of disease pathogenesis, 

which in turn may lead to rationally targeted therapy 

for a number of conditions, including autoimmunity.
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The physical barrier

Th e human gastrointestinal tract is not a complete 

barrier. It is composed of a single layer of intestinal 

epithelial cells (IECs), which form a physical barrier 

separating the intestinal lumen from the lamina propria 

(Figure 1). IECs secrete soluble factors that are crucial to 

intestinal homeostasis, such as mucins and anti-microbial 

peptides, including lysozymes, defensins, cathelicidins, 

lipocalins, and C-type lectins such as RegIIIγ [15-17]. 

Release of these molecules into luminal crypts is thought 

to prevent microbial invasion into the crypt micro-

environment as well as limit bacteria-epithelial cell 

contact [16,18]. Compared with healthy controls, Crohn’s 

disease patients with active disease have pronounced 

decreases in the human α-defensins DEFA5 and DEFA6 

in the ileum, resulting in altered mucosal function and 

overgrowth or dysregulation of commensal microbial 

fl ora [18,19]. Conversely, overexpression of anti-micro-

bials, including α-defensins, are reported in sub-clinically 

infl amed ileum of AS patients compared with Crohn’s 

disease patients and healthy controls [20]. However, it 

remains unclear whether changes in innate mucosal 

defenses lead to alterations in gut-resident microbial fl ora 

or whether early changes in the microbiome sculpt 

intestinal host responses. Furthermore, depletion of the 

mucin layer leads to an IBD-like phenotype and endo-

plasmic reticu lum stress, potentially driving IL-23 pro-

duc tion [21]. IL-23 excess alone is suffi  cient to induce 

spondyloarthritis in mice [22], and genetic evidence, in 

particular, indicates that the cytokine plays a key role in 

the development of spondyloarthritis in humans.

Permeability and disease

Th e dynamic crosstalk between IECs, microbes, and the 

local immune cells is fundamental to intestinal homeo-

stasis but is also suggested to play a part in disease 

pathogenesis [23]. In IBD and celiac disease, tight junc-

tions are dysregulated, causing increased permeability 

between IECs, resulting in a ‘leaky gut’ [24,25]. Studies 

looking at fi rst-degree relatives of patients with AS 

showed that they too have increased gut permeability, so 

it is likely that there is an underlying genetic process 

operating in the gut [26,27].

The immune barrier

Th e complexity of the intestinal immune system is the 

subject of many reviews, but here we will focus on some 

intestinal immune populations that are believed to be 

important in rheumatic disorders.

Innate immunity

Dendritic cells (DCs) densely populate the intestinal 

lamina propria and form a widespread microbe-sensing  

network. DCs recognize a broad repertoire of bacteria, 

sensing with receptors such as Toll-like receptors (TLRs) 

and monitoring the bacteria on the mucosal surface [28]. 

Intestinal DCs orchestrate production of intestine-

specifi c IgA to limit bacterial contact with the intestinal 

epithelial cell surface [29]. Activated DCs can secrete a 

number of cytokines and chemokines, including IL-23 

and IL-6, that are involved in infl am mation and migration 

of DCs [30].

Macrophages patrol the gastrointestinal systems in 

high numbers. Th ey frequently come in contact with 

‘stray’ bacteria, including commensals that have breached 

the epithelial cell barrier. Macrophages phagocytose and 

rapidly kill such bacteria by using mechanisms that 

include the production of antimicrobial proteins and 

reactive oxygen species [31]. Intestinal macrophages have 

several unique characteristics, including the expression 

of the anti-infl ammatory cytokine IL-10, both constitu-

tively and after bacterial stimulation [32,33]. Th is makes 

intestinal macrophages non-infl ammatory cells that still 

have the capacity to phagocytose. Th e importance of this 

pathway is highlighted by the fact that loss-of-function 

mutations in IL10R lead to early-onset IBD [34]. How-

ever, not all intestinal macrophages are non-infl amma-

tory. In patients with Crohn’s disease, a population of 

intestinal macrophages secrete infl ammatory cytokines 

such as IL-23, tumor necrosis factor-alpha (TNF-α), and 

IL-6. Th ese macrophages contribute to an infl ammatory 

microenvironment in patients with Crohn’s disease [35]. 

