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Introduction
This article discusses how the experimental study of gout
provides a relatively simple, inflammatory-disease model
with which to explore the relation between endothelial-cell
activation, leukocyte trafficking, and perivascular activation
of leukocytes. We have highlighted important recent
advances in the in vivo study of endothelial-cell activation
that have enabled the link between endothelial-cell activa-
tion and leukocyte trafficking to be investigated in detail in
an animal model of acute gout. We also discuss recent
evidence suggesting a protective role for macrophages in
the resolution phase of inflammation.

Historical background
Gout appears to be a simple disease from an aetiological
viewpoint, caused by the intra-articular deposition of
monosodium urate monohydrate (MSU) crystals in individ-
uals with elevated serum concentrations of uric acid. After
the description of the clinical features of gout by Hip-
pocrates in the fourth century BC, landmarks in under-
standing of the aetiology of gout were the detection of
crystals in synovial fluid by Anton van Leeuwenhoek in the
seventeenth century, the identification of the main ingredi-
ent of gout-associated stones and tophi as uric acid by
Scheele and Wollaston, respectively, in the eighteenth
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century, and the association of gout with hyperuricaemia
by Garrod in the nineteenth century. However, in the twen-
tieth century the Framlingham study showed that hyperuri-
caemia does not necessarily lead to clinical gout [1]. Thus,
the cumulative incidence of acute gouty arthritis over a 12-
year period in hyperuricaemic men (serum uric acid con-
centrations greater than 8 mg/dl [0.48 mmol/l]) was only
36%. This relatively weak link between hyperuricaemia
and gout may be explained at least in part by differences
between individuals in the capacity to nucleate and grow
MSU crystals. However, we know that other factors
besides the presence of crystals are involved in triggering
an acute attack of gout, since the presence of crystals can
be readily detected in the synovial-fluid samples collected
from asymptomatic joints [2]. A possible clue to the role of
leukocytes in determining the inflammatory balance in
hyperuricemia has come with the observation that the cel-
lular infiltrate in acute gout is predominantly neutrophilic,
whereas in asymptomatic gout the leukocytic infiltrate is
almost exclusively mononuclear [3,4].

Regulation of expression of endothelial-cell
adhesion molecules
Adhesion of leukocytes to vascular endothelium is a prereq-
uisite for their emigration into the tissues in inflammation.
The general mechanisms that allow leukocytes to adhere to
vascular endothelial cells and migrate into tissues are now
quite well understood: they involve sequential capture from
free flow via selectins, activation of G-protein-coupled
receptors, and subsequent integrin-mediated arrest on the
endothelial-cell surface [5–7]. Critical to these interactions
is the activation of endothelial cells, which leads to upregu-
lated expression of selectins, chemokines, and integrin
ligands on the endothelial-cell surface [8,9].

Activation of endothelial cells occurs in response to
changes in the tissue microenvironment and may be clas-
sified according to requirement for de novo protein syn-
thesis. Stimulation of endothelial cells with agonists such
as histamine, C5a, or thrombin leads to the rapid translo-
cation of Weibel–Palade bodies to the luminal surface,
with incorporation of presynthesised P-selectin into the
plasma membrane and release of IL-8 and von Willebrand
factor [10–12]. This process, which is analogous to mast-
cell degranulation, provides a rapid but transient mecha-
nism for initiating leukocyte–endothelial-cell interactions
within seconds of tissue perturbation. In contrast, a more
delayed and sustained response occurs through the stim-
ulation of a programme of gene transcription and de novo
protein synthesis of adhesion molecules and chemokines
that include E-selectin, intercellular adhesion molecule-1
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1),
IL-8, and MCP-1. The agonists that have been best char-
acterised as inducing this transcriptional response are the
cytokines IL-1α/β and tumour necrosis factor (TNF)-α [8]
Recently, evidence has been provided that IL-1 may

increase the IL-8 content of Weibel–Palade bodies, pro-
viding a means by which endothelial cells can mount an
augmented immediate response upon subsequent rechal-
lenge [11,12].

