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Abstract

Background: Systemic autoimmunity can be present years before clinical onset of rheumatoid arthritis (RA). Adaptive
immunity is initiated in lymphoid tissue where lymph node stromal cells (LNSCs) regulate immune responses through
their intimate connection with leucocytes. We postulate that malfunctioning of LNSCs creates a microenvironment in
which normal immune responses are not properly controlled, possibly leading to autoimmune disease. In this study
we established an experimental model for studying the functional capacities of human LNSCs during RA development.

Methods: Twenty-four patients with RA, 23 individuals positive for autoantibodies but without clinical disease (RA risk
group) and 14 seronegative healthy control subjects underwent ultrasound-guided inguinal lymph node (LN)
biopsy. Human LNSCs were isolated and expanded in vitro for functional analyses. In analogous co-cultures
consisting of LNSCs and peripheral blood mononuclear cells, aCD3/aCD28-induced T-cell proliferation was measured
using carboxyfluorescein diacetate succinimidyl ester dilution.

Results: Fibroblast-like cells expanded from the LN biopsy comprised of fibroblastic reticular cells (gp38*CD317)
and double-negative (gp38 CD317) cells. Cultured LNSCs stably expressed characteristic adhesion molecules and
cytokines. Basal expression of C-X-C motif chemokine ligand 12 (CXCL12) was lower in LNSCs from RA risk individuals
than in those from healthy control subjects. Key LN chemokines C-C motif chemokine ligand (CCL19), CCL21
and CXCL13 were induced in LNSCs upon stimulation with tumour necrosis factor-a and lymphotoxin a;3,, but to a
lesser extent in LNSCs from patients with RA. The effect of human LNSCs on T-cell proliferation was ratio-dependent
and altered in RA LNSCs.

Conclusions: Overall, we developed an experimental model to facilitate research on the role of LNSCs during

the earliest phases of RA. Using this innovative model, we show, for the first time to our knowledge, that the LN stromal
environment is changed during the earliest phases of RA, probably contributing to deregulated immune responses early
in disease pathogenesis.
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Background
The earliest stages of rheumatoid arthritis (RA) are char-
acterized by the presence of RA-specific autoantibodies
such as rheumatoid factor (RF) and anti-citrullinated
protein antibodies (ACPAs) years before the manifest-
ation of clinical disease [1]. In the Amsterdam health
care region, ACPA-positive individuals with arthralgia
have an approximately 50% chance of developing RA
within 3-4 years [2, 3]. Interestingly, during this at-risk
phase synovial inflammation as determined by immuno-
histochemistry seems absent, suggesting that infiltration
of the synovial tissue by inflammatory cells occurs in a
later stage [4, 5]. Because systemic autoimmunity seems
to precede synovial tissue inflammation, other, as yet
unidentified immune processes, possibly outside synovial
tissues, are altered and contribute to disease development.
To effectively mount an adaptive immune response,
secondary lymphoid tissues are essential. Animal models
have shown phenotypic changes in the cellular compart-
ment of peripheral lymph nodes (LNs) before the onset
of arthritis [6]. Recently, we detected altered frequencies
of B cells, T-cell subsets and innate lymphoid cell
subsets in LN biopsies of subjects with RA risk and
patients with early-stage RA when compared with
healthy control subjects [7-10], indicating that LN
activation was already present during the RA risk phase.
Studies in mouse models revealed that lymph node
stromal cells (LNSCs) play an important role in the
regulation of T- and B-cell responses [11, 12]. LNSCs
physically construct the LN, and through production of
chemokines and adhesion molecules, they guide immune
cells within the LN [13-15]. In addition, LNSCs produce
cytokines important for lymphocyte activation, diffe-
rentiation and survival [16]. In mouse models, LNSCs
have been found to induce peripheral T-cell tolerance by
direct antigen presentation and clonal deletion as well as
maintenance of regulatory T cells [17-19]. Furthermore,
during immune responses they are capable of sup-
pressing T-cell proliferation independently of antigens
[19-21]. Accordingly, LNSCs are key players in immunity
and tolerance. We hypothesise that malfunctioning of
LNSCs leads to a microenvironment where immune
responses are not properly controlled, which may lead
to the activation of (autoreactive) lymphocytes and
production of autoantibodies. LNSCs have been studied
mainly in animal models, because so far human LNSCs
have been obtained either from whole LNs removed
during surgery or from deceased individuals [22-24].
Isolating and sorting sufficient numbers of LNSCs
directly ex vivo is technically challenging [24]. We
therefore aimed to develop an experimental model to
allow research on human LNSCs during health and
RA and to lay the foundation for further research on
these immune-shaping cells.
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Methods

Study subjects and lymph node biopsy sampling
Individuals with arthralgia and elevated immunoglobulin
M (IgM)-RE and/or ACPA levels but without any
evidence of arthritis upon examination were included
(individuals with RA risk phase C/D) [25]. Median
follow-up of individuals with RA risk was 20.3 months
(IQR 12.9-33.2), and none of the individuals with RA
risk developed arthritis during this period. In addition,
patients with RA with established disease based on fulfil-
ment of the American College of Rheumatology/European
League Against Rheumatism 2010 criteria [26] and as
assessed by the rheumatologist, as well as healthy control
subjects without any joint complaints and without
elevated IgM-RF and/or ACPA levels, were included. To
be eligible, the healthy control subjects could not have an
active viral infection or any history of autoimmunity
or malignancy and no present or previous use of dis-
ease-modifying anti-rheumatic drugs, biologics or other
experimental drugs. IgM-RF was measured using an
IgM-RF enzyme-linked immunosorbent assay (ELISA)
(upper limit of normal [ULN] 49 kU/L [kilo Unit/L];
HYCOR Biomedical, Garden Grove, CA, USA). ACPA
were measured using the CCPlus anti-cyclic citrulli-
nated peptide 2 ELISA (ULN 25 kAU/L [kilo arbitrary
Unit/L]; Euro Diagnostica, Malmo, Sweden). The
study was performed according to the principles of
the Declaration of Helsinki and approved by the insti-
tutional medical ethical review board of the Academic
Medical Centre, and all study subjects gave written
informed consent. All study subjects underwent an
ultrasound-guided inguinal LN needle core biopsy as
previously described [27]. Table 1 shows the demo-
graphics of the included subjects.

