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Abstract

Background: Childhood-onset systemic lupus erythematosus (cSLE) is an incurable multi-systemic autoimmune
disease. Interferon type I (IFN-I) plays a pivotal role in the pathogenesis of SLE. The objective of this study was to
assess the prevalence of the IFN-I signature and the contribution of cytosolic nucleic acid receptors to IFN-I activation
in a cohort of primarily white cSLE patients.

Methods: The IFN-I score (positive or negative), as a measure of IFN-I activation, was assessed using real-time quantitative
PCR (RT-PCR) expression values of IFN-I signature genes (IFI44, IFI44L, IFIT1, Ly6e, MxA, IFITM1) in CD14+ monocytes of cSLE
patients and healthy controls (HCs). Innate immune receptor expression was determined by RT-PCR and flow cytometry.
To clarify the contribution of RNA-binding RIG-like receptors (RLRs) and DNA-binding receptors (DBRs) to IFN-I activation,
peripheral blood mononuclear cells (PBMCs) from patients were treated with BX795, a TANK-binding kinase 1 (TBK1)
inhibitor blocking RLR and DBR pathways.

Results: The IFN-I signature was positive in 57% of cSLE patients and 15% of the HCs. Upregulated gene expression of
TLR7, RLRs (IFIH1, DDX58, DDX60, DHX58) and DBRs (ZBP-1, IFI16) was observed in CD14+ monocytes of the IFN-I-positive
cSLE patients. Additionally, RIG-I and ZBP-1 protein expression was upregulated in these cells. Spontaneous IFN-I
stimulated gene (ISG) expression in PBMCs from cSLE patients was inhibited by a TBK1-blocker.

Conclusions: IFN-I activation, assessed as ISG expression, in cSLE is associated with increased expression of TLR7, and RNA
and DNA binding receptors, and these receptors contribute to IFN-I activation via TBK1 signaling. TBK1-blockers may
therefore be a promising treatment target for SLE.
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Background
Childhood-onset systemic lupus erythematosus (cSLE) is
a lifelong multi-systemic autoimmune disease that shares
disease pathogenesis with adult-onset SLE but in most
studies is characterized by a more severe disease course
and poorer prognosis [1–3]. Interferon type I (IFN-I)
plays a central role in the pathogenesis of SLE [4–7].
Surprisingly, trials blocking exogenous IFN-I or its re-
ceptor have shown limited effectivity so far, possibly due

to our lack of knowledge of the pathways leading to IFN
activation [8].
About half of patients with adult-onset SLE exhibit in-

creased activation of IFN-I signaling or a so-called posi-
tive IFN-I signature [4, 5, 9]. This IFN-I signature is
usually assessed by measuring IFN-I-stimulated gene
expression. In a USA cohort of primarily non-white pa-
tients with cSLE with high disease activity, approxi-
mately 80–90% IFN-I activation has been reported [6,
10]. To our knowledge the prevalence of the IFN signa-
ture has not been studied in other cSLE cohorts.
The endosomal toll-like receptors (TLRs) 7 and 9

induce IFN expression in response to internalized RNA-
containing and DNA-containing immune complexes.
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Loss of the regulation of TLR7 and TLR9, both binding
exogenous self-nucleic acids, has been linked to SLE dis-
ease pathogenesis in mouse models and in humans [11,
12]. In addition to the TLRs, induction of IFN-I expres-
sion can also be initiated by two cytosolic nucleic-
sensing receptor families, known as (i) the RIG-like re-
ceptors (RLRs) sensing RNA and (ii) the DNA-binding
receptors (DBRs) (Fig. 1). In Sjögren’s syndrome we re-
cently observed upregulation of RLRs that may contrib-
ute to IFN type I positivity in this disease [13]. The
DBRs, like IFI16 and ZBP-1/DAI, bind intracellular
double-stranded DNA (dsDNA) [14, 15] and as a result
initiate production of IFN-I. Interestingly, mutations in
the RLRs, DBRs and their downstream signaling mole-
cules lead to systemic IFN-I activation in diseases
grouped as “type I interferonopathies” [16–18]. Patients
with these diseases have similarities to the SLE disease
phenotype, pointing towards a central role of these mol-
ecules in IFN activation and potentially in the pathogen-
esis of SLE [16–18].
The objective of this study was to determine the

prevalence of the IFN-I signature in a cohort of primar-
ily white patients with cSLE and address the potential
contribution of cytosolic nucleic acid receptors to IFN
activation.

