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Abstract

Advances in genomic technology have enabled a greater understanding of the genetics of common immune-
mediated diseases such as ankylosing spondylitis (AS), inflammatory bowel disease (IBD) and psoriasis. The substantial
overlap in genetically identified pathogenic pathways has been demonstrated between these diseases. However, to
date, gene discovery approaches have only mapped a minority of the heritability of these common diseases, and most
disease-associated variants have been found to be non-coding, suggesting mechanisms of disease-association through
transcriptional regulatory effects.
Epigenetics is a major interface between genetic and environmental modifiers of disease and strongly influence
transcription. DNA methylation is a well-characterised epigenetic mechanism, and a highly stable epigenetic marker,
that is implicated in disease pathogenesis. DNA methylation is an under-investigated area in immune-mediated
diseases, and many studies in the field are affected by experimental design limitations, related to study design,
technical limitations of the methylation typing methods employed, and statistical issues. This has resulted in both
sparsity of investigations into disease-related changes in DNA methylation, a paucity of robust findings, and difficulties
comparing studies in the same disease.
In this review, we cover the basics of DNA methylation establishment and control, and the methods used to examine
it. We examine the current state of DNA methylation studies in AS, IBD and psoriasis; the limitations of previous studies;
and the best practices for DNA methylation studies. The purpose of this review is to assist with proper experimental
design and consistency of approach in future studies to enable a better understanding of the functional role of DNA
methylation in immune-mediated disease.
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Background
Ankylosing spondylitis (AS), inflammatory bowel disease
(IBD) and psoriasis are characterised by systemic or organ-
specific failures of the regulatory pathways of the immune
system resulting in uncontrolled inflammation. These
‘seronegative’ diseases are closely related clinically and
often co-occur in patients and families. Several GWAS in
these diseases have identified the same genes that confer

susceptibility to disease, including human leukocyte anti-
gen (HLA), which plays a vital role in adaptive immunity
and tolerance, IL-23 receptor (IL23R), DNA methyltrans-
ferase 3A (DNMT3A), DNMT3B, DNMT3L and several
genes involved in the JAK-STAT pathway [1–4]. A cross-
disease genetic study of five seronegative diseases (AS, ul-
cerative colitis, Crohn’s disease, psoriasis and primary
sclerosing cholangitis) identified pleiotropic genes and
shared pathogenic pathways between these diseases [4].
Despite the numerous disease-associated variants iden-

tified in AS, IBD and psoriasis, they cumulatively explain
only a small proportion (< 28%) of the heritability of
these diseases [4]. Potential reasons for this ‘missing her-
itability’ include large numbers of variants of smaller ef-
fect yet to be identified, rare variants being missed by
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available genotyping arrays, copy number variation
(CNV), insertion/deletion events, gene-gene interactions
and epigenetic factors. Epigenetics refers to functional
modifications to DNA other than base sequence coding
and includes histone modifications, non-coding RNA in-
teractions with transcriptional and translational machinery
and DNA methylation. Epigenetic variation is a dynamic
and responsive process that occurs throughout life and in
each individual cell and tissue within a single organism.
In this review, we focus on DNA methylation as it has

the most robust measurement methods of all forms of
epigenetic variation, making it a tractable epigenetic
form to study. We discuss the current state of epigenetic
research in AS, IBD and psoriasis, and the key aspects of
study design that are relevant to dissecting the patho-
genic mechanisms involved in these diseases.

What is DNA methylation?
DNA methylation refers to the addition of a methyl
group (CH3) to a cytosine to form 5-methylcytosine
(5mC). Predominantly, methylation occurs on cytosine
phosphate guanine-paired bases (CpGs). The majority of
methylated CpGs occur in CpG islands, dense CpG
regions of DNA between 300 and 3000 bp. CpG sites

located 2 kb upstream or downstream of a CpG island
are defined as CpG shores, and CpG sites 2 kb beyond
these shores are defined as CpG shelves. Regions outside
this 4 kb stretch are referred to as the ‘open sea’. DNA
methylation can occur in cytosines outside CpG sites,
but whether these are recognised as methylated sites is
unclear [5]. Generally, CpGs in differentiated cells are
uniformly methylated or unmethylated between homolo-
gous chromosomes and within cell populations, resulting
in a bimodal distribution.
DNA methylation is a highly stable chemical marker

that is maintained through mitosis. It is moderately her-
itable between generations. Maternal exposure to envir-
onmental factors can affect embryos in utero and, for
female embryos, also affect their gametes, as female re-
productive cells are fixed at birth [6]. As cells undergo
two cycles of demethylation during reproduction, it is
unclear whether these changes can be transmitted be-
yond these generations [6, 7].
The process of methylation establishment and mainten-

ance is carried out by the DNA methyltransferase (DNMT)
protein family (see Fig. 1). DNMT family proteins have a
CXXC domain that recognises unmethylated CpGs [8].
The de novo establishment of DNA methylation is carried