Lymph node stromal cell culture

After depletion of lymphocytes through a 70-pm cell
strainer (Corning, Landsmeer, the Nederlands), the
remaining stromal tissue of a freshly collected LN needle
core biopsy was plated on a 6-well culture dish (CELL-
STAR®; Greiner Bio-One/VWR, Alpen a/d Rijn, the
Nederlands) (passage 0; P0). Complete cell culture
medium was added. It consisted of DMEM, low glucose
(Thermo Fisher Scientific, Landsmeer, the Netherlands)
supplemented with 0.1% penicillin (Astellas Pharma Inc.,
Leiden, the Netherlands), 0.1% streptomycin, 0.05 mg/
ml gentamicin, 10 mM 4-(2-hydroxyethyl)-1-piperazi-
neethanesulfonic acid (HEPES) buffer, and 2 mM L-glu-
tamine (all from Thermo Fisher Scientific), as well as
10% FCS (GE Healthcare, Zeist, the Netherlands). Upon
reaching confluence of >80% cells, were passaged to a
T75 tissue culture flask (P1) or into two T225 flasks
(P2; both Corning® Costar®; Corning). Before being har-
vested, cells were washed with sterile warm PBS
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Table 1 Demographic data of study subjects
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Healthy control subjects (n = 14)

Individuals with RA risk (n = 23) Patients with RA (n=24)

Female sex, n (%) 9 (64)
Median age, years, (IQR) 29 (26-37)
IgM-RF-positive, n (%) 0 (0)
IgM-RF level, kU/L, median (IQR) -
ACPA-positive, n (%) 0(0)
Median ACPA level, KAU/L (IQR) -

IgM-RF and ACPA both positive, n (%) 0 (0)
Median DAS28, (IQR) -

Median ESR, mm/h (IQR) -

Median CRP, mg/L (IQR) 0.5 (03-1.2)°
Median TJC68 (IQR) 0(0)
Median SJC68 (IQR) 0(0)

Treatment, n (%)
Corticosteroids
NSAIDs
DMARDs
Failed TNF inhibitor therapy

20 (87) 17 (70)
49 (35-57) 56 (44-61)
10 (43) 20 (3-107)
20 (3-107) 131 (31-309)
13 (57) 18 (75)
43 (4-177) 115 (21-924)
0 (0) 14 (58)
- 5 (1-10)°
7 (2-10) 11 (5-27)°
16 (09-3.2) 46 (14-13¢°
15 (0-4.5) 9 (4-20)°
0(0) 5 (1-10¢°
9(39)
6 (26)
4017)f
5(22)
5(22)

Abbreviations: RA Rheumatoid arthritis, IgM-RF immunoglobulin M rheumatoid factor, kU/L kilo Unit/L, ACPA anti-citrullinated protein antibodies, kAU/L kilo arbitrary
Unit, ESR erythrocyte sedimentation rate, CRP C-reactive protein, TJC68 68-joint tender joint count, SJC68 68-joint swollen joint count, NSAID non-steroidal anti-
inflammatory drug, DMARD disease-modifying antirheumatic drug, DAS28 disease activity score in 28 joints, TNF tumour necrosis factor

2 Levels missing from one individual

P Levels missing from two individuals

¢ Levels missing from six individuals

9 Levels missing from seven individuals
€ Levels missing from five individuals

f Treatment unknown for five individuals

(Fresenius Kabi, 's-Hertogenbosch, the Netherlands) and
incubated with 0.05% trypsin/5 mM ethylenediaminetetra-
acetic acid (Thermo Fisher Scientific) in PBS for 7 min at
37 °C. Subsequently, an equal amount of complete
medium was added, after which the cell suspension was
collected and centrifuged for 10 min at 1000 rpm at 4 °C.
Cells were resuspended in cold complete medium and
counted using trypan blue (Sigma-Aldrich, Zwijndrecht,
the Nederlands) in a BRAND® Biirker Tiirk chamber
(Sigma-Aldrich). Human LNSCs (passages 4 to 8) were
seeded in a 24-well plate (30,000 cells/well) and stimulated
with tumour necrosis factor-a (TNF-a) (5 ng/ml; Life
Technologies, Landsmeer, the Nederlands) plus lympho-
toxin a;f, (50 ng/ml; R&D Systems, Abingdon, UK).

Flow cytometric analysis

Human LNSCs (passages 3 to 6) were cultured in a
6-well culture dish (100,000 cells/well). To harvest adherent
cells, 1 ml of TrypLE™ Select reagent (Thermo Fisher
Scientific) was added for 10 min at 37 °C. Subsequently,
cells were washed in protein blocking agent (PBA) buffer
(PBS containing 0.01% NaNj3; and 0.5% bovine serum
albumin [Sigma-Aldrich]) and stained for 30 min at room
temperature protected from light using the following

directly labelled antibodies: CD45 fluorescein isothiocyanate
(FITC) (clone HI30; BD Diagnostics, Vianen, the
Netherlands), podoplanin Alexa Fluor 647 (clone NC-08;
BioLegend, London, UK), CD31 allophycocyanin
(APC)-eFluor 780 (clone WM-59; eBioscience, Vienna,
Austria), human leucocyte antigen A, B, C phycoerythrin-
cyanine 7 (PE-Cy7, clone G46-2.6; BioLegend), or corre-
sponding isotype controls. To examine the expression of
podoplanin on LNSCs cultured over different passages,
cells were stained for 1 h on ice with unconjugated anti-
human podoplanin (clone NZ-1; AngioBio, Huissen, the
Nederlands), washed, and subsequently incubated with
polyclonal goat anti-rat IgG Alexa Fluor 647 (Thermo
Fisher Scientific). Cells were washed in PBA and measured
using a FACSCanto II flow cytometer (BD Biosci-
ences, Vianen, the Nederlands). Data were analysed using
FlowJo software (Flow]Jo, Ashland, OR, USA).

Co-cultures containing LNSCs and PBMCs and T-cell
proliferation assay

LNSCs (passages 4 to 8) in amounts of 25,000, 10,000,
5000 or 1250 were seeded in duplicates in a 96-well flat-
bottomed plate and allowed to rest overnight in DMEM
complete culture medium. Subsequently, LNSCs were
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pre-treated with 50 ng/ml interferon-y (IFN-y)
(eBioscience) for 48 h or refreshed with DMEM complete
medium. Peripheral blood mononuclear cells (PBMCs)
that had previously been isolated from healthy donors by
using standard density gradient centrifugation and subse-
quently cryopreserved, were thawed and allowed to rest
overnight at 37 °C in RPMI 1640 medium supplemented
with 10% FCS (GE Healthcare), 0.1% penicillin (Astellas
Pharma), 0.1% streptomycin, 10 mM HEPES buffer and
2 mM L-glutamine (all from Life Technologies). Then,
PBMCs were washed and labelled with 2 pl of
carboxyfluorescein diacetate succinimidyl ester (CFDA-SE)
FITC (clone C1157; Life Technologies) in PBS for 8 min at
37 °C. After removing DMEM complete medium and
washing LNSCs once with warm PBS, 50,000 labelled
PBMCs in RPMI complete medium per 96-well chamber
were added to LNSCs, resulting in ratios of 1:2, 1:5, 1:10
and 1:40 LNSCs to PBMCs. Simultaneously, PBMCs were
stimulated with anti-CD3 (1:10,000, clone 1XE; Sanquin,
Amsterdam, the Netherlands) and anti-CD28 (0.25 pg/ml,
clone 15E8; Sanquin). Cultures were harvested 96 h later,
washed with PBA buffer and stained for 30 min at room
temperature protected from light using the following
directly labelled antibodies: CD45 V500 (clone HI30; BD
Biosciences), CD4 PE-Cy7 (clone SK3; eBioscience) and
CD8a APC-eFluor 780 (clone SK1; eBioscience). Cells were
washed in PBA and measured using the FACSCanto II flow
cytometer. Data were analysed using FlowJo software. This
methodology was set up by testing PBMCs isolated from
four different healthy donors, whereas for the subsequent
co-culture experiments, PBMCs from one healthy donor
were selected to enable direct comparison between LNSCs
from different donors.

