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Abstract

Objective: Osteoarthritis (OA) has long been regarded as a disease of cartilage degeneration, whereas mounting
evidence implies that low-grade inflammation contributes to OA. Among inflammatory cells involved, macrophages
play a crucial role and are mediated by the local microenvironment to exhibit different phenotypes and polarization
states. Therefore, we conducted a systematic review to uncover the phenotypic alterations of macrophages during
OA and summarized the potential therapeutic interventions via modulating macrophages.

Methods: A systematic review of multiple databases (PubMed, Web of Science, ScienceDirect, Medline) was
performed up to February 29, 2020. Included articles were discussed and evaluated by two independent reviewers.
Relevant information was analyzed with a standardized and well-designed template.

Results: A total of 28 studies were included. Results were subcategorized into two sections depending on sources
from human tissue/cell-based studies (12 studies) and animal experiments (16 studies). The overall observation
indicated that M1 macrophages elevated in both synovium and circulation during OA development, along with
lower numbers of M2 macrophages. The detailed alterations of macrophages in both synovium and circulation
were listed and analyzed. Furthermore, interventions against OA via regulating macrophages in animal models were
highlighted.

Conclusion: This study emphasized the importance of the phenotypic alterations of macrophages in OA
development. The classical phenotypic subcategory of M1 and M2 macrophages was questionable due to
controversial and conflicting results. Therefore, further efforts are needed to categorize macrophages in an
exhaustive manner and to use advanced technologies to identify the individual roles of each subtype of
macrophages in OA.
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Introduction
Osteoarthritis (OA) is the most common degenerative
joint disorder, mainly affecting the weight-bearing joints
such as knees and hips [1], and the non-weight-bearing
joints such as the hand and temporomandibular joints

[2]. OA is the main cause of physical disability and has
been predicted to afflict approximately 67 million people
in USA by 2030 [3]. Though risk factors such as aging,
obesity, genetic predisposition, and joint trauma have
been identified for OA initiation [4–7], few effective
treatments are available to prevent OA due to the insuf-
ficient understanding of the pathogenesis [8]. Recently,
accumulating evidence indicates that the inflammation
significantly contributes to OA in addition to the abnor-
mal mechanical loading [9]. OA is gradually viewed as a
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low-grade inflammatory disease affecting the whole joint
besides articular cartilage [10]. Collectively, these find-
ings highlight the profound role of innate immunity in
the progression of OA.
As a critical part of the innate immune system, macro-

phage has long been considered as an important partici-
pant in OA. For instance, depletion of synovium
macrophages by magnetic beads (anti-CD14-conjugated
magnetic beads) [11] or chemicals (e.g., clodronates)
[12] contributes to decreasing cartilage catabolic en-
zymes such as MMP13 and Adamts4. However, the sys-
temic ablation of macrophage in MaFIA (Macrophage
Fas-Induced Apoptosis) mice leads to a severe synovitis
in obese OA model, implying the complicated roles of
macrophages in OA [13].
Macrophages play diverse roles in development, in-

flammation, and tissue repairing. The plasticity of
macrophages enables the cells to make adjustments
towards local microenvironments and respond to a
wide range of stimuli under both physiological and
pathological conditions [14, 15]. Studies in ferreting
out the role of macrophages in inflammation have
progressed recently. Researchers have identified two
different polarization status of macrophages when
confronted with different stimuli. In inflammatory
phase, classically activated M1 macrophages are re-
cruited and produce high levels of pro-inflammatory
cytokines and chemokines, such as tumor necrosis
factor-alpha (TNF-α), IL-1, and IL-6. On the other
hand, alternatively activated M2 macrophages are
needed for the resolution of inflammation. M2 macro-
phages reverse the inflammatory process by releasing
anti-inflammatory factors such as IL-10 and secreting
growth factors, such as transforming growth factor-
beta (TGF-β) [16]. Therefore, polarization of macro-
phages at different inflammatory stages might account
for various pathological processes. Although the con-
cept of macrophage M1/M2 polarization provides an
effective system to study macrophages in vitro, the
exact definition and phenotypic transition of macro-
phages in in vivo studies are still less defined [17].
As mentioned, emerging studies aimed to control

inflammation in different diseases by targeting pheno-
typic changes of macrophages. In pre-clinical models,
normalizing the aberrant M1/M2 ratio has been sug-
gested as a therapeutic strategy for macrophage-
involved diseases, such as atherosclerosis, lung cancer,
and bone diseases including osteoporosis and osteo-
arthritis [18–22].
In this study, we systematically reviewed recent key

findings of macrophage polarization in OA, evaluated
the role of phenotypic alterations in macrophages, and
summarized the current and potential interventions via
the modulations of macrophages.