Studying endothelial activation in vivo
Injection of IL-1 or TNF-α into the skin in vivo stimulates a
subacute inflammatory response associated with marked
leukocyte emigration, which can be quantified by measur-
ing the uptake of intravenously injected radiolabelled
leukocytes [13,14]. In order to relate the uptake of leuko-
cytes to endothelial activation, we developed a technique
in the pig for quantifying expression of adhesion molecules
by measuring the uptake of radiolabelled antibodies, using
a differentially radiolabelled nonspecific antibody as an
internal control [15]. This allowed us to demonstrate a
close relation between the onset of neutrophil recruitment
and the expression of E-selectin, both in response to injec-
tion of cytokines such as IL-1 or TNF-α and during
delayed-hypersensitivity responses [16–18]. A similar
approach has since been adopted for measuring endothe-
lial activation and adhesion-molecule expression in models
of inflammation in rats [19] and mice [20–24].

Gout as a model for studying endothelial
activation and leukocyte trafficking
Developments in understanding of the general mechanisms
of leukocyte trafficking now allow us to start dissecting in
detail the relation between endothelial activation and leuko-
cyte trafficking in inflammatory rheumatic diseases.
Because the aetiology is known, acute gout presents a rel-
atively accessible, self-limiting inflammatory condition upon
which to model mechanisms that may underlie other relaps-
ing–remitting diseases. We have particularly addressed the
questions of how leukocytes are recruited into the tissues
during the amplification phase of the acute attack, and then
how the attack spontaneously resolves.

Leukocyte trafficking and endothelial
activation during experimental inflammation
induced by monosodium urate crystals
Injection of MSU crystals into human skin leads to an ery-
thematous reaction that is maximal at 24 hours and then
spontaneously subsides [25]. The response is very similar
in pig skin, providing a good model for studying how
endothelial activation and leukocyte recruitment relate to
the time course of MSU-crystal-induced inflammation. We
analysed endothelial activation and leukocyte trafficking by
measuring the uptake of differentially radiolabelled anti-E-
selectin, neutrophils, and/or mononuclear cells at various
times after intracutaneous injection of MSU crystals [26].

Leukocyte recruitment commenced between 1 and
2 hours after injection of MSU crystals, in close parallel
with the onset of E-selectin expression (Fig. 1). Unexpect-
edly, the phase of E-selectin expression and leukocyte
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recruitment was quite brief, and both had returned to
baseline by the peak of erythema at 24 hours. After
24 hours, erythema resolved in spite of the continued
presence of MSU crystals in the skin. When the relations
between endothelial activation and leukocyte trafficking
and the kinetics of the inflammatory response are consid-
ered, three conclusions can be drawn. Firstly, initial
endothelial activation and leukocyte recruitment were
closely connected. Secondly, the transient nature of
endothelial E-selectin expression and leukocyte recruit-
ment appeared to limit the entry of leukocytes into the
tissues to a relatively early stage of the response. Finally,
assuming erythema is a reflection of postmigratory leuko-

cyte activation, mechanisms must exist that reduce the
responsiveness of leukocytes to MSU crystals and thereby
terminate further endothelial stimulation.

The role of the monocyte in endothelial
activation during the onset of acute gout
MSU crystals are able to activate a number of acute
inflammatory pathways, which may induce and/or amplify
an acute attack of gout. These include the alternative
pathway of complement and the kallikrein system, and
stimulation of mast-cell degranulation with rapid release of
vasoactive mediators and TNF-α [27]. We have focused
particularly on the monocyte, because of its potential for
the sustained release of endothelial activating factors.
Monocytes are known to respond to the phagocytosis of
MSU crystals by activating expression of a number of
proinflammatory genes, including those encoding inter-
leukin (IL)-1 [28], IL-6 [29], IL-8 [30], TNF-α [31], and
Cox-2 [32]. In the case of IL-8, gene transcription follows
signalling via tyrosine phosphorylation of extracellularly
regulated kinase (ERK)1/ERK2, p38 MAPK (mitogen-acti-
vated protein kinase), and JNK (c-Jun N-terminal kinase)
[30]. Promoter analysis has demonstrated that transcrip-
tional activation of the IL-8 gene by MSU crystals involves
binding of activator protein-1 and the NF-κB complex c-
Rel/RelA to the IL-8 promoter [33].