qRT-PCR

Messenger RNA (mRNA) was isolated using the RNeasy
Mini Kit or the RNeasy Micro Kit (Qiagen, Venlo, the
Netherlands) according to the manufacturer’s instructions,
including a DNase step to remove genomic DNA.
Subsequently complementary DNA (cDNA) was prepared
using the RevertAid H Minus First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific). qRT-PCR was
performed using either TagMan® Universal PCR Master
Mix combined with TagMan assays or SYBR® Green PCR
Master Mix (all from Thermo Fisher Scientific) combined
with primers made in-house (Thermo Fisher Scientific).
The TagMan assays and primer sequences are described
in Additional file 1: Table S1. For detection, we used the
StepOnePlus™ Real-Time PCR System (Thermo Fisher
Scientific). Values for each gene were normalized to the
expression level of 18S ribosomal RNA. An arbitrary
calibrator sample was used for normalization. For calcu-
lating the relative quantity, the 272 comparative cycle
threshold method was used for TagMan assays, and a
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standard curve method was applied for SYBR Green
assays.

Nitric oxide measurement

Nitric oxide (NO) was measured by evaluating the nitrite
content in culture media using modified Griess reagent
(G4410; Sigma-Aldrich) according to the manufacturer’s
instructions. The co-culture supernatant (100 pl) of
healthy individuals with RA risk and of patients with
RA was mixed with the same volume of Griess reagent
for 5 min, and absorbance was measured at 540 nm. A
standard curve with increasing concentrations of
sodium nitrite (NaNO,) was constructed in parallel and
used for quantitation.

Statistics

Data are presented as median with IQR or mean with
SD when normally distributed. Differences between
study groups were analysed using the Kruskal-Wallis test
followed by Dunn’s post hoc test or two-way analysis of
variance followed by Dunnett’s multiple comparisons
test, where appropriate. Prism software version 7.01
(GraphPad Software, La Jolla, CA, USA) was used for
statistical analysis. P values <0.05 were considered
statistically significant.

Results
Phenotyping of human LNSCs
Owing to the small size of the obtained LN needle
biopsies, digestion and immediate sorting of LNSCs
did not yield sufficient numbers of LNSCs for direct
analyses. However, LNSCs were capable of growing
in vitro from freshly obtained inguinal LN biopsies.
Mainly fibroblast-like cells expanded easily, and in
some donors LNSCs showed network formation
(Fig. 1a). Expanded LNSCs often contained a mixed
morphology consisting of fibroblastic as well as more
roundish cells, which was unrelated to disease state.
Whereas most LNSCs needed approximately 1-3 weeks
to reach confluence between passages, LNSCs from a few
donors required longer or failed to grow (11 of 136
donors). Overall, this culture system enabled a relatively
easy, although slow, expansion of human LNSCs.
Expanded human LNSCs in culture (passages 3-6)
consisted primarily of a mixture of double-negative cells
(DN; CD45 podoplanin”CD31") and fibroblastic reticular
cells (FRCs; CD45 podoplanin*CD317) as reported
previously [24] (Fig. 1b and c¢). The variation of
podoplanin-expressing cells within cultured human
LNSCs was similar between donor groups (Fig. 1c).
Podoplanin expression showed some variation in and
between donors over consecutive passages, but without a
consistent trend towards loss or increase across passages
(Fig. 1d), which corresponds to continuous podoplanin
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Fig. 1 Morphologic and phenotypic characterization of cultured human lymph node stromal cells (LNSCs). a Cells growing out of the biopsy
were mainly fibroblastic and formed dense networks. During growth, human LNSCs also started to branch and stretch or showed a more
roundish morphology. b Flow cytometric analysis based on the expression of CD45, podoplanin (gp38) and CD31. Cells in culture (passages 3 to 6
[P3-P6]) were double-negative (DN) cells and fibroblastic reticular cell (FRCs). Gating was based on isotype controls. Human leucocyte antigen A, B, C
(HLA-ABQ) expression served as a positive control. Representative figures of 2 donors out of 25 experiments are shown. ¢ Frequencies of FRCs (CD45
~CD31~ podoplanin [gp38]*) measured by fluorescence-activated cell sorting as described in (b) (P3-P6; n=25) in different donor groups.
d Follow-up of podoplanin (gp38) expression over different culture passages as measured by flow cytometry in a different cohort of 16 donors (healthy, n
=5; rheumatoid arthritis [RA] risk, n=5; and RA, n = 6). APC Allophycocyanin, Cy Cyanine, FSC Forward scatter, PE Phycoerythrin, SSC Side scatter

expression reported previously in human lymphatic
endothelial cells [28]. Furthermore, the frequency of
podoplanin-positive cells did not correlate with any
clinical parameters, such as autoantibodies or age (data
not shown).

LNSCs of patients with RA are less capable of inducing
key LN chemokines CCL19 and CXCL13

The expression of characteristic LNSC-related genes
such as vascular cell adhesion molecule 1 (VCAM-1),
intercellular adhesion molecule 1 (ICAM-1), lymphotoxin-§
receptor (LTPR), interleukin (IL)-7, B-cell-activating fac-
tor (BAFF) and IL-6 in LNSCs (all from passage 2) was
highly variable but showed no significant differences be-
tween donor groups and also not when stratified for ACPA
status. Only C-X-C motif chemokine ligand 12 (CXCL12)
showed a significantly lower expression in LNSCs from in-
dividuals with RA risk compared with healthy control sub-
jects (P=0.0155) (Fig. 2a). To investigate whether these

LNSC characteristics changed during culturing, we cultured
LNSCs over several passages. We detected no significant
changes in mRNA levels of IL-7, VCAM-1, ICAM-1 and
podoplanin between passages 0 and 12 (z = 18) (Additional
file 1: Figure S1). Furthermore, we found no correlation
between the expression of genes analysed under homeo-
static conditions in P2 LNSCs with clinical parameters
such as age or autoantibody titres. When correlated with
podoplanin mRNA levels at P2 measured in total LNSC
cultures, we detected solely a significant, although weak,
correlation with IL-7 mRNA (P <0.0001; Spearman’s r =
0.534) (Additional file 1: Figure S2).