Methods
Patients and controls
Twenty-three patients with cSLE fulfilling at least four
of the American College of Rheumatology criteria were
recruited at the outpatient clinic of the department of
pediatric rheumatology of the Sophia Children’s
Hospital, Erasmus Medical Centre. Thirteen healthy
controls (HCs), specifically checked for not having (viral)
infections and not having family members with auto-
immune diseases, were included. Patient characteristics

are summarized in Table 1. The Medical Ethical Review
Board of the Erasmus Medical Centre approved the
study and written informed consent was obtained from
all participants and their parents or legal guardians.

Blood collection and isolation of monocytes and
plasmacytoid dendritic cells
Blood samples were collected in sodium-heparin tubes
(Greiner Bio-One, Germany) followed by isolation of
peripheral blood mononuclear cells (PBMCs) as de-
scribed before [19]. PBMCs were thawed, centrifuged for
5 min (1500 rpm, 4 °C) and resuspended in 100 μl sort‐
buffer (PBS pH 7.4, 2 mM EDTA 1 M, 0.5% BSA). For
membrane staining, cells were incubated for 15 min in
the dark with anti‐CD14 (APC/Cy7; Becton Dickinson
Biosciences, San Diego, USA), anti-BDCA‐4 (PE;
Miltenyi Biotec, Bergisch Gladbach, Germany), anti‐
CD123 (PE-Cy7; eBioscience, San Diego, USA), anti‐
CD3 (PerCP-Cy5; Becton Dickinson Biosciences), and
anti‐CD19 (APC; Becton Dickinson Biosciences). Cells
were sorted using a FACSAria III cell sorter (BD
Bioscience) and analyzed using FlowJo Sofware (TreeStar
Inc., Ashland, USA).

RT-PCR
RNAeasy columns (Qiagen, Hilden, Germany) were used
to isolate total RNA followed by reverse-transcription to
cDNA using a High-Capacity Reverse Transcription Kit
(Applied Biosystems, Foster City, USA). RT-PCR analysis
was performed using a 7900HT Fast Real-Time PCR
System using predesigned primer sets (Applied
Biosystems). Data were normalized to the expression of
the household gene ABL to calculate the relative expres-
sion. ABL was previously described as a reliable house-
hold gene for myeloid cells [20]. ABL was not
differentially expressed upon stratification of samples

Fig. 1 Simplified scheme of the induction of interferon (IFN) type I production by three signaling pathways: (1) endosomal receptors toll-like receptor
(TLR)7 and TLR9; (2) RNA-binding cytosolic receptors MDA5 and RIG-I; and (3) DNA-binding receptors ZBP1 and IFI16. These pathways contribute to
the activation of interferon regulatory factors (IRFs), which induce the expression of type I IFNs. Binding of IFN to cells that express the interferon alpha
receptor (IFNAR) activates a cascade that leads to the expression of various IFN-stimulated genes (ISGs), known as the IFN type I signature
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according to the IFN-stimulated gene expression scores
(unpublished results). Fold-change values were deter-
mined from normalized cycle threshold (CT) values
using the 2^-ΔΔCT method (User Bulletin, Applied
Biosystems).

Monocyte IFN type I signature and MxA protein
assessment
Principle component analysis showed a subset of 6 genes
(IFI44, IFI44L, IFIT1, Ly6e, MxA, and IFITM1) to
explain more than 95% of the total variance of the 11
IFN-I-inducible genes tested. As the expression of the
six IFN-I-inducible genes was not normally distributed,
log expression values were log-transformed and IFN
scores were calculated as described previously [19]. The
mean and standard deviation (SD) of each IFN-inducible
gene in the HC group was used to standardize

expression levels of each gene for each study subject.
Patients with cSLE were stratified into patients positive
for the IFN-I signature (IFNpos; IFN score ≥10) and
patients negative for the signature (IFNneg; IFN score
<10). Flow cytometric analysis of MxA on CD14+ mono-
cytes and the MxA-EIA was performed as previously
described [21].