In order to determine which monocyte-derived factors are
responsible for activation of expression of endothelial-cell
adhesion molecule, we established an in vitro model in
which MSU-crystal-stimulated monocyte supernatants
were transferred to endothelial-cell cultures in the pres-
ence of neutralising antibodies to candidate cytokines
[34]. These experiments showed that the capacity of
MSU-stimulated monocytes to induce expression of the
adhesion molecules E-selectin, ICAM-1, and VCAM-1 was
entirely attributable to release of TNF-α and IL-1β. Further-
more, when the time course of production of these two
cytokines was studied in more detail, IL-1β secretion was
found to precede that of TNF-α.

Cytokine-mediated activation of endothelium in vivo can
be demonstrated by imaging the uptake of intravenously
injected anti-E-selectin monoclonal antibody, as shown in
rheumatoid arthritis (RA) [35] and inflammatory bowel
disease [36]. Using a pig model of MSU-crystal-induced
arthritis [37], we found that E-selectin expression and neu-
trophil recruitment were inhibited approximately 50% in
the presence of neutralizing antibodies to TNF-α, a finding
consistent with the data found in vitro [34] (Fig. 2).

Possible role of the macrophage in
downregulating the tissue response
A number of mechanisms have been proposed to account
for the spontaneous resolution of acute gout. These
include coating of crystals with protective proteins
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Figure 1

Kinetics of endothelial E-selectin expression, entry of neutrophils and
mononuclear cells into the tissues, and erythema in pig skin after
injection of monosodium urate (MSU) crystals. Note that E-selectin
expression and leukocyte trafficking have returned to near baseline
before maximal erythema is seen at 24 hours, indicating a vascular
downregulation of the inflammatory response. Erythema subsides
spontaneously after 24 hours, in spite of the continued presence of
MSU crystals in the tissues, suggesting extravascular downregulating
mechanisms (modified from [26], with kind permission from the British
Journal of Rheumatology).

Erythema

0

40

80

120

Time after injection (hours)

Mononuclear cells

0 20 40 60 80

0

40

80

120

E-selectin

Neutrophils

0

40

80

120

0

40

80

120

%
M

a
x
im

u
m

re
sp

o
n

se



S94

[38,39], and anti-inflammatory effects of the hypothalmic–
pituitary axis [40,41]. Also, inflammation will decline upon
neutrophil apoptosis in the tissues, although neutrophil
apoptosis may be delayed by uptake of MSU crystals [42].

Apoptotic neutrophils are rapidly and efficiently phago-
cytosed by tissue macrophages and possibly also by other
resident cells [43]. This is thought to protect tissues from
damage due to autolysis and spillage of the apoptotic neu-
trophil contents, and no doubt reduces the duration and
extent of neutrophil-mediated inflammation. Importantly,
clearance of apoptotic neutrophils by macrophages
occurs without the elaboration of proinflammatory cytokines.
Instead, macrophages that have taken up apoptotic
neutrophils may generate factors with anti-inflammatory
properties, including transforming growth factor-β, platelet-
activating factor, and prostaglandin E2 [44]. Evidence for
the uptake of apoptotic neutrophils by macrophages in
gout exists in the form of the Reiter cell, which can be
found in synovial fluid during an acute gout attack [45,46].

It has been known since the 1970s that MSU crystals can
be found in asymptomatic joints of hyperuricaemic individ-
uals. When synovial fluid leukocytes associated with crys-
tals were examined, it was observed that > 99.5% of
internalised crystals were contained within mononuclear
cells but almost never within neutrophils [3,4]. This obser-
vation raised the possibility that whereas monocytes elicit
a proinflammatory response upon uptake of MSU crystals,
macrophages might clear crystals without the induction of
proinflammatory activity, in a manner analogous to the
clearance of apoptotic neutrophils. We therefore
addressed directly the possibility that the inflammatory

response to MSU may be influenced by the state of mono-
cyte-to-macrophage differentiation.