Fig. 1 The process of DNA methylation addition, maintenance and removal. The de novo establishment of DNA methylation is carried out by DNMT2,
DNMT3A, DNMT3B and DNMT3L. Once established, DNA methylation requires maintenance to prevent loss of methylation either spontaneously through
‘passive’/spontaneous deamination or actively by the ten-eleven translocation (TET) enzymes. The TET protein family directly remove DNA methylation
markers through successive oxidation steps followed by removal of thymine DNA glycosylase (TDG)
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out by DNMT2, DNMT3A, DNMT3B and DNMT3-like
(DNMT3L). Once established, DNA methylation requires
maintenance to prevent loss of methylation either spontan-
eously through ‘passive’ deamination or through active de-
amination by the recently discovered ten-eleven
translocation (TET) enzymes. Deamination is the spontan-
eous loss of an amino group. Methylated cytosines deami-
nate to thymine, a stable alternative nucleotide, resulting in
the gradual depletion of cytosine in the genome. Cytosine
to thymine mutations are the most common mutations ob-
served in mammals. The asymmetrically methylated paired
bases resulting from deamination are preferentially recog-
nised and methylated by DNMT1, which also maintains
DNA methylation during cellular replication.
Initially considered a ‘switch’ for gene activation or si-

lencing, the exact effect of DNA methylation on gene
expression is highly context-dependent, with promoter
DNA methylation associated with gene silencing,
whereas DNA methylation in the effector region is asso-
ciated with gene activation. DNA methylation has been
investigated in disease for many purposes as follows: as
a potential biomarker for disease outcome/severity, to
elucidate transcriptional control and to determine the ef-
fect of genetic changes on function. Local DNA
sequence is the primary determinant of DNA methyla-
tion state [9]. Disease-associated SNPs can therefore
alter DNA methylation patterns to affect gene expres-
sion and cellular function, either in cis (at the gene
itself ), or trans (indirectly, often distantly).

Factors influencing DNA methylation
Analysis of DNA methylation in disease greatly benefits
from an experimental design that considers the intrinsic
and extrinsic factors that affect DNA methylation. We
highlight below some of the well-established and identi-
fiable influencers of DNA methylation.

Age
Embryonic development is a crucial period for the estab-
lishment of DNA methylation patterns, and prenatal ex-
posure to stressful environmental factors can alter DNA
methylation patterns in adulthood (some sex-specific) [10,
11]. Subsequent age-related changes are observed in all
cell and tissue types. These changes are indicative of bio-
logical ageing to a greater extent than chronological age-
ing and are related to both cellular intrinsic factors as well
as changes in cell composition in whole blood [12, 13].

Sex
Whilst differences in DNA methylation of sex chromo-
somes and sex-related genes are well characterised, identi-
fying differences in DNA methylation of other autosomal
sites between sexes has been inconsistent [14]. Further

research is needed to confirm these findings and to deter-
mine if these differences persist to adulthood.

Smoking
Smoking markedly influences DNA methylation.
Smoking-related changes in DNA methylation are corre-
lated with smoking severity, whilst some CpG sites re-
vert to never smoking DNA methylation levels within
12 weeks after smoking cessation and others persist after
10 years [15]. These changes are cell type-specific [16].
Second-hand smoke exposure affects DNA methylation
similarly to direct exposure [17]. Emerging data indicates
e-cigarettes, or vaping, also alter epigenetic and tran-
scriptional regulation [18].

Medication
Many medications used in the treatment of inflammatory
diseases influence DNA methylation, including prescribed
and ‘complementary’ medications. For example, glucocor-
ticoids, non-steroidal anti-inflammatory drugs (NSAIDs),
sulfasalazine, methotrexate and tumour necrosis factor-α
inhibitors all alter DNA methylation [19, 20].

Alcohol and diet
Alcohol is known to alter DNA methylation even at low
levels (1 drink/week); however, the persistence and
breadth of its effect is poorly understood [21]. Dietary
factors can also affect DNA methylation, although this
has predominantly been examined in obesity or cancer
intervention studies. LINE (long interspersed nuclear
element), a surrogate for global DNA methylation levels,
has been indicated as a general diet response marker
[22]. A single study was able to link levels of LINE
methylation to serum glucose levels, and the level of
hydroxymethylation to BMI, waist circumference and
total cholesterol [23]. BMI can alter DNA methylation
levels as a consequence of adiposity [24]. Adiposity is as-
sociated with increased inflammation markers and can
predispose to inflammatory diseases [25].