Flow cytometric analysis of RLRs and DBR
Membranes were stained as described above with
additional AnnexinV-BV421 staining (Milteny Biotec).
Subsequently, cells were fixed and permeabilized by a
permeabilization buffer set (eBioscience) with 1% para-
formaldehyde, 0.5% saponin and stained with either
rabbit anti-Mx1 (ProteinTech, Chicago, USA), rabbit
anti-MDA5 (Abcam, Cambridge, UK), rabbit anti-
DDX58 (Abcam), rabbit anti-IFI16 (Abcam) and rabbit
anti-ZBP1 (Thermofischer, Rockford, USA)) and incu-
bated in the dark for 45 min on ice. As a secondary anti-
body, chicken anti-rabbit-AF488 (Invitrogen, Carlsbad,
USA) was used. Unstained cells and isotype-matched
controls (Becton Dickinson Biosciences) were used to
assess antibody specificity. Analysis was performed as
previously described [21].

In vitro stimulation bioassays
PBMCs were seeded at a concentration of 2 × 10E6/
250 μL, and starved during 1 hour at 37 °C in RPMI with
0.5% fetal calf serum, 0.05% P/S. Cells were subsequently
stimulated for 5 hours with 0.5 μg/mL Imiquimod
(R837, IQ; InvivoGen, San Diego, USA), in the presence
or absence of specific inhibitors for TANK-binding kin-
ase 1 (TBK1)/IKKε (BX795, 1 μM, InvivoGen), TLR7
(IRS 661, 2 μM, TIB-Molbiol, Berlin, Germany) and
TLR7 + TLR9 (ALX-746-255, 5 μM, Enzo Life Sciences,
Lausen, Switzerland).

Statistical analysis
The non-parametric Mann-Whitney U (two groups) and
Kruskal-Wallis (three groups) tests were used to analyze
comparisons between medians. The paired t test was
used to compare means of paired data. Fisher’s exact test
was used to compare categorical data. Spearman’s rho
(rs) coefficient was calculated to assess correlation.
Values of p < 0.05 were considered statistically signifi-
cant. Graphpad Prism 5.0 (Graphpad Software, La Jolla,
CA, USA) was used to design the graphs and IMB SPSS
20.0 (SPSS, Chicago, IL, USA) was used for the statistical
analysis.

Results
Prevalence of the IFN-I signature in cSLE
The IFN-I score was calculated for each subject by sum-
ming the standardized expression levels of the six IFN-I

Table 1 Patient and control characteristics
cSLE

HC (n = 13) IFNpos (n = 13) IFNneg (n = 10)

Demographics

Ethnicity

White 13/13 (100%) 9/13 (69%) 7/10 (70%) Nsc

Non-white 0/13 (0%) 4/13 (31%) 3/10 (30%) Nsc

Gender

Male (%) 3/13 (23%) 2/13 (15%) 2/10 (20%) Nsc

Female (%) 10/13 (77%) 11/13 (85%) 8/10 (80%) Nsc

Median age
(years)

22 (15 ± 25) 15.8 (4.8 ± 18.2) 15.1 (9.3 ± 17.5) Nsa

Disease duration
(years)

- 0.85 (0 ± 3.4) 1.5 (0 ± 4.7) Nsb

SELENA-SLEDAI - 4 (0 ± 20) 3 (0 ± 13) Nsb

Laboratory parameters

ANA - 12/13 (92%) 9/10 (90%) Nsc

Anti-ds-DNA - 4/13 (31%) 2/10 (20%) Nsc

Anti-Ro52/Ro60 - 6/13 (46%) 0/10 (0%) p = 0.019c

Anti-La - 2/13 (15%) 0/10 (0%) Nsc

Anti-RNP - 5/13 (31%) 0/10 (0%) p = 0.046c

C3 (g/l) - 0.89 (0.3 ± 1.27) 1.1 (0.77 ± 1.72) p =0.014b

C4 (g/l) - 0.16 (0.02 ± 0.2) 0.19 (0.1 ± 0.37) p = 0.049b

IgG (g/l) - 10.3 (7.1 ± 27.6) 9.6 (8.4 ± 28) Nsb

Medication (%)