Intestinal macrophages also play a role in the restoration 

of the physical integrity of the epithelial cell barrier 

following injury or bacterial insult [24]. Re-establishing 

this barrier after injury is imperative to avoid bacterial 

penetration and sepsis in such a microbe-laden environ-

ment [36].

Adaptive immunity

IL-23-responsive cells
IL-23 is a key cytokine in the development of IL-17- and 

IL-22-secreting cells. IL-23 signals through a receptor 

consisting of the specifi c IL-23R subunit and IL-12Rβ1, 

also shared with IL-12R [37]. Loss-of-function polymor-

phisms in IL23R are associated with protection from AS 

[7], psoriasis [38], and IBD [39], and many other genes in 

the IL-23 pathway are associated with these diseases. 

Under physiological conditions, IL-23-, IL-17-, and IL-

22-producing cells are enriched in gut mucosa, and IL-17 

and IL-22 are known to be important regulators of 

intestinal ‘health’. IL-17 plays important roles in intestinal 

homoeostasis in several ways, including maintenance of 

epithelial barrier tight junctions [40] and induction of 

anti-microbial proteins such as β-defensins, S100 

proteins, and REG proteins. IL-22 induces secretion of 

anti-microbial peptides [41]. In the gut, innate-like 

immune cells act as sentinels, responding very rapidly to 

Costello et al. Arthritis Research & Therapy 2013, 15:214 
http://arthritis-research.com/content/15/3/214

Page 2 of 10



alterations to the microbial composition of the gut with 

rapid secretion of IL-17. Key among these sentinels are 

γδ T cells, natural killer T (NKT) cells, mucosa-

associated invariant T (MAIT) cells, and lymphoid tissue 

inducer (LTi)-like cells (Figure 2).

γδ T cells
γδ T cells are found in large numbers at epithelial surfaces 

such as the gut and skin, where they can account for up 

to 50% of T cells. γδ T cells not only bear an antigen-

specifi c T-cell receptor (TCR) but also have many pro-

per ties of cells of the innate immune system, including 

expression of the major innate immunity receptors and 

TLRs [42] and dectin-1 [43], which recognizes microbial 

β-glucans. Expression of these receptors supports a role 

for γδ T cells in early responses to microbes. Of further 

relevance, we and others have recently confi rmed that 

CARD9, part of the dectin-1 response pathway, is a 

susceptibility gene for AS and IBD [44]. γδ T cells are 

potent producers of infl ammatory cytokines such as 

inter feron-gamma (IFN-γ), TNF-α, and IL-17 [45,46]. 

Th ey are pathogenic in the collagen-induced arthritis 

model [47] and mouse models of colitis [48], and IL-17-

secreting γδ T cells are expanded in patients with AS 

[49]. Intraepithelial γδ T cells also play an important role 

in modulating intestinal epithelial growth through 

secretion of fi broblast growth factor [50]. Alterations to 

γδ T-cell numbers or functions, therefore, may have 

profound eff ects on intestinal health.

Natural killer T cells
NKT cells are characterized by expression of an invariant 

TCR, Vα24Jα18 in humans and the orthologous 

Vα14Jα18 in mice. NKT cells recognize glycolipid struc-

tures presented to them by the non-classic antigen-

presenting molecule CD1d. Like γδ T cells, NKT cells are 

rapid responders to antigenic stimuli and are capable of 

producing a range of immunoregulatory cytokines 

[51-54]. Within the gut, NKT cells are protective in T 

helper 1 (T
H
1)-mediated models of IBD but are patho-

genic in T
H
2 models [55,56]. Recently, it has been shown 

that microbial stimulation of NKT cells in the gut of mice 

Figure 1. The physical barrier. Separating the intestinal lumen and its inhabiting commensal bacteria from the underlying lamina propria is a 

single layer of intestinal epithelial cells (IECs). These IECs are stitched together, creating a tight junction and regulating the paracellular fl ux. IECs 

also secrete soluble factors that are crucial to intestinal homeostasis, such as mucins and anti-microbial peptides (AMPs), including lysozymes, IgA, 

defensins, and C-type lectins such as RegIIIγ. Release of these molecules into luminal crypts is thought to prevent microbial invasion into the crypt 

microenvironment as well as limit bacteria-epithelial cell contact. Toll-like receptors (TLRs) are also expressed on IECs to sense a breach of barrier or 

bacterial invasion. Underneath the IECs, the lamina propria contains T cells, bacteria-sampling dendritic cells (DCs), and macrophages.
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aff ects NKT cell phenotypic and functional maturation 

[57,58]. Given that NKT cells have protective roles in 

models of arthritis [59] and SpA [60], their functional 

maturation in the gut provides evidence for a role for 

mucosal T-cell priming in infl ammatory joint disease.