We studied a panel of mouse monocyte–macrophage cell
lines, representing different stages of macrophage matura-
tion [47]. The order of the cell lines in the differentiation
line-up was established by studying expression of the
macrophage markers F4/80 and BM 8. The cell lines
revealed a close correlation between level of expression of
these surface markers and the capacity to ingest MSU
crystals. TNF-α production in response to MSU crystals,
however, was not linked to phagocytic capacity, in that the
most TNF-α was synthesised by cells at an intermediate
stage of differentiation (Fig. 3). In contrast, the two most
mature macrophage cell types, MH-S and IC21, failed to
secrete TNF-α in spite of their being the most efficient at
phagocytosis of MSU crystals. Furthermore, after uptake
of MSU crystals, supernatants from these mature
macrophage cell lines failed to activate endothelial cells. In
contrast, supernatants from the partially differentiated cell
line RAW264.7 induced endothelial-cell ICAM-1 expres-
sion through a TNF-α- and IL-1β-dependent mechanism,
in accord with our previous study [34].

Stimulation of the macrophage cell line IC21 with
lipopolysaccharide or zymosan led to readily detectable
TNF-α production, signifying that the lack of response to
MSU crystals was not due to an inability to make pro-
inflammatory cytokines. Moreover, incubation of IC21 cells
with both zymosan and MSU together resulted in suppres-
sion of the zymosan response, suggesting that MSU crys-
tals may stimulate an active suppressive response. Since
suppressor activity passed across a semipermeable filter,
this appears to involve the release of as-yet-uncharac-
terised soluble factors.

We have recently extended these experiments to human
monocytes and to macrophages differentiated in vitro and
obtained very similar results (unpublished observations).
Whereas freshly isolated monocytes responded to MSU
crystals by releasing IL-1β, TNF-α ,and IL-6, differentiated
macrophages from the same individual internalised crys-
tals but failed to generate these cytokines or any other
factor capable of activating endothelial-cell adhesion mol-
ecule expression [48]. Again, human macrophages were
as responsive as monocytes in terms of TNF-α release fol-
lowing zymosan stimulation. Ongoing work is establishing
in more detail the profile of proinflammatory and anti-
inflammatory genes activated in monocytes and
macrophages after uptake of MSU crystals and character-
ising the receptors and signalling mechanisms involved.

Monocytes and macrophages as partners in
the orchestration of acute gout
On the basis of this recent work, we propose a model of
gout in which the critical determinant of an acute attack is
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Figure 2

Imaging E-selectin expression in MSU crystal-induced arthritis in the
pig. Scintigraphic images of anti-E-selectin monoclonal antibody (mAb)
uptake in untreated and anti-TNF-α-treated pigs. Scintigraphic images
of the hind limbs and abdomen of an untreated (a) and an anti-TNF-α-
treated animal (b) were taken 24 hours after the intra-articular injection
of MSU crystals into the right knee and saline solution into the left
knee. There is marked uptake of anti-E-selectin mAb into the inflamed
joint of the untreated animal, particularly in the region of the joint space
(a, arrow). In contrast, anti-E-selectin mAb uptake in the injected knee of
an anti-TNF-α treated animal demonstrates a pattern of uptake that is
both less intense and less focal (reproduced from [34], with kind
permission from Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.).
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not just the presence of free MSU crystals, but also the
availability in the extravascular tissues of recently recruited
blood monocytes (Fig. 4). In individuals with hyperuri-
caemia, the asymptomatic state may be maintained by the
silent removal by tissue macrophages of small quantities
of crystals as and when they precipitate. However, fresh
monocyte recruitment may occur in response to any of the
well-established precipitants of acute gout (e.g. trauma,
infection), perhaps ensuing from initial endothelial activa-
tion by mast-cell degranulation and release of TNF-α.
Uptake of crystals by monocytes leads to the elaboration
of IL-1β and TNF-α, which in turn activates endothelium
and amplifies the inflammatory response through the
recruitment of neutrophils and further monocytes. Our
observations in pig skin suggest that the positive feedback
loop is terminated initially at the level of vascular endothe-
lium, by mechanisms shutting off further leukocyte entry
into the tissues. Subsequently, the downregulation of
postmigratory tissue leukocyte activation and the further
elaboration of endothelial activating factors may be
achieved by the noninflammatory removal of free crystals
by macrophages that have differentiated from recruited
monocytes, possibly involving the release of anti-inflamma-
tory mediators. However, the macrophage may not be a
completely innocent partner, as it remains possible that
the resolution mechanisms induced by MSU crystals
could include factors involved in tissue repair (such as
proteases and growth factors) that may contribute to the
destructive changes associated with tophi.