Hydroxychloroquine - 10/13 (77%) 10/10 (100%) Nsc

Mycofenolaatmofetil - 3/13 (23%) 6/10 (60%) Nsc

Prednisone - 6/13 (46%) 5/10 (50%) Nsc

Other medication - 5/13 (38%) 5/10 (50%) Nsc

Data are presented as median (IQR) or as number (%) of patients according to data
distribution. Non-white ethnicity = Hindu and Suriname.
SELENA Safety of Estrogens in Lupus National Assessment, SLEDAI Systemic Lupus
Erythematosus Disease Activity Index, ANA antinuclear antibody, Anti-RNP antibodies
to ribonucleoprotein, C complement, IgG immunoglobulin, cSLE childhood-onset sys-
temic lupus erythematosus, IFNpos interferon (IFN) signature positive, IFNneg IFN sig-
nature negative, HC healthy control, Ns not significant
aGroups compared using the Kruskal-Wallis test (three groups)
bGroups compared using the Mann-Whitney U test (two groups)
cGroups compared using Fisher’s exact test (categorical data)
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inducible genes. As there was a bimodal distribution of
IFN-inducible genes in patients with cSLE, we set the
threshold at an IFN-I score of 10. Using this threshold,
57% (13/23) of the patients with cSLE and 15% of the
HCs (2/13) were IFN-I-positive (Fig. 2a). Previously we
found that MxA protein expression assessed using flow
cytometry on CD14+ monocytes and a whole blood en-
zyme immunoassay are applicable biomarkers for sys-
temic IFN-I activation in Sjögren’s syndrome [21]. Both
assays were tested simultaneously on the same PBMC
samples. Results from these assays confirmed the results
obtained by IFN-induced gene expression analysis
(Fig. 2b, c).

Increased expression of TLR7, RLR and DBR in CD14+
monocytes of cSLE
Upon ligand binding the TLRs, RLRs and DBRs all initi-
ate IFN-I production (Fig. 1). The gene expression of
TLR7, TLR9, four RLRs and two DBRs was assessed in
CD14+ monocytes from patients with cSLE stratified
into IFNpos and IFNneg patients. TLR7 expression was
significantly upregulated in IFNpos patients compared to
HCs (Fig. 3a). There were no significant differences in
TLR7 expression between IFNneg and IFNpos patients
or between IFNneg patients and HCs. In addition, TLR9
expression did not differ between the groups.
The expression levels of the RLRs IFIH1, DHX58,

DDX58 and DDX60 and the DBRs ZBP-1 and IFI16
were significantly upregulated in IFNpos patients
compared to IFNneg patients and HCs (Fig. 3b, c).
There was no significant difference between IFNneg
patients and the HCs in RLR or DBR expression
levels. Furthermore, expression levels of the RLRs and
DBRs were positively correlated with IFN scores
(Additional file 1).

Increased RIG-I and ZBP-1 protein levels in cSLE
To study protein expression of RLRs and DBRs we per-
formed flow cytometric analysis of MDA5, RIG-I, IFI-16
and ZBP-1 expression in CD14+ monocytes from IFN-
pos and IFNneg patients with cSLE and from HCs. The
gating strategy and a representative figure are depicted
in Additional file 2. RIG-I and ZBP-1 protein expression
was significantly upregulated in CD14+ monocytes from
IFNpos patients with cSLE compared to HCs (Fig. 4).
There were no significant differences in MDA5 and
IFI16 protein levels in CD14+ monocytes from patients
and HCs. Plasmacytoid dendritic cells (pDCs) are known
to upregulate RLRs and DBRs upon IFN-I activation. In
pDCs from IFNpos patients with cSLE the expression of
ZBP-1 and IFI16 was significantly upregulated (Add-
itional file 3).

TBK1/IKKε inhibitor blocks IFN-I activation in PBMCs from
patients with cSLE
To study the contribution of the RLR and DBR path-
ways to IFN-I activation in cSLE we blocked these
pathways using a TBK1/IKKε inhibitor (BX795). A ti-
tration of BX795 is shown in Additional file 4. TLRs
were blocked with inhibitors for TLR7 (IRS661) [13]
and TLR7 + TLR9 (ALX-746-255). As a positive con-
trol for the effectivity of the blockers, HC PBMCs
were stimulated with the TLR7-agonist imiquimod
(IQ) to induce IFN-I positivity followed by incubation
with these inhibitors (Additional file 5). PBMCs from
IFNpos and IFNneg patients with cSLE, without any
additional stimulation, exhibited increased spontan-
eous IFN-stimulated gene expression compared to
HCs as determined by MxA expression (Fig. 5). Incu-
bation with the TBK1/IKKε inhibitor completely re-
duced the spontaneous IFN-I stimulated gene