Mucosa-associated invariant T cells
MAIT cells are a population of innate-like T cells that are 

abundant in human gut, liver, and blood and secrete a 

range of infl ammatory cytokines such as IL-17 and IFN-γ 

in response to antigenic stimulation [61-63]. Like NKT 

cells, MAIT cells bear an invariant TCR (Vα7.2 in 

humans) that recognizes antigen presented by the non-

classic MHC-like molecule, MR1 [64]. In blood, MAIT 

cells display a memory phenotype [63] and express the 

transcription factor ZBTB16 [65], allowing them to 

rapidly secrete cytokine in response to antigenic stimuli. 

Furthermore, they express high levels of IL-23R [66]. 

MAIT cells react to a wide range of microbial stimuli, 

including Gram-positive and Gram-negative bacteria as 

well as yeasts [61,62]. Although the precise role of MAIT 

cells in maintenance of the mucosal barrier remains 

unclear, the rapid postnatal expansion of MAIT cells and 

their acquisition of phenotypic markers of memory likely 

represent an interaction with developing commensal 

microfl ora [67].

Lymphoid tissue inducer-like cells and innate lymphoid cells
LTi-like cells are found in spleen, lymph node, and gut 

lamina propria. LTi-like cells constitutively express hall-

marks of IL-17-secreting cells, including IL-23R, RORγt, 

AHR, and CCR6 [68]. Stimulation of LTi-like cells with 

IL-23 induces IL-17 secretion [68], whereas PMA and 

ionomycin stimulation invokes secretion of IL-22 [69]. 

LTi cells appear to be related to an increasingly interest-

ing and heterogeneous population of innate lymphoid 

Figure 2. The immune barrier. Dendritic cells (DCs) and macrophages patrol the gastrointestinal tract in high numbers. They densely populate 

the intestinal lamina propria and form a widespread microbe-sensing network. Activated DCs can secrete a number of cytokines and chemokines, 

including interleukin-23 (IL-23), IL-6, and IL-1, activating IL-23-responsive cells. IL-23-, IL-17-, and IL-22-producing cells are enriched in gut mucosa, 

and IL-17 and IL-22 are known to be important regulators of intestinal ‘health’. IL-17 plays important roles in intestinal homoeostasis in several ways, 

including maintenance of epithelial barrier tight junctions. LTi, lymphoid tissue inducer; MAIT, mucosa-associated invariant T; NKT, natural killer T; 

T reg, regulatory T; TNF, tumor necrosis factor.
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cells (ILCs). ILCs have been linked to gut infl ammation 

through colitis models in which IL-23-responsive ILCs 

secrete IL-17 and IFN-γ and promote intestinal infl am-

mation [70]. NKp46+ ILCs are involved in host defense 

against Citrobacter rodentium infection through secre-

tion of IL-22 [71].

The human microbiome revolution

Together, the multi-factorial components of the immune 

system shape the microbial population that inhabits the 

gut and (to an extent) vice versa, with each side pushing 

to establish a stable state. Understanding the yin and 

yang of this relationship is at the heart of current micro-

biome research.

Microbiome refers to the totality of microbes, their 

genetic elements, and environmental interaction in a 

defi ned environment [72]. Projects such as the Human 

Microbiome Project, run by the National Institutes of 

Health, and the Metagenomics of the Human Intestinal 

Tract (MetaHit) consortium aim to determine what 

constitutes a ‘normal’ or healthy microbiome. Research in 

this fi eld has recently been greatly accelerated by the 

development of high throughput sequencing methods for 

microbial profi ling, which can profi le microbial popu la-

tions whether or not the microbes present can be cultured.