As anticipated, mRNA levels of C-C motif chemokine
ligand 19 (CCL19), CCL21 and CXCL13 in LNSCs were
low or undetected in LNSCs under homeostatic conditions,
but stimulation with TNF-a plus lymphotoxin «;, rapidly
induced these key LN chemokines. TNF-a and
lymphotoxin «;p,, produced by lymphocytes, are key
factors in the cross-talk between LNSCs and lymphocytes
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and in regulation of LN organogenesis, homeostasis and
remodelling, and they are known to induce the expression
of these critical characteristic chemokines produced by
LNSCs [29-31] (Fig. 2b) (n=5 per donor group; donor
characteristics listed in Table 2).

Of interest, CCL19 and CXCL13 levels were signifi-
cantly differentially induced between the donor groups
(P =0.0018 for CCL19 and P =0.0155 for CXCL13), with
lower induction observed in LNSCs obtained from
patients with RA. This stimulation also strongly induced
the expression of VCAM-1 and ICAM-1, and to a lesser
extent IL-7 and podoplanin (Additional file 1: Figure S3).
We found no correlation between the induction of these
chemokines after stimulation with clinical parameters
such as age or autoantibody titres. Moreover, all observed
inductions of chemokines and characteristic genes were
independent of basal podoplanin protein expression
measured by fluorescence-activated cell sorting, indicating
that human DN cells and FRCs share these common

characteristics. However, the induction of ICAM-1
mRNA correlated strongly with the induction of podoplanin
mRNA (Additional file 1: Figure S4).

The effect of human LNSCs on T-cell proliferation is
ratio-dependent and altered in RA LNSCs

Finally, we aimed to investigate the effect of human
LNSCs on T-cell proliferation. Therefore, we performed
a co-culture experiment using a fixed number of 50,000
activated (anti-CD3 and anti-CD28) allogeneic PBMCs
derived from one healthy donor together with increasing
numbers of LNSCs (passages 4 to 8) from the different
study groups (Fig. 3). This way we were able to compare
the impact of LNSCs on T-cell proliferation between
healthy donors, individuals with RA risk and patients
with RA. Donors (1 =5 per study group; donor charac-
teristics listed in Table 3) were age- and sex-matched.
All donors with RA risk were ACPA*/RF~, whereas
patients with RA were ACPA"RF™ or double-positive.
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Table 2 Demographic data of study subjects used in tumour necrosis factor-a and lymphotoxin a;3, stimulation experiments

Healthy control subjects (n=5)

Individuals with RA risk (n=15) Patients with early RA? (n=5)

Passages P4-P6
Female sex, n (%) 5(100)
Median age, years (IQR) 28 (26-40)
IgM-RF-positive, n (%) 0 (0)
IgM-RF level, kU/L, median (IQR) -
ACPA-positive, n (%) 0 (0)

ACPA level, kKAU/L, median (IQR) -

IgM-RF and ACPA both positive, n (%) 0 (0)
DAS28, median (IQR) -

CRP, mg/L, median (IQR) 04 (03-2.7)

P5-P8 P6-P7

5 (100) 4 (80)

51 (49-57) 35 (28-58)
4(80) 3 (60)
3(1-42) 6 (3-288)

4 (80) 4 (80)

47 (16-343) 54 (22-1563)
0(0) 2 (40)

- 39 (3-7)
32(1.9-44) 3 (0.9-1004)

Abbreviations: ACPA anti-citrullinated protein antibodies, kKAU/L kilo arbitrary Unit/L, CRP C-reactive protein, DAS28 disease activity score in 28 joints, IgM-RF im-

munoglobulin M-rheumatoid factor, kU/L kilo Unit/L, RA rheumatoid arthritis

@ Patients with early RA: naive for disease-modifying anti-rheumatic drugs and biologics with a disease duration (defined by arthritis in any joint) less than 1 year

LNSCs in different ratios with unstimulated PBMCs
did not induce proliferation (data not shown). We observed
that LNSCs affected anti-CD3/28-induced T-cell pro-
liferation in a ratio-dependent manner. In an LNSC/
T-cell ratio of 1:2, a clear suppression of T-cell pro-
liferation was observed, reflected by a lower number
of divisions as measured by carboxyfluorescein succinimidyl
ester dilution (Fig. 3a, blue line). Using the 1:2 LNSC/T-cell
ratio, we found that LNSCs from healthy donors and
individuals with RA risk induced a significantly higher
number of CD4" and CD8" T cells that divided only once
and then stopped proliferating (Fig. 3b, red bars), when
compared with stimulated T cells in the absence of LNSCs.
Of interest, this block in T-cell division was slightly
diminished in co-cultures of T cells with RA LNSCs;
however, variability between donors was high. In contrast,
when T cells were cultured with LNSCs from healthy
control subjects in ratios of 1:5 and 1:10 (Fig. 3a, orange
and pink lines), we observed a stimulatory effect on T-cell
proliferation, as observed by a significantly lower
frequency of undivided T cells (Fig. 3b, black bars), when
compared with stimulated T cells in the absence of
LNSCs. Notably, this stimulatory effect when using
LNSC/T-cell ratios of 1:5 and 1:10 was less clear in co-
cultures with LNSCs from individuals with RA risk or
patients with RA.

NO production by LNSCs is similar between healthy
subjects, individuals with RA risk and patients with RA
We also incubated LNSCs for 48 h with IFN-y prior to
co-culture with T cells. IFN-y produced by activated
T cells is known to play a key role in triggering NO
production by LNSCs and therefore in increasing their
immunosuppressive potential [20, 32, 33]. We found that
pre-incubation with IFN-y indeed slightly boosted the
inhibitory capacity of LNSCs (as observed in the 1:2
LNSC/T-cell ratio) for most of the donors tested, including

RA LNSCs (Fig. 3b). Measurement of NO in co-culture
supernatants revealed a significantly higher NO pro-
duction (P=0.001) in the situation in which LNSCs
and T cells were mixed in a 1:2 ratio when compared with
the 1:40 ratio (Fig. 3c). However, this significant increase
was observed similarly in all donor groups, and IFN-y
stimulation did not show an additional effect. This
indicates that the increase in NO was probably due to
a higher density of LNSCs and was not related to the
altered T-cell proliferation observed when co-cultured
with RA LNSCs.