Fig. 2 a Prevalence of the interferon (IFN) type I signature in patients with childhood-onset systemic lupus erythematosus (cSLE). Dotted line
indicates the cutoff value of 10 for discrimination between IFN-negative (IFNneg) and IFN-positive (IFNpos) subjects. b Relative MxA expression
was calculated as (MxA-specific staining patient (MFI)-isotype control patient (MFI))/(MxA-specific staining healthy control (HC) (MFI)-isotype
control HC (MFI)). MxA is shown for HCs, IFN neg and IFN pos patients with cSLE. c MxA levels (ug/l) determined by MxA-enzyme immunoassays
(EIA) in whole-blood lysates of HCs and patients with cSLE. Dotted line indicates the cutoff value of 50 for discrimination between IFN neg and
IFN pos subjects. Every symbol represents one subject; horizontal lines describe the medians; groups were compared using one-way analysis of
variance (three groups): *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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expression in cells from patients with cSLE. Inhibition
of TLR7 or TLR7 + TLR9 had no effect on the intrin-
sic spontaneous IFN activation in PBMCs of IFNneg
and IFNpos patients with cSLE (Fig. 5).

Discussion
This study shows increased expression of TLR7 and the
cytosolic receptors of the RLR and DBR families in mono-
cytes of IFN-I-positive patients with cSLE. Blocking of the
RLR and DBR signaling pathway downregulated IFN-I-
stimulated gene expression indicating a contribution of
these receptors to systemic IFN-I activation in SLE.

In our cohort of patients with cSLE, 57% had a posi-
tive IFN-I signature. This is in line with our earlier ob-
servations in a cohort of patients with adult-onset SLE
[9]. Previous studies report that 80–90% of patients with
cSLE are IFN-I-positive; these were primarily non-white
patients with relatively high disease activity [6, 10]. In
contrast, our cohort consists of mainly white patients
with cSLE of low disease activity, which may account for
at least part of the difference in prevalence, as the pres-
ence of IFN-I signature is related to disease activity [19].
As in the other cSLE cohorts, most patients with cSLE
in our cohort used anti-inflammatory medication. The
presence of an IFN-I signature in patients receiving

Fig. 3 Upregulation of toll-like receptor 7 (TLR7) and cytosolic RNA-binding and DNA-binding receptors in interferon (IFN) type I positive (IFNpos)
patients with childhood-onset systemic lupus erythematosus (cSLE). Relative mRNA gene expression of TLR7 and TLR9 (a), ZBP-1 and IFI16 (b) and
IFIH1, DHX58, DDX58, and DDX60 (c) in CD14+ monocytes from patients with cSLE (n = 23) and healthy controls (HCs) (n = 13). Each symbol repre-
sents an individual sample; horizontal lines represent medians. One-way analysis of variance was used to compare the three groups: Ns, not sig-
nificant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. IFNneg IFN-negative patients, IFNpos IFN-positive patients

Fig. 4 Upregulated protein expression of RIG-I and ZBP-1 in interferon (IFN)-positive CD14+ monocytes from patients with childhood-onset systemic
lupus erythematosus (cSLE). Flow cytometric analysis of MDA5, RIG-I, IFI16 and ZBP-1 in CD14+ monocytes from IFN-positive (IFNpos) patients with
cSLE (n = 8), IFN-negative (IFNneg) patients with cSLE (n = 8) and healthy controls (HCs) (n = 8). Each symbol represents an individual sample. The
Kruskal-Wallis test was used to compare the three groups. Data are represented as fold change (FC) compared to HCs: *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001
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medication indicates that current treatments are not able
or are only partly able to downregulate IFN-I stimulated
gene expression.
Upon stratification of IFNpos and IFNneg patients

with cSLE, we identified upregulation of TLR7 in IFN-
positive cSLE. This supports a role for TLR7 in the in-
duction of IFN-I activation in SLE as has been demon-
strated in animal models [22, 23]. Interestingly, a
Mexican cohort of patients with cSLE showed that the
gene dosage of TLR7 is an important risk factor for cSLE
susceptibility [24]. In our ex vivo experiments, TLR7 or
TLR7 + TLR9 inhibitors did not decrease IFN-I activa-
tion in patients with cSLE. This is likely due to the short
culture period of 5 hours, which does not allow forma-
tion of nucleic acids containing immune complexes,
which are required for TLR7/9-driven IFN induction.
Therefore, the exact role of TLRs in comparison with
cytosolic receptors remains to be established.
The expression of cytosolic receptors belonging to the

RLRs and DBRs, was upregulated in IFNpos patients
with cSLE compared to HCs and IFNneg patients. Accu-
mulating evidence indicates an important role for aber-
rancies in these receptors and their downstream
signaling molecules in monogenic diseases with clinical
similarities to SLE [16, 17]. Interestingly, a recent study
showed correlation between IFN-I activation and the ex-
pression of an endogenous virus-like genomic repeat
element L1 in kidney tissue of patients with lupus neph-
ritis. As such an L1 element activates RLRs this supports
a role of this receptor family in SLE [25].
The potential contribution of RLRs and DBRs to