16S rRNA sequencing

16S rRNA is a section of prokaryotic DNA found in all 

bacteria and archaea. 16S rRNA sequences are used to 

diff erentiate between organisms across all major phyla of 

bacteria and to classify strains down to the species level 

[73]. 16S rRNA sequencing has dramatically changed our 

understanding of phylogeny and microbial diversity 

because it provides an unbiased assessment of the 

microbiome and is not restricted by the ability to culture 

the bacteria present.

Further improvements in sequencing technologies have 

reduced the need for targeted studies such as 16S sequen-

cing and enabled high-throughput shotgun sequencing. 

Th is latter type of sequen cing randomly samples all genes 

present in a habitat rather than just 16S rRNA. Shotgun 

sequencing provides more information about the micro-

biome than just the 16S characterization, which is of 

particular benefi t in determining the functional capacity of 

the microbial community rather than just its phylo geny. 

However, shotgun sequencing is more complex to analyze, 

owing in part to the challenge of distinguishing between 

host and bacterial genomic material, and requires far more 

sequencing to be performed. Th erefore, most studies to 

date have relied on 16S rRNA sequencing approaches.

Advances in tools for metagenomic studies

Several sequencing technologies have been developed for 

human genetic studies and have since been adapted to 

metagenomics. Th e Roche 454 sequencing platform 

(Roche, Basel, Switzerland) uses large-scale parallel 

pyrosequencing to produce reads of between 450 and 

1000 base pairs (bp) in length. Read lengths produced by 

the 454 platform are well suited to 16S rRNA amplicon 

metagenomics studies as well as shotgun sequencing as 

they are easily aligned to reference bacterial genetic data 

sets. Sequencing plat forms from Illumina (San Diego, 

CA, USA), the HiSeq2000 and MiSeq, produce shorter 

reads than the Roche 454. Th e HiSeq was designed 

primarily for human genomic sequencing, and current 

chemistry produces 100-bp paired-end reads. Illumina 

sequencing is best suited for shotgun sequencing or 

indexed amplicon sequencing of multiple samples.

Th is is a rapidly developing fi eld. Advances in chemistry 

are predicted to increase both read lengths and output 

for both of these platforms over the next 12 to 24 months, 

particularly for the Illumina platforms that are less 

mature than the Roche 454. New platforms coming to the 

market are likely to have a major impact on meta-

genomics study design. For example, the Pacifi c Bio-

sciences sequencing technology (Pacifi c Biosciences, 

Menlo Park, CA, USA) provides reads of approximately 

3,000 bases, which will make it particularly suited to this 

fi eld, despite its lower overall output (approximately 

100  Mb of sequence per run). Life Technologies Ion 

Torrent technology (Life Technologies, Grand Island, NY, 

USA) is reported to produce up to 400 base reads and up 

to 1  Gb of sequence per run. Th e relative positions of 

these competing technologies in metagenomics have yet 

to be established.

The normal human gut microbiome

To date, only a handful of studies have examined in any 

depth the function as well as the composition and 

diversity of the human gut microbiome. Two large studies 

interrogating and cataloguing microbiomes from various 

regions of the body in health and disease have been 

undertaken by the National Institutes of Health Human 

Microbiome Project in the US and the European MetaHit 

project [74-76]. Th e European MetaHit consortium 

combined published data sets from around the world and 

added 22 newly sequenced fecal metagenomes from four 

diff erent European countries. Th ey identifi ed three robust 

clusters, termed ‘enterotypes’, that were not nation- or 

continent-specifi c. Th ese enterotypes characterized the 

microbial phylogenetic variation as well as the function 

variation of the clusters at gene and functional class levels 

[74]. Each enterotype had a dominant bacterial genus: 

enterotype 1 was dominated by the genus Bacteriodes, 

enterotype 2 by Prevotella, and enterotype 3 by Rumino-

coccus. Th e three enterotypes were also shown to be 

functionally diff erent. For example, enterotype 2, which 

is Prevotella-dominant, also contains Desfulfovibrio, 
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which may act in synergy with Prevotella to degrade 

mucin glycoproteins present in the mucosal layer of the 

gut. It may be that diff erent enterotypes may be asso-

ciated with diseases such as obesity and IBD rather than 

necessarily specifi c bacterial species, given their diff ering 

functional capacities. Further studies will be required to 

determine whether enterotypes are consis tently found in 

expanded data sets and in studies of intestinal biopsies as 

well as the fecal samples used in the MetaHit study.