Discussion

In this study we set up an experimental model using
human LNSCs to allow research on the role of the
human LN microenvironment during health and RA.
The in vitro expanded human LNSCs express key charac-
teristics as described earlier in mice [16, 34]. During
passaging these markers stay relatively stable, and their
expression and induction are largely independent of
podoplanin expression, the main marker for FRCs. The
frequency of podoplanin-positive cells varied during
culturing and between donors, but without any consistent
trend towards loss of increase over passages. This
variation was observed especially in those LNSC cultures
containing high percentages of both FRC and DN cells,
therefore probably reflecting a preferential outgrowth of
one subset over the other. Mouse studies have shown that
DN cells and FRCs resemble each other but have a
differential expression of adhesion molecules and IL-7,
which in mice are exclusively expressed in FRCs [16]. Our
study showed similarities, because basal IL-7 mRNA levels
correlated positively with basal podoplanin mRNA levels,
and ICAM-1 induction appeared to be co-regulated with
podoplanin induction as also observed in mice [34].
However, we also demonstrate that LNSC cultures
consisting of cells with low podoplanin expression can also
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CSFE-labelled CD4" and CD8™ T cells out of 50,000 peripheral blood mononuclear cell (PBMCs) (all from one donor) activated with aCD3 and aCD28
for 96 h without LNSCs (passages 4 to 8) or co-cultured with 1250 (1:40), 5000 (1:10), 10,000 (1:5) or 25,000 LNSCs (1:2). LNSCs were cultured from
healthy donors, individuals with RA risk and patients with RA and pre-treated with interferon-y (IFN-y) or not. Data are presented as the percentage of
total cells found in the respective cell division (mean and SD of n=5 donors per group; donor characteristics listed in Table 3). Upper panels show
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* P<0.050, ** P<0.010. FSC-A Forward scatter area, FSC-W Forward scatter width, SSC-A Side scatter area, SSC-W Side scatter width
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express relatively high levels of IL-7. In addition, in human
LNSC cultures DN cells are relatively more abundant than
FRCs as described before [24]. Together, these findings
suggest a comparable role of DNs and FRCs in humans, al-
though additional studies using isolated LNSC subsets are
essential to prove this.

Interestingly, the expression of CXCL12, a B-cell
chemoattractant [35], was significantly lower in LNSCs
derived from individuals with RA risk than in healthy
control subjects. CXCL12" stromal cells derived from

both bone marrow and tonsils (LN-like FRCs) of healthy
donors can attract malignant B cells and appear to
enhance the survival of follicular lymphoma B cells
compared with healthy B cells isolated from blood [36].
Similarly, B-cell survival in the synovium is dependent
on IL-6 and CXCL12, which are overexpressed by RA
synovial fibroblasts [37]. The lower CXCL12 expression
in LNSCs of individuals with RA risk might reflect an
attempt to prevent autoreactive B cells from accessing
the LN and impair their survival. We also detected a
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Table 3 Demographic data of study subjects used in co-culture experiments

Healthy control subjects (n=5)

Individuals with RA risk (n=15) Patients with early RA? (n=5)

Passages P4-P8
Female sex, n (%) 3 (60)
Median age, years (IQR) 28 (24-33)
IgM-RF-positive, n (%) 0 (0)
IgM-RF level, kU/L, median (IQR) -
ACPA-positive, n (%) 0 (0)

ACPA level, kKAU/L, median (IQR) -

IgM-RF and ACPA both positive, n (%) 0 (0)
DAS28, median (IQR) -

CRP, mg/L, median (IQR) 04 (03-2.7)

P4-P8 P4-P8

3 (60) 4 (80)

50 (28-57) 47 (35-57)
0(0) 4 (80)
3(1-155) 437 (159-2210)
5 (100) 5 (100)

75 (45-112.5) 328 (61-1969)
0(0) 4 (80)

- 53 (32-6.8)
16 (0.7-2) 44 (13-198)

Abbreviations: ACPA anti-citrullinated protein antibodies, kKAU/L kilo arbitrary Unit/L, CRP C-reactive protein, DAS28 disease activity score in 28 joints, IgM-RF

immunoglobulin M-rheumatoid factor, kU/L kilo Unit/L, RA rheumatoid arthritis

@ Patients with early RA: naive for disease-modifying anti-rheumatic drugs and biologics with a disease duration (defined by arthritis in any joint) less than 1 year

lower induction of CCL19 and CXCL13 after stimulation
with TNF-a plus lymphotoxin a;f, in LNSCs derived
from patients with RA. Overall, these data suggest that
LNSCs of individuals with RA-specific systemic auto-
immunity display an altered chemokine profile, which
may lead to disturbed trafficking of lymphocytes within
the LN. Future studies are needed to confirm this and to
investigate the mechanism by which chemokine production
is disturbed in autoimmune LNSCs.

Next to lymphocyte trafficking and survival, LNSCs
play a crucial role in regulating adaptive immune
responses. LNSCs prevent extensive T-cell proliferation
and thereby dampen immune responses through the
release of NO in a tightly regulated and contact-dependent
manner [20, 32, 33]. Our results diverge from murine
studies where low numbers of LNSCs already lead to full
inhibition and NO plays a crucial role [20, 32, 33].
We observed incomplete suppression when an LNSC/
T-cell ratio of 1:2 was used and found that proliferation
was even increased in LNSC/T-cell ratios of 1:5 and 1:10.
Even though NO levels are higher in an LNSC/T cell ratio
of 1:2, no differences were observed between donor
groups. Therefore, the altered suppressive effect observed
in RA LNSCs at the ratio of 1:2 is probably not dependent
on changes in NO production. Likewise, the expression of
IL-7, measured at P2 under homeostatic conditions that
might drive T-cell proliferation, was not differentially
expressed between donor groups or correlated with T-cell
proliferation (data not shown) [38]. Even though IFN-y
signalling on LNSCs is crucial for NO production,
exogenous IFN-y alone increases only NOS2, the gene
encoding inducible nitric oxidase synthase, but it fails to
increase NO or nitrite in culture medium [32]. Further-
more, Transwell experiments show that LNSC-T-cell
contact is needed to induce NO production and conse-
quently T-cell suppression [20, 32, 33]. Taken together,
this points towards additional components in this pathway

derived from intimate cell contact to constrain T-cell
proliferation, but future research is needed to formally
prove this contact dependency in human co-cultures.
Furthermore, in contrast to murine studies, which mostly
use sorted and autologous cells derived from T-cell recep-
tor (TCR) transgenic mice, we used an allogeneic co-
culture system. Missing TCR-major histocompatibility
complex (TCR-MHC) interaction might diminish close
cell-cell contact, or mismatched TCR-MHC might
additionally trigger T-cell proliferation [39]. However, our
observations in healthy LNSCs are in line with data
derived from mesenchymal stem cells (MSCs). In mice as
well as in humans, using an allogeneic system containing
MSCs and T cells, suppression of T-cell proliferation was
observed only when relatively high numbers of MSCs
were used, whereas relatively low numbers of MSCs
supported T-cell proliferation [40, 41]. Furthermore, co-
culture of allogeneic T cells with human MSCs in MSC/T-
cell ratios of 1:4 and 1:40 increased the numbers of
FoxP3-expressing cells [40], and maintenance of regula-
tory T cells by LNSCs has also been observed in mice [17].
It will be interesting to investigate in future experiments
whether human LNSCs also play a role in maintenance of
regulatory T cells and whether this process is disturbed in
LNSCs from patients with RA. However, these expe-
riments are highly challenging, because for human studies,
knowledge is lacking on well-defined self-antigens expressed
by human LNSCs and the availability of corresponding
autoreactive human T cells.