Sample cell type
Cell types each have unique DNA methylation profiles,
and differences in tissue DNA methylation patterns are
strongly influenced by the specific mixtures of cell types
within tissues [26]. Further, the effect of environmental
factors and disease on DNA methylation patterns is cell
type-specific. In silico deconvolution methods are avail-
able for estimating cell proportions, and many of these
methods have been described in a recent review which
also provides insight into when different methods should
be applied [27].However, these methods do not enable
the identification of cell-type specific changes in DNA
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methylation nor control for the dilution of cell specific
signals within complex samples.

Measuring DNA methylation
The gold standard method for characterising DNA
methylation is bisulfite conversion, which converts
unmethylated (but not methylated) cytosine to uracil en-
abling the identification of methylated regions through
sequencing. An additional oxidative reaction can be used
to identify hydroxymethylated regions (5hmC) but is
rarely used due to additional cost and input require-
ments. DNA methylation measurement techniques can be
broadly categorised as bisulfite based, DNA methylation-
sensitive restriction enzyme based, methylcytosine-specific
antibody methods, enrichment methods or direct sequen-
cing (see Table 1). Bisulfite methods are favoured for
genome-wide studies; however, as most of the genome is
incapable of being methylated, this is often paired with en-
richment or selection methods.
BeadChip arrays are commonly used due to the high-

throughput capability, relative economy per sample per
CpG, reproducibility and the inclusion of regions of
known function and disease significance. For example,
the most recent version Illumina Human MethylationE-
PIC array covers over 850,000 CpG sites at a cost of ap-
proximately US$480 per sample [28]. The EPIC array
incorporates a greater number of CpGs in the open sea,
cytosine nucleotide guanine (CNG) sites and enhancers
identified in FANTOM5 (functional annotation of the
mammalian genome 5). The probes cover approximately
3% of CpG sites in the genome, but more than 70% of
the RefSeq (NCBI reference sequence database) identi-
fied transcriptional start sites (TSS) 5′UTR and 3′UTR
CpG sites [28]. Novel methods for DNA methylation de-
tection using optical or electrochemical biosensing are
being developed, alongside single cell technology. Selec-
tion of a DNA methylation measurement method should
balance the practicalities of cost alongside the coverage
and specificity offered.

Analysing DNA methylation data
Genome-wide methylation studies are complex. Investi-
gators will often seek to use pre-existing cohorts for ex-
periments. This is not recommended as statistical
methods cannot compensate for complete confounding
variables, for example where all cases are smokers and
all controls are non-smokers.

Quality control
Data from DNA methylation measurements differ de-
pending on the type of experiment. Array-based methy-
lation can be expressed as either β values, the ratio of
methylated probe intensity to overall probe intensity, or
M values, the log2 of the ratio of methylated to

unmethylated probes. M values are preferable for statis-
tical analysis, whereas β values are suited to displaying
data. In sequencing-based experiments, coverage, or tag
count, can be used as a measure of methylation.
Batch variation is particularly an issue with highly sen-

sitive methods, such as BeadChip arrays. Whilst in silico
methods can be used to overcome batch variation [29],
it is always preferable to control for batch variation
through properly designed experiments and sample ran-
domisation. Recommendations for sequencing coverage
vary between methods, largely influenced by the number
of nucleotides assayed. Guidelines for coverage have
been developed by the NIH Roadmap Epigenomics
project and the ENCODE project [30, 31]. The most
common method of DNA methylation measurement,
Illumina BeadChip arrays, requires specific QC prior to
analysis. Illumina provides Genome Studio for process-
ing DNA methylation data, although several free analysis
pipelines are available. For enrichment-based high
throughput sequencing assays, measuring the CpG
enrichment within the captured DNA is a useful QC
step. Cut-offs for individual CpGs (or regions) should be
applied, as sufficient average coverage does not guaran-
tee sufficient coverage of individual CpGs.
If publically available datasets or previous versions of

arrays are to be used, careful QC should be carried out
to curate the datasets to samples controlling for pheno-
typic differences and for plate variation. Illumina Bead-
Chips may be compared due to the high level of
similarity between different iterations, but plate variation
is always an issue.

DNA methylation analysis
The major approaches to analysing changes in DNA
methylation are as individual CpGs (differentially meth-
ylated positions (DMPs)) and differentially methylated
regions (DMRs). DMR can be impactful due to the close
regulation of proximally located CpGs; however, inter-
preting DMR can be difficult if regions contain both
hypo- and hyper-methylated positions, due to the func-
tion of specific regions (e.g. effector vs promoter re-
gions). CpGs can be easily defined as increased or
decreased due to the binomial distribution, although the
increasing number of CpGs being analysed requires a
large sample size to achieve statistical significance after
multiple testing corrections, such as the Benjamini-
Hochberg false discovery rate (FDR).
Whilst it is always preferable to control for measured

covariates through experimental design, various in silico
methods have been developed to identify DMPs whilst
controlling for confounding variables. These include lin-
ear regression methods incorporating initial tests for
confounding variables such as either principal compo-
nent analysis (PCA) or multi-dimensional scaling (MDS)
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Table 1 Summary table of methods for the detection of DNA methylation