Methods
Search strategy
A systematic search was set up on PubMed, WOS (Web
of Science), Ovid (MEDLINE database), Embase (Elsevier
Database), and Science Direct (Elsevier Databases), ac-
cording to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [23]. It
was performed without any limitation to the publication
date in order to identify all articles on the role of M1 and
M2 macrophages in OA. The medical term for osteoarth-
ritis was used in combination with phenotypic alterations
of macrophages, which was shown below: osteoarthritis
[Title/Abstract] AND macrophage [Title/Abstract] AND
(Polarization [Title/Abstract] OR polarization [Title/Ab-
stract] OR M1 [Title/Abstract] OR M2 [Title/Abstract]
OR inflammation [Title/Abstract]). The search was last
updated on February 29, 2020.

Screening process
All articles were screened by two independent investiga-
tors (XBZ and HTX). The reviewing selection process
was based on title, abstract, and full-text level, using a
well-established screening tool, Covidence [24].
The eligibility of each article was determined according

to the inclusion and exclusion criteria. Studies were in-
cluded if they met the following criteria: (i) relevant to the
searching strategy, (ii) English-written articles within the
recent 20 years, and (ii) availability of full-length research
articles. Exclusion criteria were present as following: non-
English written studies, case studies, review articles, edito-
rials, letters, conference paper, or book chapters. More-
over, the contents of the articles were also taken into
consideration. Studies that were not related to OA or
without measurements of macrophages were excluded.
Studies meeting all criteria were included, and the

quality assessment of these articles was based on hetero-
geneity and methodological quality. Methodological
qualities of included studies were based on the quality
systems, which were raised by Wells et al. [25–28]. De-
tails about the qualities of the included studies were
listed in Supplemental materials.
At each step of screening, a final consensus was

reached after the mutual discussion between two investi-
gators (XBZ and HTX) when different opinions existed.
Data were extracted and tabulated by XBZ, and then, a
subset of key variables was validated by HTX.
All included articles were double-checked by the third

investigator (YFW). Similarly, relevant data were ex-
tracted and analyzed with a standardized method de-
signed for this review (see Fig. 1. for the flowchart).

Results
Of the 920 articles screened that were considered to be
relevant to the research topic, 28 articles were finally
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included. The screening process is available in Fig. 1.
The detailed information of the 28 selected articles are
shown in Table 1. In this review, the included articles
were categorized into two sections based on the species
as different species have different cellular compartments
[56]. The distributional proportions of all species in in-
cluded articles are shown in Fig. 2a. Among all included
articles, studies focusing on tissues or cells from human
species constituted less than half of total (12/28),
followed by animal studies (16/28), including mouse (9/
28), rat (4/28) and other animals (canine and equine
studies, 3/28). Within these two subcategories (human-
derived and animal studies), the origin of macrophages
was also evaluated, especially for the peripheral macro-
phages (peripheral blood monocyte-derived macro-
phages) and the tissue-resident macrophages (synovial
macrophages). In each subcategory, further evaluation
was conducted on the interventions that could impact or
modulate the M1/M2 ratio in OA progression.

Human tissue/cell-based studies
In mammals, most organs contain tissue-resident mac-
rophages. These macrophages are believed to be distrib-
uted into different tissues during embryogenesis [15]
and are essential for maintaining immune homeostasis.

On the other hand, circulating monocyte-derived macro-
phages also play a crucial role in inflammation. In re-
sponse to inflammation, circulating monocytes are
recruited to inflamed tissues and subsequently differenti-
ate into macrophages in situ by local inflammatory me-
diators [57]. For healthy individuals, a small number of
macrophages constitutively reside in the knee joint.
However, in the OA knees, the intensity and infiltrated
areas of macrophages in synovium are significantly in-
creased [58].