The microbiome in immune-mediated arthritis

Th e major fi ndings of microbial profi ling studies in major 

immune-mediated diseases associated with arthritis are 

summarised in Table  1. To date, no study investigating 

the gut microbiome by using sequencing-based methods 

in AS has been reported. Many studies largely using 

antibody tests have suggested an increased carriage of 

Klebsiella species in patients with AS, but this has not 

been universally supported [77]. One study using 

denaturing gradient gel electrophoresis to profi le the 

microbiome by using fecal samples found no diff erences 

between AS cases and healthy controls [78].

Rheumatoid arthritis (RA) is the only infl ammatory 

arthritis for which modern metagenomic studies have 

been reported. Community profi ling studies of gut fl ora 

of patients with RA reveal diff erences in the composition 

of gut microbiota of patients with RA compared with 

those of healthy controls, and a lower abundance of 

Bifi dobacterium and Bacteroides bacteria was observed 

in RA cases [79,80]. However, these studies used fecal 

samples and not intestinal biopsies, possibly infl uencing 

the populations observed [81]. Also, microbial profi ling 

data suggest that gingival infection may be important, 

particularly in anti-citrullinated peptide antibody-posi-

tive RA, although the studies suggesting this have 

generally used antibody tests rather than sequencing-

based approaches (reviewed in [82]).

Several lines of evidence indicate that the gut micro-

biome plays an important role in IBD, including the 

association of genes involved in mucosal immunity with 

IBD (such as CARD15, CARD9, IL-23R, and ATG16L1), 

the therapeutic eff ect of antibiotics on the condition, and 

the benefi cial eff ect of fecal stream diversion in Crohn’s 

disease. Previous studies of human IBD have been under-

taken by using standard culture techniques (for example, 

[83]) or molecular analysis (for example, [84,85]). Th ese 

studies noted alterations in intestinal microbiota when 

compared with non-IBD patients, a fi nding recently 

confi rmed by using 16S rRNA sequencing of intestinal 

biopsies [86]. Th is sequencing study, however, did not 

identify an IBD-specifi c microbial profi le, perhaps because 

of insuffi  cient resolution of the sequencing performed or 

small sample size (12 patients and 5 controls). Much larger 

studies will be required to dissect the relationship 

between the host genetic factors determining risk of IBD 

and the gut microbiome.

Th e microbiome is thought to play a signifi cant role in 

psoriasis, another AS-related condition. It has long been 

suggested that streptococcal infection, especially throat 

infections, may trigger psoriasis in a genetically suscep-

tible individual [87]. Recent studies using 16S rRNA 

sequencing have found signifi cant diff erences between 

the cutaneous microbiota of psoriasis cases and controls 

and in involved and control skin in psoriasis cases, and 

less staphylococci and propionibacteria have been ob-

served in cases and in aff ected skin [88]. Again, further 

studies will be required to determine whether there is a 

particular microbial profi le or specifi c bacterial species 

involved in psoriasis.

Th ese studies are thus consistent with the hypothesis 

that the microbiome contributes to the etiopathogenesis 

of immune-mediated arthritis or seronegative diseases 

like IBD and psoriasis. However, at this point, there is no 

defi nitive evidence of specifi c bacterial infections or 

changes in microbial profi le that play a causative role in 

these conditions (with the exception of reactive arthritis).

Chicken and the egg

Whether the changes noted in these early metagenomic 

studies of immune-mediated disease are a consequence 

of disease or are involved in its development or persis-

tence is unclear. Th is distinction may prove impossible to 

dissect in human studies, but considerable evidence in 

studies in mice supports a role for the microbiome in 

driving immune-mediated diseases.

In the B27 rat model of AS, rats housed under GF 

conditions did not develop disease [89], demonstrating 

that microbes in this model are important for disease 

penetrance. In contrast, in the New Zealand black model 

of systemic lupus erythematosus, mice maintained under 

GF conditions produced higher levels of antinuclear 

antibodies and developed worse disease [90], 

demonstrating a protective role for commensal microbes.

Given the IL-17/IL-22 cytokines, which are of relevance 

to AS, IBD, and psoriasis in particular, strong evidence 

from murine studies indicates that interaction between 

the gut microbiome and the host determines the overall 

level of activation of the immune cells producing these 

cytokines. Segmented fi lamentous bacteria (SFB) are 

com mensal bacteria that induce IL-17 secretion. Mice 

lacking SFB have low levels of intestinal IL-17 and are 

susceptible to infection with pathogenic Citrobacter spp. 