Approach Method Relative cost Throughput Resolution Advantages Disadvantages

Bisulfite-based
methods

Methylation-specific PCR (MSP) + + Region • Cheap
• Easy
• Relatively quick

• Single-gene resolution
• No high-throughput
capability

• Amplification-based

Human MethylationEPIC
BeadChip array

++ +++ Base pair/
region

• High throughput
• Targeted to functionally
important regions

• Probe variation
• Selected regions (biased)

Single-cell nucleosome
methylation transcription
sequencing (scNMTseq)

++++ ++++ Base pair • Single-cell resolution
• Low-input numbers
• Nucleosome, epigenetic
and transcription from
a single cell

• Expensive
• Analysis methods complex
• Amplification required

Reduced representation
bisulfite sequencing (RRBS)

++ ++ Base pair • Covers CpG dense
regions

• Specific base sequence
selection due to enzymatic
cut sites

• Cannot distinguish 5mC
from 5hmC

Pyrosequencing +++ ++++ Base pair • Quantitative
• High throughput

• Expensive
• Non-targeted

Whole genome bisulfite
sequencing (WGBS)

++++ +++++ Base pair • Genome-wide coverage
• Sequence/SNP
information

• A large amount
of data

• Expensive
• A large amount of data
• Large areas that are incapable
of being methylated

Methyl-CpG
isolation-based
methods

Methylated DNA
immunoprecipitation
(MeDIP)

++ ++ Region • Can incorporate with
PCR/microarray/NGS

• 5mC in dense, less dense
and repeat regions
are covered

• Antibody-based selection
is independent of
sequence

• Lower base-pair resolution
(~ 150 bp)

• Potential antibody non-specific
interactions

• Antibody-based selection
biased towards
hypermethylated regions

• Unmethylated regions can
only be interpreted from the
absence of signal

methyl-CpG-binding
domain-isolated genome
sequencing (MIGS)

++ ++ Region • Genome-wide 5mC
coverage

• Lower base-pair resolution
(~ 150 bp)

• No 5hmC coverage
• Bias towards hypermethylated
regions

Combined bisulfite conversion
and restriction analysis (COBRA)

++ + Base pair/
region

• Small input
• Targeted approach

• No high-throughput
capability

HpaII tiny fragment enrichment
by ligation-mediated PCR
(HELP-tagging assay)

++ + Base pair • Enrichment of areas
of interest

• Easy

• HpaII only recognises CCGG
when the middle cytosine
is unmethylated

Methylation-specific
amplification
microarray (MSAM)

++ ++ Base pair • Broad coverage
• Customizable

• Amplification-based
• Biased to regions selected
• Non-direct measure

Kinetics-based
methods

PacBio single-molecule,
real-time (SMRT)
sequencing

+++ ++++ Base pair • Long reads
• Bisulfite conversion free

• Expensive
• Covers

Mass spectrometry ++++ + Base pair • Direct
• Amplification-free
method

• Expensive
• Input requirement high
without additional
targeted selection

Optical
biosensing

Fluorescence resonance
emission transfer (FRET)

++++ ++ Base pair • Amplification-free
method

• Capable of
miniaturisation

• Expensive
• Not user-friendly data
analysis packages

Surface plasmon
resonance (SPR)

++++ +++ Base pair • Amplification-free
method

• Expensive
• Difficult to analyse
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. The recently developed OSCA method was specifically
developed for methylation-association studies, employ-
ing a mixed linear model-based method to detect DMPs
whilst fitting all other probes as random-effect compo-
nents to account for the effects of confounders [32].
This approach has been shown to control for observed
and unobserved confounders better than standard ap-
proaches, retaining statistical power whilst avoiding in-
flation of association findings, and is an important
advance in the field.
DNA methylation is co-regulated alongside other epi-

genetic data, such as gene expression and chromatin ac-
cessibility. Therefore, examining DNA methylation within
the context of other ‘omics data, such as disease variants
to identify methylation quantitative trait loci (meQTL),
enables greater functional understanding of DNA methy-
lation changes. These datasets can be used to create a
comprehensive map of genetic, transcriptional and
epigenetic data, and the relationships between each other.
Network analysis can then be applied to search for path-
ways enriched for disease-related changes.

DNA methylation studies in AS, IBD and psoriasis
The current state of DNA methylation studies in AS, IBD
and psoriasis provides information on previously identi-
fied shared pathways and avenues for future research. As
these diseases have been found through genotypic studies
to have pleiotropic genes (the same gene with different ef-
fects on function), it is more useful to discuss each disease
individually and then address overlapping pathways. The
key studies are summarised in Table 2.