The suppression of T cells in low LNSC/T-cell ratios
(1:2) and the immunostimulatory effect in higher ratios
(1:5 and 1:10) was seen mostly in LNSCs from healthy
individuals. In this study, we show, for the first time to
our knowledge, that this bipolar behaviour depending on
LNSC/T-cell ratio is less maintained in LNSCs derived
from patients with RA. It is tempting to speculate that
reduced inhibition of T cells might result in less inhibition
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of self-reactive T cells and that reduced proliferation or
induction of regulatory T cells leads to loss of tolerance.
This and the cellular mechanism behind the potential
exhausted state and aberrant function of RA LNSCs
remain to be determined in future studies.

Conclusions

Overall, we developed, for the first time to our knowledge,
an experimental model to study the role of human LNSCs
during the earliest phases of RA. Our exploratory study
shows differences between the LN microenvironment of
individuals with RA risk, patients with RA and healthy
control subjects. To study in detail their immuno-
regulatory function, in vitro expansion of LNSCs is
required. Because it is difficult to obtain LN biopsies from
a large cohort of individuals with RA risk and patients
with RA, and because the culture of human LNSCs is very
time-consuming owing to their slow growth, the number
of donors analysed in this study is relatively low. Also,
because of the high inter-individual variation in podo-
planin expression, the contribution of different LNSC
subsets to the findings reported here remains to be further
explored. The translation from in vitro results to in vivo
relevance should be demonstrated by using mouse models
or through targeted intervention studies in patients.
However, using this in vitro model, we can start delineating
the role of human LNSCs in T-cell-mediated B-cell
responses during the earliest phases of RA, which
ultimately may lead to the identification of innovative
targets for immunomodulation.

Additional file

Additional file 1: Figure S1. Gene expression levels over passages. The
expression levels of VCAM-1, ICAM-1, IL-7 and PDPN (podoplanin) in LNSCs
obtained from different passages was assessed by gPCR. Relative
quantity (RQ) of 15 donors (n =5 per donor group) is displayed.
Figure S2. Correlation between podoplanin and IL-7 mRNA at P2.
The expression levels of PDPN (podoplanin) and IL-7 were assessed by qPCR
in passage 2 LNSCs (n = 61; donor characteristics in Table 1) and showed a
positive correlation, which was not observed for other genes measured in
these cells. Relative quantity (RQ) values were analysed by Spearman’s
correlation test. **** P < 0.0001. Figure S3. Induction of genes characteristic
for LNSCs. The expression levels of VCAM-1, ICAM-1, IL-7 and PDPN
(podoplanin) was assessed by gPCR in LNSCs (passages 4 to 8) after
stimulation with TNF-a and lymphotoxin a3, for 4 h and 24 h.
Mean fold induction (Fl) and SD of n=5 per donor group are shown
(donor characteristics in Table 2). The dotted line represents a fold
induction of 1. Figure S4. Correlation between podoplanin and ICAM-1
induction. The upregulated mRNA levels of PDPN and ICAM-1 upon
stimulation with TNF-a and lymphotoxin a3, showed a strong positive
correlation, which was not observed for VCAM-1 and IL-7. Fold induction
values were analysed by Spearman’s correlation test. **** P <0,0001.
Table S1. Primers used in this study. (DOCX 248 kb)

Abbreviations

ACPAs: Anti-citrullinated protein antibodies; ANOVA: Analysis of variance;
APC: Allophycocyanin; BAFF: B-cell-activating factor; CCL: C-C motif
chemokine ligand; cDNA: Complementary DNA; CFDA-SE: Carboxyfluorescein
diacetate succinimidy! ester; CRP: C-reactive protein; CSFE: Carboxyfluorescein

Page 10 of 12

succinimidyl ester; CXCL: C-X-C motif chemokine ligand; DAS28: Disease
Activity Score in 28 joints; DMARD: Disease-modifying anti-rheumatic drug;
DN: Double-negative; ESR: Erythrocyte sedimentation rate;

FACS: Fluorescence-activated cell sorting; Fl: Fold induction; FITC: Fluorescein
isothiocyanate; FRC: Fibroblastic reticular cell; FSC: Forward scatter; HEPES: 4-
(2-hydroxyethyl)-1-piperazineethanesulfonic acid; ICAM-1: Intercellular adhesion
molecule 1; IFN-y: Interferon-y; Ig: Immunoglobulin; IgM-

RF: Immunoglobulin M-rheumatoid factor; IL: Interleukin; LN: Lymph
node; LNSC: Lymph node stromal cell; LTBR: Lymphotoxin- a;3,
receptor; MHC: Major histocompatibility complex; mRNA: Messenger RNA;
MSC: Mesenchymal stem cell; NO: Nitric oxide; NSAID: Non-steroidal
anti-inflammatory drug; PBA: Protein blocking agent; PBMC: Peripheral
blood mononuclear cell; PE-Cy7: Phycoerythrin-cyanine 7;

RA: Rheumatoid arthritis; RF: Rheumatoid factor; RQ: Relative quantity;
SJC: Swollen joint count; SSC: Side scatter; TCR: T-cell receptor;

TJC: Tender joint count; TNF-a: Tumour necrosis factor-a; ULN: Upper
limit of normal; VCAM-1: Vascular cell adhesion molecule 1

Acknowledgements

We thank the study participants in the study; the radiology department

at the AMC for lymph node sampling; the flow cytometry facility in the
haematology department at AMC, especially J. A. Dobber (Laboratory of
Hematology, AMC); and the AMC Clinical Immunology and Rheumatology
department, especially M. J. H. de Hair and M. Safy for patient recruitment
and G. Rikken and D. Drop for sample processing.

Funding

This study was supported by the European Union (EU) Innovative
Medicines Initiative-funded project BeTheCure (nr115142), the EU Seventh
Framework Programme (FP7) Health programme under grant agreement
FP7-HEALTH-F2-2012-305549 (EURO-TEAM [Towards Early diagnosis and
biomarker validation in Arthritis Management]), Dutch Arthritis Foundation
grants 11-1-308 and 14-2-403, and the Netherlands Organisation for
Health Research and Development (ZonMw) Veni project 916.12.109.