Acute versus chronic rheumatic diseases
The relation between endothelial activation and monocyte–
macrophage differentiation identified in gout provides a
platform on which to base an understanding of the kinetics
of inflammation in rheumatic diseases that are not self-lim-
iting. In immune-mediated conditions such as RA, a
number of influences may limit the downregulating activi-
ties of endothelium and macrophages. First, in RA syn-
ovium, postcapillary venules come to resemble high
endothelial venules found in peripheral lymphoid organs
[49]. These high endothelial venules have plump,
cuboidal/columnar endothelial cells and are adapted to
support sustained rather than self-limited leukocyte
recruitment [50,51]. This and other morphological
changes characteristic of lymphoid neogenesis are most
probably under the control of the B lymphocyte chemo-
attractant (BLC/CXCL13) [52,53].

A second important difference in RA is the presence of
immune complexes and/or complement, which may
subvert the noninflammatory properties of differentiated
macrophages by promoting phagocytosis through differ-
ent receptors. Thus, opsonic serum has been shown to
reverse the noninflammatory program of apoptotic neu-
trophil removal by macrophages, instead rendering the
process proinflammatory [54]. Immune complexes in RA
may directly trigger the release of proinflammatory
cytokines, such as TNF-α, by binding to the immunoglobu-
lin receptor, Fc gamma receptor IIIA [55].

Available online http://arthritis-research.com/content/4/S3/S091

Figure 3

Secretion of TNF-α by macrophage cell lines in response to MSU
crystals or zymosan. TNF-α as measured by ELISA in culture
supernatants collected from five phagocytically competent macrophage
cell lines cultured for 16 hours in the presence of media alone, MSU
crystals (0.5 mg/ml), or unopsonized zymosan particles (400 µg/ml).
Note that the mature macrophage cell lines IC-21 and MH-S secreted
TNF-α in response to zymosan but not to MSU crystals. All these cell
lines efficiently phagocytosed MSU crystals. Values are means ± SD of
triplicates. (Reproduced from [47], with kind permission from Wiley-
Liss, Inc., a subsidiary of John Wiley & Sons, Inc.).
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Model of the differential roles of monocytes and macrophages in the
inflammatory response to MSU crystals. The model proposes that
monocytes play a central role in stimulating an acute attack of gout,
whereas differentiated macrophages may play an anti-inflammatory role
in terminating an acute attack and in preserving the asymptomatic
state (modified from [48], with kind permission from Current Science
Ltd). Mo, monocyte; Mφ, macrophage; PMN, polymorphonuclear
leukocyte.
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A third difference between the self-limiting inflammatory
response in gout and RA is that the prevailing chemokine/
cytokine milieu of rheumatoid synovium may favour precur-
sor differentiation to a dendritic cell rather than a tissue
macrophage phenotype. Rheumatoid synovium is rich in
cytokines, such as IL-4 and IL-15 [56], that skew mono-
cyte differentiation towards dendritic cells [57], but is poor
in cytokines, such as M-CSF, that promote the macro-
phagic end-point [58].

Concluding remarks
The model outlined above can now act as a template for
addressing the triangular interactions between monocytes,
macrophages, and endothelial cells, and for determining
the influence that monocyte–macrophage differentiation
has on the control of other inflammatory responses caused
by potentially harmful particles. It is clear from the variety of
rheumatological syndromes associated with different crys-
tals that the biological effects of crystal deposition vary
with the species of crystal involved. This in turn is due to
differential cellular responses [31–33], perhaps related to
distinct utilisation of cell-surface receptors. The detailed
analysis of the various receptor and signalling pathways
involved in cellular responses to different crystals may
provide important insights that will help us understand the
mechanisms underlying the heterogeneity of crystal-related
rheumatic diseases.

Glossary of terms
MSU = monosodium urate
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