Ankylosing spondylitis
The first DNA methylation study in AS was published in
2014, and there has been a scarcity of studies since that
time. Only a single multigene study has been published
with a small cohort of 5 individuals with grade 4 bilateral
sacroiliitis, complete fusion of both sacroiliac joints and 5
age- and sex-matched controls [44]. 1915 DMP were iden-
tified, the most significant of which was HLA-DQB1, a
MHC class II responsible for exogenous peptide display,
which had previously been associated with AS radio-
graphic severity and age of onset, but not within Han

Chinese individuals. Unfortunately, this study failed to
account for HLA-B*27 status, the strongest AS-
associated genetic loci, which is in strong LD with
HLA-DQB1 [45]. Therefore, these findings require
further validation.
The single-gene studies have been a mix of genetically

associated and broadly inflammatory-related genes: the
suppression of cytokine signalling 1 (SOCS1*), DNMT1
[42], B-cell chronic lymphocytic leukaemia/lymphoma
11B (BCL11B) [43], IFN regulatory factor 8 (IRF8) [46]
and IL12B* [47] (*genetically associated with AS). The
study on SOCS1 acknowledged that the differences ob-
served in SOCS1 in cell-free DNA was likely due to
inflammation-driven cellular apoptosis in AS patients.
The study of IL12B tested the performance of methyla-
tion as a biomarker for AS. The area under the curve of
the ROC analysis was statistically significant but not of
sufficient magnitude to be clinically useful (AUC = 0.65),
and no validation study was done. The methylation
differences were restricted to HLA-B27 positive cases,
suggesting either that the methylation is affected by
HLA-B27 status or that the sample size of HLA-B27-
negative cases (n = 16) was too small. As the HLA-B27
status of the controls was unknown, it is unclear which
explanation applies [47]. None of the studies investigated
whether the AS-associated SNPs at these loci operated
through effects on methylation.
Whilst many of these studies attempted to connect

these changes with HLA-B*27 status, none performed
HLA-B*27 typing in healthy controls, who generally
have a significantly lower prevalence of HLA-B*27. All
focused on promoter regions and identified inverse cor-
relations with mRNA levels for the affected gene. Thus,
for the majority of the 116 known AS-associated vari-
ants, there is no robust information about methylation
effects. AS is known to be associated with DNMT3A,
DNMT3B and DNMT3L [4], indicating that it is likely
that methylation variation is important in AS pathogen-
esis. Overall, only a sparse investigation of DNA methy-
lation has been performed in AS to date, and those
studies have suffered from failures to collect appropriate
information at study onset (such as HLA-B*27 status) or
to use appropriate sample types.

Table 1 Summary table of methods for the detection of DNA methylation (Continued)

Approach Method Relative cost Throughput Resolution Advantages Disadvantages

• Bisulfite conversion free
• Low-sample input

• Complex to run

Electrochemical
biosensing

Graphene or
gold affinity methods

+++ +++ Base pair • Amplification-free
method

• Bisulfite conversion
free method

• Low-sample input
• Rapid throughput

• Less established
• Few commercially available
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Inflammatory bowel disease
DNA methylation research in IBD is the most robust of
the three diseases, with over 30 papers published in the
last decade. There is strong indirect evidence that
methylation effects are likely to play a significant role in
IBD pathogenesis, with 33% of the heritability of ulcera-
tive colitis, and 30.5% of the heritability of Crohn’s dis-
ease, being associated with SNPs affecting methylation
levels (mQTL) [48]. IBD studies have had a strong focus
on DNA methylation as a biomarker for progression to
colorectal cancer [49–51]. In this review, we will be fo-
cusing on those studies that investigate methylation in-
volvement in the pathogenesis of IBD itself. The
differences between the IBD subsets, ulcerative colitis
and Crohn’s disease have been heavily studied. Consist-
ent with the substantial genetic overlap between these
subsets, multigene DNA methylation studies ascertained
overlap in the differentially methylated genes in both
subsets [34, 35, 52–58].
Multigene DNA methylation studies in IBD have been

highly variable in terms of the genes observed. Similar
pathways have been identified including those related to
tissue/skeletal morphogenesis (e.g. PRICKLE1, SOX11,
TGFBR3, NKX2-3) [54, 56, 58, 59], immune pathways
such as the Wnt/NF-κβ (e.g. PITX2, RARB, ROR1,
FOXA2) [58, 60], IL-23 pathways (e.g. STAT3, BCL3,
OSM, TLR4) [53, 61] and inflammation-associated genes
(e.g. ITG1B2, SAA1, IFITM1, ITGB2) [54, 55, 58, 62, 63].
Methylation studies in IBD are challenged by the ac-