Availability of data and materials
The datasets supporting the conclusions of this article are included within
the article and its additional file.

Authors’ contributions

DMG, PPT and LGMvB were responsible for study conception and design.
JSH, RN, TdJ, THR, JFS, KIM, IAZ, MM, DMG and LGMVB acquired data. JSH,
TdJ, TMR, JFS, TBHG, REM and LGMVB analysed and interpreted data. All
authors have read the journal’s policy on disclosure of potential conflicts
of interest. All authors were involved in drafting the manuscript or revising
it critically for important intellectual content. All authors read and approved
the final manuscript.

Ethics approval and consent to participate
The medical ethics committee of the Academic Medical Centre Amsterdam
approved this study, and all study subjects gave written informed consent.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Amsterdam Rheumatology & immunology Centre (ARC), Department of
Clinical Immunology and Rheumatology, Academic Medical Centre,
University of Amsterdam, Meibergdreef 9, Amsterdam 1105, AZ, the
Netherlands. *Department of Experimental Immunology, Academic Medical
Centre, University of Amsterdam, Meibergdreef 9, Amsterdam 1105, AZ, the
Netherlands. *Department of Molecular Cell Biology and Immunology, VU
Medical Centre, Amsterdam, the Netherlands. “Department of Radiology,
Academic Medical Centre, University of Amsterdam, Amsterdam, the


https://doi.org/10.1186/s13075-018-1529-8

Hahnlein et al. Arthritis Research & Therapy (2018) 20:35

Netherlands. *Present address: Clinical Unit Cambridge, GlaxoSmithKline,
Cambridge, UK. ®Present address: Ghent University, Ghent, Belgium. ’Present
address: University of Cambridge, Cambridge, UK. ®Present address:
GlaxoSmithKline, Stevenage, UK.

Received: 21 September 2017 Accepted: 29 January 2018
Published online: 26 February 2018

References

1.

Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der
Horst-Bruinsma IE, de Koning MH, Habibuw MR, Vandenbroucke JP,
Dijkmans BA. Specific autoantibodies precede the symptoms of rheumatoid
arthritis: a study of serial measurements in blood donors. Arthritis Rheum.
2004;50:380-6.

Bos WH, van de Stadt LA, Sohrabian A, Ronnelid J, van Schaardenburg D.
Development of anti-citrullinated protein antibody and rheumatoid factor
isotypes prior to the onset of rheumatoid arthritis. Arthritis Res Ther. 2014;
16:405.

Karlson EW, van Schaardenburg D, van der Helm-van Mil AH. Strategies to
predict rheumatoid arthritis development in at-risk populations.
Rheumatology (Oxford). 2016;55:6-15.

de Hair MJ, van de Sande MG, Ramwadhdoebe TH, Hansson M, Landewé R,
van der Leij C, Maas M, Serre G, van Schaardenburg D, Klareskog L, et al.
Features of the synovium of individuals at risk of developing rheumatoid
arthritis: implications for understanding preclinical rheumatoid arthritis.
Arthritis Rheumatol. 2014;66:513-22.

van de Sande MG, de Hair MJ, van der Leij C, Klarenbeek PL, Bos WH, Smith
MD, Maas M, de Vries N, van Schaardenburg D, Dijkmans BA, et al. Different
stages of rheumatoid arthritis: features of the synovium in the preclinical
phase. Ann Rheum Dis. 2011;70:772-7.

Wooley PH, Whalen JD. Pristane-induced arthritis in mice. Ill. Lymphocyte
phenotypic and functional abnormalities precede the development of
pristane-induced arthritis. Cell Immunol. 1991;138:251-9.

van Baarsen LG, de Hair MJ, Ramwadhdoebe TH, Zijlstra 1J, Maas M, Gerlag
DM, Tak PP. The cellular composition of lymph nodes in the earliest phase
of inflammatory arthritis. Ann Rheum Dis. 2013;72:1420-4.

Ramwadhdoebe TH, Hahnlein J, Maijer K, van Boven LJ, Gerlag DM, Tak PP,
van Baarsen LG. Lymph node biopsy analysis reveals an altered
immunoregulatory balance already during the at-risk phase of autoantibody
positive rheumatoid arthritis. Eur J Immunol. 2016;46:2812-21.
Ramwadhdoebe TH, Hahnlein J, van Kuijk BJ, Choi IY, van Boven LJ, Gerlag DM,
Tak PP, van Baarsen LG. Human lymph-node CD8" T cells display an altered
phenotype during systemic autoimmunity. Clin Transl Immunol. 2016;5:e67.
Rodriguez-Carrio J, Hahnlein JS, Ramwadhdoebe TH, Semmelink JF, Choi 1Y,
van Lienden KP, Maas M, Gerlag DM, Tak PP, Geijtenbeek TB, van Baarsen
LG. Altered innate lymphoid cell subsets in human lymph node biopsy
specimens obtained during the at-risk and earliest phases of rheumatoid
arthritis. Arthritis Rheumatol. 2017,69:70-6.

Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Annu Rev
Immunol. 2011,29:23-43.

Cremasco V, Woodruff MC, Onder L, Cupovic J, Nieves-Bonilla JM,
Schildberg FA, Chang J, Cremasco F, Harvey CJ, Wucherpfennig K, et al. B
cell homeostasis and follicle confines are governed by fibroblastic reticular
cells. Nat Immunol. 2014;15:973-81.

Luther SA, Tang HL, Hyman PL, Farr AG, Cyster JG. Coexpression of the
chemokines ELC and SLC by T zone stromal cells and deletion of the ELC
gene in the plt/plt mouse. Proc Natl Acad Sci U S A. 2000;97:12694-9.
Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF,
Locksley RM, Ahmed R, Matloubian M. Regulation of homeostatic
chemokine expression and cell trafficking during immune responses.
Science. 2007;317:670-4.

Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and
functionality of the immune system. Nat Rev Immunol. 2009,9:618-29.
Malhotra D, Fletcher AL, Astarita J, Lukacs-Kornek V, Tayalia P, Gonzalez SF,
Elpek KG, Chang SK, Knoblich K, Hemler ME, et al. Transcriptional profiling of
stroma from inflamed and resting lymph nodes defines immunological
hallmarks. Nat Immunol. 2012;13:499-510.

Baptista AP, Roozendaal R, Reijmers RM, Koning JJ, Unger WW, Greuter M,
Keuning ED, Molenaar R, Goverse G, Sneeboer MM, et al. Lymph node
stromal cells constrain immunity via MHC class Il self-antigen presentation.
elife. 2014;3:204433.

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

Page 11 of 12

Lee JW, Epardaud M, Sun J, Becker JE, Cheng AC, Yonekura AR, Heath JK,
Turley SJ. Peripheral antigen display by lymph node stroma promotes T cell
tolerance to intestinal self. Nat Immunol. 2007;8:181-90.