IFN-I activation was also supported by our ex vivo
experiments showing clearly decreased IFN-I stimu-
lated gene expression in all patients with cSLE upon

ex vivo blocking of TBK1. TBK1 is at the crossroad
downstream of the RLR and DBR signaling pathways.
Interestingly, TBK1 upregulation has been observed in
PBMCs from patients with SLE [26] and inhibition of
TBK1 activity suppresses IFN-I induced autoimmunity
in a mouse model of SLE [27]. Blockade of TBK1/
IKKε with BX795 was also found to inhibit IFN-I-
stimulated gene expression in PBMCs from a patient
with a gain-of-function mutation in STING, which re-
sulted in over-secretion of IFN-I [28]. In our ex vivo
experiments, PBMCs from IFNneg patients also had
higher spontaneous intrinsic IFN-I-stimulated gene
expression, which could be decreased by TBK1 inhib-
ition with BX795. This is probably due to stimulation
of the IFN-I-inducing pathways by the presence of
more dead cells and cell material, which we always
observe in samples from patients with SLE compared
to controls, despite the same isolation procedure. This
is in line with data showing greater vulnerability of
the cells in SLE [29].
To date, inhibiting IFN activation by blocking IFN-I

receptor (IFNAR) by biological agents so far has had
encouraging results but the treatment is only effective
in a subset of the patients [30]. More upstream inter-
ference using TBK1 inhibitors to prevent the induc-
tion of IFN expression might be a better approach.
With TBK1 as an upstream signaling hub inducing IFN-I
expression and more than 20 patented TBK1 inhibitors
already developed, a novel treatment target for clinical ap-
plications might enter the field. Compared to most other
biological agents, small-molecule TBK1 inhibitors have
two advantages: (1) the inhibitors can be taken orally and
(2) they are expected to have fewer side effects due to the
high specificity [27].

Fig. 5 TANK-binding kinase 1 (TBK1)/inhibitor of nuclear factor kappa-B kinase subunit epsilon (IKKε) inhibits interferon (IFN) type I activation in
peripheral blood mononuclear cells (PBMCs) from patients with childhood-onset lupus erythematosus (cSLE). Relative MxA gene expression after 5-h
culture of PBMCs from healthy controls (HCs), IFN-negative (IFNneg) or IFN-positive (IFNpos) patients with cSLE stimulated with imiquimod (IQ) (1 μg/
ml) or incubated with TBK1/IKKε inhibitor (BX795)(1 μM), toll-like receptor (TLR)7 and TLR9 inhibitor (ALX-746-255) (2 μM) or TLR7 inhibitor (IRS661)
(5 μM). Unstimulated cells and cells without inhibitors added were cultured in starvation medium and used as control for baseline IFN activation. Gene
expression data are presented as means ± SEM of four independent experiments (n = 5 per group). Means were compared to starvation medium using
the paired t test: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001
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This study has limitations. All patients are receiving
treatment, which could have affected the IFN-I activa-
tion and due to lack of reliable assays to detect systemic
IFN-I activation in serum, the IFN-induced gene
expression was used.
Several studies in PBMCs of adult SLE patients

describe a difference between IFN-α or IFN-β induced
genes [7, 31]. We did not make this distinction in
our study as we used monocytes and these IFN-
subtype-specific-induced genes can differ per cell type.
Additionally, the treatment presently tested in clinical
trials is focused on blocking the IFNAR, which binds
both IFN-α and IFN-β.
Furthermore, we studied mRNA and protein expres-

sion from monocytes but the patient’s pDCs were
only studied by flow cytometry. However, monocytes
are considered important responders to RLR and DBR
triggering and the ex vivo cultures of PBMCs from
patients simulate the in vivo situation. The TBK1 in-
hibitor used also inhibits IKKε. Therefore a role of
IKKε in the IFN-I activation in SLE cannot be
excluded.

Conclusions
Overall, the IFN-I signature was present in 57% of pa-
tients with cSLE and was associated with increased ex-
pression of TLR7 and cytosolic nucleic acid binding
receptors. These RLRs and DBRs contributed to the
spontaneous ex vivo IFN-I-stimulated gene expression
via TBK1 signaling. Inhibitors of TBK1 are therefore a
promising treatment target for SLE.
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