M1 and M2 macrophage in the peripheral blood from OA
patients
Studies of peripheral blood monocytes (PBMCs) in OA
were carried out in the past few years. PBMCs would
partially polarize towards M1 or M2 macrophages after
stimuli, and the phenotypic alterations of macrophages
were identified based on cellular markers.
In one study, PBMCs were isolated and induced to dif-

ferentiate into macrophages, and then, CD14+CD11b+

macrophages (M0, naive macrophages) were purified
and selected. Upon stimulated with OA-related metabol-
ite, such as basic calcium phosphate (BCP) crystals, mac-
rophages produced higher levels of chemokines, such as
CXCL9 and CXCL10, and increased the expression of

Fig. 1 Flowchart of studies included in the systematic review. After the application of all inclusion and exclusion criteria, 28 studies were identified
for analysis
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Table 1 Characteristics and major conclusion of included studies

Author Cell source Species Study
type

Conclusions

Mahon et al.
[29]

PBMC Human In vitro BCP promotes macrophage M1 polarization during OA pathogenesis
2DG reverses BCP-induced M1 polarization in OA

Zhou et al.
[30]

RAW264.7 Mouse In vitro &
In vivo

ACLT model induces an increase of M1 polarization in synovial macrophage.
Kin attenuates the number of M1 macrophage and up-regulated the M2 macrophage.

Jablonski et al.
[31]

N/A Mouse In vivo The predominant macrophage population observed in uninjured knee joint is M1
macrophage.

Benjamin
et al. [32]

N/A Dog In vivo CR (cruciate rupture) model leads to a M1 polarization in synovial macrophage.

Haltmayer
et al. [33]

N/A Horse In vitro The osteochondral-synovial explant co-culture OA-model indicates a shift towards M1
phenotype during OA progression

Liu et al. [34] Synovial fluid;
PBMC

Human In vivo Human knee synovial macrophage displays an increased M1 polarization and decreased
M2 polarization.

Sambamurthy
et al. [35]

N/A Mouse In vivo DMM model presents an elevated M1 polarization and decreased M2 polarization during
OA progression

Wang et al.
[36]

BMMC Mouse In vivo &
In vitro

DMM model demonstrates increased numbers of M1 macrophages and decreased
number of M2 macrophage. BTZ could reversed this pathological process

Zhang et al.
[37]

Synovium Mouse In vivo Both human OA and CIOA model display an elevated M1 polarization

Timur et al.
[38]

Hoffa’s fat pad Human In vivo PGE2 released by OA HFP is positively associated with M1 macrophages polarization,
indicating a role for macrophages. Celecoxib modulated the inflammation ratio towards a
more favorable anti-inflammatory M2 phenotype

Topoluk et al.
[39]

Synovium and
cartilage explant

Human In vitro OA coculture of synovium with cartilage demonstrates increased M1 polarization.

Wu et al. [13] N/A Mouse In vivo DMM model demonstrates increased numbers of M1 macro

Manferdini
et al. [40]

Human SMMC &
PBMC

Human In vitro ASCs are responsible for the switching of activated-M1-like inflammatory macrophages to
a M2-like phenotype

Pal et al. [41] PBMC Human In vitro SFN could shift monocyte/macrophage differentiation towards the anti-inflammatory M2
type

Siebelt et al.
[42]

Human monocyte Rat In vitro TA induces a M2 polarization in macrophage

Fahy et al. [43] SMMC and
fibroblast

Human In vitro M1 macrophages downregulate MSC chondrogenesis

Tsuneyoshi
et al. [44]

N/A Human In vitro The distribution and M1/M2 expression profiles of synovial macrophages are different
between OA and RA synovium.

Zhang et al.
[45]

N/A Rat In vivo In a Rat osteochondral defect model, M2 macrophages in cartilage and synovium
increase. The intervention of exosomes increases the M2 macrophages and decreases M1
macrophage

Hu et al. [46] N/A Rat In vivo Quercetin promotes cartilage repair by modulating macrophages polarization to M2
macrophages in Rat OA model

Dai et al. [47] RAW264.7 Rat In vivo &
In vitro

SCII immunomodulates a phenotype shift of macrophages from M0 to M2 during OA
progression

Barreto et al.
[48]

PBMC Human In vitro Lumican contributes to the innate immune-mediated pathogenesis of primary IOA via
macrophage M1 polarization

Kraus et al.
[49]

N/A Human In vivo One patient OA synovium presents M1 and M2 marker simultaneously.