cessibility of tissues, variability of disease treatment and
obtainment of appropriate controls. Medication usage in
IBD treatment varies to a greater extent than those used
in psoriasis and AS, complicating analysis and poten-
tially explaining the failure for most studies to consider
it as a covariate. Uninflamed and healthy control biop-
sies are often obtained from different gastrointestinal re-
gions to the inflamed samples. This introduces variation
based on the location of samples which can confound
disease associations with location differences. Howell et
al. specifically examined this issue and identified site-
specific signatures for DNA methylation and gene ex-
pression between the ascending colon and sigmoid colon
compared to the terminal ileum [36]. Signatures in each
region were also found to be disease subset specific,
which agrees with the differential distribution of each
subset within the gastrointestinal system. This variability
is likely also linked to the different cell types within each
region. Ventham et al. examined both whole blood and
isolated immune cell subsets (CD4+ T cells, CD8+ T
cells and CD14+ monocytes) [35]. Gene expression and
DNA methylation were highly clustered by cell type in
the principal component analysis (PCA), and all individ-
ual cell types clustered separately from whole blood. The
signals identified in whole blood were often diluted cell-

specific signals, as seen with RPS6KA2, the top DMP in
whole blood, which was only significantly differentially
methylation in CD14+ monocytes. Conversely, HDAC4
which was also significantly differentially methylated in
CD14+ monocytes was not significantly different in
whole blood. Ventham et al. further demonstrated that
IBD-associated DMP co-localised with known IBD-
associated GWAS loci, significantly more than randomly
generated bins with similar probe density [35]. These
IBD-associated DMPs were used to identify 326 cis
meQTLs, with two SNPs associated with VMP1 both in
linkage disequilibrium with a known IBD-susceptibility
allele (rs1292053). This study used causal interference
testing (CIT) to investigate if DNA methylation was a
mediator between VMP1 genotype and phenotype or if
this was independent or consequential to genotype [35,
64]. The authors cited insufficient sample size as a likely
reason for the inability to prove the relationship, an issue
echoed by many papers in all three diseases. As this is
the largest DNA methylation study in IBD, psoriasis or
AS, it indicates the need to reassess the current sample
sizes considered for DNA methylation.
Somineni et al. recently reported on methylation dif-

ferences in peripheral blood mononuclear cells in 164
treatment-naive paediatric IBD cases and 74 non-IBD
controls [37]. They found 1189 differentially methylated
sites (false discovery rate < 0.05) and replicated Ven-
tham’s previous findings at VMP1, SBNO2, RPS6KA2,
ITGB2 and TXK. Of these, 194 showed genetic effects
on the change in methylation, and using Mendelian ran-
domisation approaches, they found evidence to suggest
that three of these, two involving the gene GPR31 and
one involving RNASET2, showed evidence of a causal re-
lationship with Crohn’s disease, replicating a prior find-
ing at RNASET2 [65]. Their Crohn’s disease methylation
signature overlapped strongly with previously reported
signatures associated with the chronic low-grade inflam-
matory disease as assessed by serum CRP measured in
subjects with a broad range of diseases including cardio-
vascular disease and diabetes. Finally, they demonstrated
that the methylation signature was a powerful discrimin-
ator between cases and controls (AUC = 0.91), but had
no utility in predicting prognosis. Howell et al. similarly
found that methylation signatures had the high discrim-
inatory capacity in paediatric IBD, with sigmoid colon
methylation having AUC = 0.94 [36]. Whether this signa-
ture is as predictive in subjects with suppressed disease,
or in comparison with other forms of colitis, and the ex-
tent of overlap in the methylation signatures these two
publications employed, awaits further study.
The link between IBD-associated genotypes and DNA

methylation has also been investigated in several single-
gene studies. The ulcerative colitis severity region-
associated rs1861494 T allele in IFNG was associated
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with this IFNG promoter methylation loss, and more se-
vere disease outcomes in both ulcerative colitis and
Crohn’s disease [66]. NKX2-3 (rs1190140), IL-17A
(IVS1+18) and STAT4 (rs7574865) all cause loss or gain
of a CpG site [61, 67, 68]. In STAT4 and IL17A the T
risk alleles result in loss of CpG sites and associated
increased expression of the cytokine in both colonic tis-
sue and PBMCs [68]. These studies have provided
insight into the mechanisms through which these SNPs
can affect function; however, they are limited in their
coverage and only encompass loci associated with
coding regions.