Nichols LA, Chen Y, Colella TA, Bennett CL, Clausen BE, Engelhard VH.
Deletional self-tolerance to a melanocyte/melanoma antigen derived from
tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric
lymph nodes. J Immunol. 2007;179:993-1003.

Siegert S, Huang HY, Yang CY, Scarpellino L, Carrie L, Essex S, Nelson PJ,
Heikenwalder M, Acha-Orbea H, Buckley CD, et al. Fibroblastic reticular cells
from lymph nodes attenuate T cell expansion by producing nitric oxide.
PLoS One. 2011,6:¢27618.

Gardner JM, Devoss JJ, Friedman RS, Wong DJ, Tan YX, Zhou X, Johannes
KP, Su MA, Chang HY, Krummel MF, Anderson MS. Deletional tolerance
mediated by extrathymic Aire-expressing cells. Science. 2008;321:843-7.
Onder L, Narang P, Scandella E, Chai Q, lolyeva M, Hoorweg K, Halin C,
Richie E, Kaye P, Westermann J, et al. IL-7-producing stromal cells are critical
for lymph node remodeling. Blood. 2012;120:4675-83.

Vega F, Coombes KR, Thomazy VA, Patel K, Lang W, Jones D. Tissue-specific
function of lymph node fibroblastic reticulum cells. Pathobiology.
2006;73:71-81.

Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A,
Curry M, Armant M, Turley SJ. Reproducible isolation of lymph node stromal
cells reveals site-dependent differences in fibroblastic reticular cells.

Front Immunol. 2011;2:35.

Gerlag DM, Raza K, van Baarsen LG, Brouwer E, Buckley CD, Burmester GR,
Gabay C, Catrina Al, Cope AP, Cornelis F, et al. EULAR recommendations for
terminology and research in individuals at risk of rheumatoid arthritis:
report from the Study Group for Risk Factors for Rheumatoid Arthritis.

Ann Rheum Dis. 2012;71:638-41.

Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd,
Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, et al. 2010 rheumatoid
arthritis classification criteria: an American College of Rheumatology/
European League Against Rheumatism collaborative initiative. Ann Rheum
Dis. 2010,69:1580-8. A published erratum appears in Ann Rheum Dis.
2010;,69:1892.

de Hair MJ, Zijlstra IA, Boumans MJ, van de Sande MG, Maas M, Gerlag DM,
Tak PP. Hunting for the pathogenesis of rheumatoid arthritis: core-needle
biopsy of inguinal lymph nodes as a new research tool. Ann Rheum Dis.
2012,71:1911-2.

Amatschek S, Kriehuber E, Bauer W, Reininger B, Meraner P, Wolpl A,
Schweifer N, Haslinger C, Stingl G, Maurer D. Blood and lymphatic
endothelial cell-specific differentiation programs are stringently controlled
by the tissue environment. Blood. 2007;109:4777-85.

Zhu M, Fu YX. The role of core TNF/LIGHT family members in lymph node
homeostasis and remodeling. Immunol Rev. 2011;244:75-84.

Katakai T, Hara T, Sugai M, Gonda H, Shimizu A. Lymph node fibroblastic
reticular cells construct the stromal reticulum via contact with lymphocytes.
J Exp Med. 2004;200:783-95.

van de Pavert SA, Mebius RE. New insights into the development of
lymphoid tissues. Nat Rev Immunol. 2010;10:664-74.

Lukacs-Kornek V, Malhotra D, Fletcher AL, Acton SE, Elpek KG, Tayalia P,
Collier AR, Turley SJ. Regulated release of nitric oxide by nonhematopoietic
stroma controls expansion of the activated T cell pool in lymph nodes.

Nat Immunol. 2011;12:1096-104.

Khan O, Headley M, Gerard A, Wei W, Liu L, Krummel MF. Regulation of

T cell priming by lymphoid stroma. PLoS One. 2011;6:¢26138.

Chai Q, Onder L, Scandella E, Gil-Cruz C, Perez-Shibayama C, Cupovic J,
Danuser R, Sparwasser T, Luther SA, Thiel V, et al. Maturation of lymph node
fibroblastic reticular cells from myofibroblastic precursors is critical for
antiviral immunity. Immunity. 2013;38:1013-24.

Vicente-Manzanares M, Montoya MC, Mellado M, Frade JM, del Pozo MA,
Nieto M, de Landazuri MO, Martinez AC, Sanchez-Madrid F. The chemokine
SDF-1a triggers a chemotactic response and induces cell polarization in
human B lymphocytes. Eur J Immunol. 1998;28:2197-207.

Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D,
Caulet-Maugendre S, Guillaudeux T, Lamy T, Fest T, Tarte K. Human
mesenchymal stem cells isolated from bone marrow and lymphoid
organs support tumor B-cell growth: role of stromal cells in follicular
lymphoma pathogenesis. Blood. 2007;109:693-702.

Patel R, Filer A, Barone F, Buckley CD. Stroma: fertile soil for inflammation.
Best Pract Res Clin Rheumatol. 2014;28:565-76.



Hahnlein et al. Arthritis Research & Therapy (2018) 20:35

38.

39.

40.

41.

Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD. IL-7 is
critical for homeostatic proliferation and survival of naive T cells. Proc Natl
Acad Sci U S A. 2001,98:8732-7.

Samsonov D, Geehan C, Woda CB, Briscoe DM. Differential activation of
human T cells to allogeneic endothelial cells, epithelial cells and fibroblasts
in vitro. Transplant Res. 2012;1:4.

Najar M, Rouas R, Raicevic G, Boufker HI, Lewalle P, Meuleman N, Bron D,
Toungouz M, Martiat P, Lagneaux L. Mesenchymal stromal cells promote or
suppress the proliferation of T lymphocytes from cord blood and peripheral
blood: the importance of low cell ratio and role of interleukin-6.
Cytotherapy. 2009;11:570-83.

Zhou Y, Day A, Haykal S, Keating A, Waddell TK. Mesenchymal stromal cells
augment CD4"™ and CD8" T-cell proliferation through a CCL2 pathway.
Cytotherapy. 2013;15:1195-207.

Page 12 of 12

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study subjects and lymph node biopsy sampling
	Lymph node stromal cell culture
	Flow cytometric analysis
	Co-cultures containing LNSCs and PBMCs and T-cell �proliferation assay
	qRT-PCR
	Nitric oxide measurement
	Statistics

	Results
	Phenotyping of human LNSCs
	LNSCs of patients with RA are less capable of inducing key LN chemokines CCL19 and CXCL13
	The effect of human LNSCs on T-cell proliferation is �ratio-dependent and altered in RA LNSCs
	NO production by LNSCs is similar between healthy subjects, individuals with RA risk and patients with RA

	Discussion
	Conclusions
	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