Utomo et al.
[50]

PBMC Human In vitro Dexamethasone lowers M1/M2 proportion in OA synovium.

Perla et al.
[51]

THP-1 cell;
PBMC

Human In vitro Overexpression of CD163 contributes the transition from M1 to M2 when stimulated with
LPS

Nobuaki et al.
[52]

N/A Mouse In vivo Polarization towards M2-like macrophages from M1-like macrophages in the synovium is
associated with OA alleviation by SRT2104.

Menarim et al.
[53]

BMMC Horse In vitro BMNCs cultured in normal synovial fluid or inflamed synovial fluid exhibit aspects of both
M1 and M2 phenotypes and immunoregulatory response.
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M1 surface markers, such as CD86 and CD40 [29].
These results implied that the PBMCs tended towards
the M1 phenotype during OA.
In another human cell-based study, the proportion of

pro-inflammatory CD11c+ macrophages was significantly
higher in the circulation of OA patients than that of
healthy individuals. In contrast, the number of anti-
inflammatory CD206+ macrophages was markedly lower
in OA patients [34]. These results revealed a higher M1/
M2 ratio in the peripheral blood of OA patients.

M1 and M2 macrophage in synovium from OA patients
Synovium-resident macrophages were activated in OA
and contributed to the principal source of cytokines in
OA progression [59].

Researchers have identified the abnormal accumula-
tion and phenotypic alterations of macrophages in OA
synovium [44, 49], analogous to those in the peripheral
blood. Compared to healthy synovium, OA synovium
demonstrated a marked elevation of F4/80+ (macrophage
marker) cells in both intimal and sublining layers, to-
gether with a higher number of iNOS+ (M1-like macro-
phage marker) cells in the intimal lining layer.
Conversely, CD206+ (M2-like macrophage marker) cells
showed only a slight but non-significant decrease in OA
synovium [37].
Hoffa’s fat pad (HFP) is another macrophage niche in

the knee joints [60]. Timur et al. divided the OA condi-
tions into two groups according to the level of Prosta-
glandin E2 (PGE2) in HFP explant culture medium (100

Table 1 Characteristics and major conclusion of included studies (Continued)

Author Cell source Species Study
type

Conclusions

Zhou et al.
[54]

RAW264.7 Mouse In vivo &
In vitro

Modified Nanoparticles suppress M1 macrophages and upregulate M2 macrophage
infiltration in the synovium, thus preventing cartilage degeneration

Shu et al. [55] N/A Mouse In vivo Hyaluronan could increase the anti-fibrotic M2c macrophages (F4/80+CD206+CD301+) 12
weeks post DMM

Abbreviations: PBMC peripheral blood monocytes, SMM synovium-derived macrophage, BMMC bone marrow mononuclear cells

Fig. 2 Characteristic outcomes of experimental species, animal models, and species distribution in animal interventional studies. a The proportion
of experimental species. 43% studies (12/28) were based on primary cells or samples from human. 32% studies (9/28) were based on primary cells
or samples from mice. 14% studies (4/28) were based on primary cells or samples from rats. 11% of studies (3/28) were based on samples from
canine and equinel; b Pie chart illustrating the types of animal models used in the studies. 36% the animal models were ACLT (4/11). 36% the
animal models were DMM (4/11). 18% the animal models were intra-articular injection of collagenase (2/11). 9% the animal models were other
animal models including osteochondral defect model (1/11); c Species distribution in interventional animal studies. 64% the interventional studies
were based on mouse models. 36% the interventional studies were based on rat models
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mg fat pad tissue /ml): high PGE2 group (> 25 ng/ml)
and low PGE2 group (< 25 ng/ml). The HFP from high
PGE2 OA group showed a 21.4-fold higher inflammation
ratio than HFP from low PGE2 OA group. Meanwhile,
HFP from high PGE2 OA group demonstrated 3.7-fold
lower gene expression of CD163 (M2 macrophage
marker) compared to the HFP in low PGE2 group.
These results indicated that the role of macrophage
polarization might vary in different OA subtype [38].