Psoriasis
Fewer methylation studies have been performed in psoria-
sis than IBD. Psoriasis has the benefit of a relatively ac-
cessible and easily defined sample types, skin and T cells
(known to play a primary role in psoriasis pathogenesis)
[38, 69–73]. Additionally, most of the studies in psoriasis
have focused on multiple genes, likely enabled by the
smaller number of genetic loci associated with psoriasis
(~ 60 loci) [3]. This has resulted in a focus on integrated
datasets, such as gene expression and genotyping. As ex-
pected, the differentially methylated genes identified in the
skin are mostly associated with epidermal and keratino-
cyte differentiation, and cellular regeneration [39, 74–76].
Four skin biopsy-based studies identified members of the
S100A family, part of the epidermal differentiation com-
plex, as top differentially methylated hits [39, 40, 75–78].
Many studies have failed to identify differences in skin bi-
opsies in affected non-inflamed skin compared to healthy
controls [39, 75, 76]. It is therefore worth considering if
the skin-related changes in psoriasis are not causative, but
rather responsive to psoriasis pathogenesis. Only Zhou et
al. examined both skin punch biopsies and PBMCs, and
none of the psoriasis-associated DMP replicated between
the sample types [39].
Differentially methylated genes in immune cell types

have differed from those associated in skin; however, the
pathways identified in both samples encompass cellular
adhesion and intracellular signalling pathways and in-
flammatory pathways (such as the IL-23 and STAT/JAK
signalling pathways which are consistent with psoriasis-
associated genetic variants (e.g. IL13, ALOX5AP, PTHLH
and TNFSF11) [38, 70, 75, 76]). This was observed in
Zhou et al. (2017) where 3 unique CpG sites were iden-
tified with 11 associated SNP-CpG pairs within
C1orf106, DMBX1 and SIK3 [39, 40, 64]. C1orf106 regu-
lates adherence junction stability, although the key gene
at this locus remains unclear [79]. SIK3 is associated
with an mTOR signalling cascade involved in skeleto-
genesis and is an upstream regulator of HDAC. DMBX1
is involved in cell cycle regulation. Unfortunately, this
was the only study to incorporate both genetic and DNA

methylation analysis, and thus, for most psoriasis-
associated loci, there is no information as to whether
genetic variants operate through methylation to influ-
ence disease. The few single-gene studies have identified
differential methylation in the promoter regions of p15,
p16, p21, ID4, IFNG and HLA-C [69, 72, 77, 78, 80]. All
had associated changes in gene expression. PASI score is
associated with increased p16 and HLA-C promoter
methylation and decreased HLA-DRB1 promoter methy-
lation [77, 78, 81]. These findings suggest that more
comprehensive studies of methylation in psoriasis are
likely to be productive.
A novel study examining methylation variation in the

sperm in psoriasis (PsC), psoriatic arthritis (PsA) and
healthy controls aimed to determine if the parent of ori-
gin heritability effects in these diseases were due to
methylation effects [41]. Studying the sperm rather than
peripheral blood or skin also obviated the issue of cellu-
lar heterogeneity. At a false discovery rate < 0.05, 574
differentially methylated sites were observed comparing
PsC patients and controls, 2467 between PsA patients
vs. controls and 342 between PsA and PsC patients. The
major histocompatibility complex was enriched for these
sites, and there were several strong biological candidates
for involvement in these diseases amongst the sites.
Whilst several CpG were examined in the blood, only
IL22 had a direct correlation between methylation levels
in both tissues. Whether the changes observed in the
semen correlate with the changes in cell types likely to
be involved in psoriasis will require further study.

Limitations of previous studies
Overall, the studies examining DNA methylation in IBD,
psoriasis and AS have suffered from similar issues. Co-
hort selection has often been driven by practical consid-
erations; however, there has also been an insufficient
recording of these factors for in silico analysis or adjust-
ment. Smoking is a known risk factor for these diseases
and affects disease severity and treatment response, yet
only 5 IBD studies even recorded smoking status. An
overarching theme is the insufficient sample sizes used,
cited by most papers as interfering with identification of
disease-associated signals. This is linked to the ongoing
issue of sample type used (tissue or circulating cells). A
question which is yet to be addressed is the most appro-
priate sample type in each disease. The frequency with
which these issues are discussed as a potential barrier to
analysis indicates that these issues are pervasive in the
study design for these diseases.

Best practices
This review of studies in these three related diseases
highlights some high-quality publications and also that
there are a high number of isolated findings which have
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either not replicated, or no replication study has been
performed of them. It is clear from this review that for
the field to make meaningful contributions to health re-
search, some simple, well-defined best practice guide-
lines are needed.

Study focus
DNA methylation studies generate a large amount of data
and are affected by numerous factors. Therefore, it is im-
portant to clearly define an achievable question or goal for
this information from the outset. This will also enable the
collection of additional functional information, such as
gene expression or genotype, where possible.