Restoration of SFB in these mice increased the number of 

gut-resident IL-17-producing cells and enhanced resis-

tance to infection [12]. Salzman and colleagues [91] 

illustrated that α-defensins modulate mucosal T-cell 

response by regulating the composition, but not the total 

numbers, of bacteria in the intestinal microbiome. 
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Examin ing the intestinal microbiota of mice expressing 

the human α-defensin gene, they demonstrated signifi -

cant α-defensin-dependent alterations in commensal 

composition, leading to a loss of SFB and fewer IL-17-

producing lamina propria T cells [91]. Furthermore, 

using recolonization studies, investigators recently demon-

strated that, in neonatal mice, commensal microbes 

infl uence invariant NKT (iNKT) cell intestinal infi ltration 

and activation, establishing mucosal iNKT cell tolerance 

to later environmental exposures [92].

Th e mechanism by which the microbiome infl uences 

IL-17-producing cell activation is still being determined. 

Ivanov and colleagues [12] demonstrated that serum 

amyloid A, produced in the terminal ileum, can induce 

T
H
17 diff erentiation of CD4+ T lymphocytes. It has also 

been shown that development of T
H
17 lymphocytes in 

the intestine is stimulated by microbiota-induced IL-1β 

(but not IL-6) production [93]. Colonization with 

Clostridial species has been shown to stimulate intestinal 

transforming growth factor-beta (TGF-β) production, in 

turn increasing IL-10+ CTLA4high Treg (regulatory T) 

activation [94]. Clostridial coloniza tion of neonatal mice 

reduced severity of induced colitis by using dextran 

sulphate sodium or oxazolone and reduced serum IgE 

levels in adulthood. So it is likely that alterations to the 

gut microfl ora or invasion of the gut by pathogenic 

bacteria infl uences the balance of IL-17- and IL-22-

producing cells and other immune cells, infl uen cing 

susceptibility to local and systemic immune-mediated 

disease.

Th e above studies highlight that changes in the micro-

biome can lead to infl ammation which may have far-

reaching eff ects and demonstrate experimental approaches 

by which fi ndings of metagenomic studies in mice and 

humans can be explored to successfully dissect the role of 

the microbiome in human immune-mediated diseases.

Conclusions

Th e human gut microbiome is a dynamic and complex 

ecosystem that is only now beginning to be understood. 

Table 1. Alterations in gut microbiota associated with immune-mediated diseases 

Associated microbes Microbiota changes References

IBD – Crohn’s disease

Gut microbiome

Bacteroides ovatus 
Bacteroides vulgatus 
Bacteroides uniformis 

Reduction in microbial diversity when compared with controls [95]

IBD

Gut microbiome

Bacteroidetes 
Lachnospiraceae 
Actinobacteria 
Proteobacteria 
Clostridium 
Firmicutes/Bacteroidetes ratio 
Bifi dobacteria 

Associated with overall community shift and dysbiosis [96]

Celiac disease

Gut microbiome

Bacteroides vulgatus 
Escherichia coli 
Clostridium coccoides 

Overall higher diversity of microbes in patients with celiac disease compared with controls [97]

Psoriasis

Skin microbiome

Firmicutes 
Bacteroidetes 
Actinobacteria 
Proteobacteria 

Overrepresentation of Firmicutes and an underrepresentation of Actinobacteria and 

Proteobacteria when compared with controls 

[98,99]

Rheumatoid arthritis

Oral microbiome

Porphyromonas gingivalis 

Dysbiosis and increased diversity [100,101]

IBD, infl ammatory bowel disease.
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It is increasingly clear that the interaction between host 

and microbiome profoundly aff ects health. It is still 

unclear how interactions between host genes, microbes, 

and environmental factors can predispose patients to the 

development autoimmune diseases such as AS. We are 

only beginning to grasp the infl uence the microbiome has 

on health. Improved knowledge of the composition and 

function of the gut microbiome in patients with AS and 

how the microbiome shapes the immune response and 

infl uences infl ammation, both local and systemic, will 

likely provide important insights into early events in the 

pathogenesis of AS.
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