Cohort selection
Reproducibility and statistical power are best when vari-
ations in factors that affect DNA methylation exogenous
to the hypothesis being tested are controlled for. The
factors outlined above should be considered when plan-
ning what criteria will be used for cohort selection and
analysis. Age and sex should be matched between case
and control cohorts; however, other factors including
smoking and medication should be controlled where
possible or recorded when not. Medication can be con-
trolled through selecting for treatment naïve individuals,
using paired samples pre-and post-treatment, matched
case studies or controlling for medication use in silico
(where appropriate).
Although these factors can be adjusted for in silico

each factor that has to be adjusted for reduces the power
of the study to identify disease-relevant signals.

Therefore, proper cohort selection is always preferable
to in silico methods.

Sample type
Sample types are often selected due to practical consid-
erations such as accessibility, invasiveness and expense.
This has led to a broad use of circulating immune cells.
However, a key assumption is that the profiled tissue is
the most disease relevant. The primary site of the disease
remains contended in these diseases and no robust com-
parison of circulating and tissue resident cells has been
performed, leaving the utility of circulating cells as sub-
stitutes for primary disease site largely unknown. Whilst
these circulating cells may be relevant to disease, they
may not encompass tissue-specific methylation changes
relevant to disease. It is therefore imperative to examine
cell types in isolation, to enable comparisons between
tissue resident and circulating cells, and to control for
cell-specific DNA methylation patterns.

Sample size
Due to a large number of statistical tests now being car-
ried out in multi-gene studies, stringent levels of
genome-wide significance should be sought. Various cut-
offs have been suggested in the literature: 1 × 10−6 [82],
1 × 10−7 [83] and 5 × 10−8 [84]. A 10% change in DNA
methylation at a single CpG would require 21 paired
case controls, but the same change at genome-wide sig-
nificance (1 × 10−6) requires over 100 case-control pairs
(Fig. 2). Multiple testing adjustments should be included
in these calculations. Sample size requirements should

Fig. 2 Sample size requirements for genome-wide significance. Estimated sample sizes, expressed as the number of pairs, either twin pair or case-control,
required to reach 80% power in twin and case/control designs using a genome-wide significance threshold of 1 × 10−6. Data taken from Tsai and Bell 2015
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be determined prior to the study outset using either
pilot studies or similar cohorts to determine effect size
(methylation different between groups).

Method selection
Although over a third of studies in IBD, psoriasis and
AS used MSP, it is recommended that this method only
be selected where candidate genes have already been
identified and the method is being used to investigate
the relationship between genotype or gene expression
with methylation of that gene. Otherwise, a multigene
approach is always preferable. Each method has individ-
ual advantages and disadvantages, as outlined in Table 1.
It is important to consider the limitations of each
method prior to selection. This should then influence
the analysis and quality control steps that will be used. If
data is to be integrated with another study, care should
be taken to select similar cohorts and methods for mea-
surements. Variation due to differences in the factors
discussed above should be tested prior to analysis. It
may be beneficial to treat these as a validation cohort ra-
ther than to integrate such data.

Integration with ‘omics data
It is informative to examine DNA methylation in the
context of genomic or transcriptomic data as this pro-
vides context and functional information. It also
provides a method to prioritise DMP. Currently, there
has been limited integration of genotype with DNA
methylation data. This has made it difficult to identify
the relationship between the genetic basis of these dis-
eases and changes at a DNA methylation level. It is also
suggested that the integration of microbiota and cyto-
kine data be considered, due to the strong link between
gut microbiota changes and all three diseases.

Replication/validation
Technical verification is recommended prior to under-
taking biological validation, as it is generally less time
consuming and expensive than biological validation.
PCR-based techniques are commonly used for technical
validation of BeadChip arrays. It is noteworthy that only
twin studies or juvenile cohorts carried out biological
validation [33, 52, 54]. This is particularly relevant in
DNA methylation due to high levels of inter-individual
variation and tissue-specific DNA methylation patterns.

Conclusion
Despite evidence in twin studies that epigenetics is a major
mechanism through which immune-mediated disease-
associated variants affect function, the role of DNA methyla-
tion, the most well-characterised epigenetic mechanism, in
immune-mediated diseases remains largely unknown. DNA
methylation remains an under-investigated biological

mechanism in AS, IBD and psoriasis. Similar pathways have
been identified as differentially methylated in each of these
diseases, and most have been previously identified through
genetic association studies. However, studies to date have
been limited by study design issues, including poor cohort
selection, improper controls and insufficient statistical
power.
Future studies should incorporate the factors outlined

in this review and take steps prior to study outset to per-
form sample size calculations, cohort selection criteria,
and the selection of appropriate measurement tech-
niques and analysis pipelines that are based around
those techniques. These should be followed by biological
and technical validation to ensure that results are held
to a robust standard. The use of consistent and appro-
priate experimental design will enable the identification
of disease-relevant changes in DNA methylation and
provide functional information to inform rational treat-
ment design in these immune-mediated diseases.
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