In vitro human tissue/cell-based study
Although the in vitro data from isolated cells or tissues
are not yet ready to be translated into clinical interven-
tions in OA. Several in vitro studies with exogenous treat-
ment still showed potentials to normalize the macrophage
polarization and protect against OA. For example, overex-
pression of CD163 in primary human macrophages by a
polyethylenimine nanoparticles grafted with a mannose
ligand (Man-PEI) contributed to the transition of macro-
phages from M1 to M2 after being stimulated with LPS
[51]. Pal et al. validated that sulforaphane (10 μM) could
skew the differentiation of monocytes (human monocyte
cell line: THP1 cells; human primary monocytes) towards
the anti-inflammatory M2 type [41]. Another sample is
lumican (LUM), a major extracellular matrix glycoprotein
in articular cartilage, and its expression was significantly
upregulated in OA [48]. LUM contributed to the innate
immune-mediated pathogenesis of primary OA via pro-
moting macrophage M1 polarization [48], and this made
LUM become a promising therapeutic target for OA. In
addition, the human adipose-derived MSCs were reported
to be responsible for phenotypic switching from M1 to
M2 in human macrophages, accompanied with the de-
creased secretion of inflammatory cytokines such as TNF-
α and IL-6 [40]. These cellular and molecular mechanisms
are related to the modification of macrophages in OA,
and the treatments have shown therapeutic effects in hu-
man in vitro studies.

Animal studies
Due to the complexity of OA, there are still many un-
knowns in pathogenesis of OA. For example, the exact
trigger for initiating the cartilage degradation is still un-
known. Also, the underlying mechanisms that lead to
disease maintenance rather than resolution are still
poorly understood. Therefore, animal studies become
valuable to delineate the underlying mechanisms of the
disease and develop novel therapies.
In this section, we reviewed the articles on the pheno-

typic alterations of macrophages in different species and
different animal models. Since there are many different
types of OA animal models, the proportion of different
OA models applied in the included studies is shown in
Fig. 2b.

M1 and M2 macrophages in synovium from experimental
animals
Destabilization of medial meniscus (DMM)-induced OA,
a well-established OA model [61], has been widely used to
study the macrophage alterations in OA. Four studies
were included with DMM model in this section, and all
studies reported a significantly higher number of synovial
F4/80+ cells post DMM, indicating that the innate im-
mune system was activated during DMM-incurred OA
progression. One study drew the conclusion that the num-
ber of M1 macrophages (F4/80+CD86+CD63−) was signifi-
cantly increased in murine synovium 6weeks after DMM
[36]. In another study, synovial F4/80+CD11c+CD206+

cells significantly decreased after DMM for both 4 and 8
weeks [35]. Additionally, another study showed a trend
towards more NOS2+ cells (M1 macrophages) in the
DMM-operated joint than those in contralateral joint [36].
Similar trends in the change of macrophage populations
were also found in a more severe OA model, anterior cru-
ciate ligament transection (ACLT)-induced rodent OA
model [30, 47].
Furthermore, there were three studies in large animals.

One was a canine OA model [32], and two were equine OA
models [53, 62]. In the canine study, synovial fluid samples
were collected and analyzed, and researchers discovered that
ratio of positively stained M1-polarized macrophages
(CCR7+iNOS+CD68+ cells) to M2-polarized macrophages
(CD163+Arg1+CD68+ cells) was higher in OA group than
that in the normal control group [32]. In an ex vivo study,
the equine osteochondral-synovial explant co-culture system
was facilitated as an OA model. Researchers evaluated the ra-
tio of NO (μM)/urea (μM) as a symbol of pro-inflammatory
M1-like macrophages as previously described [63] and con-
cluded that the macrophages underwent a shift towards M1
phenotype during OA progression [33]. Recently, another
study demonstrated that bone marrow-derived mononuclear
cells, which were viewed as a source of macrophages, dis-
played an M2-like transcriptional characteristics when stimu-
lating with inflamed synovial fluid in an equine OA synovitis
model (0.5 ng LPS injection into radiocarpal joint for 8 h)
[53].
It was also noteworthy that though the phenotypic al-

terations of macrophages during rheumatoid arthritis
(RA) had already been discovered recently [64, 65], there
was still a knowledge gap in the phenotypic alterations
of peripheral blood-derived monocytes or macrophages
in OA animal models.

Interventions in animal models
Among all included animal studies, 11 studies were se-
lected and highlighted for the interventions against abnor-
mal changes of macrophages. As shown in Fig. 2c, 64% of
these studies (7/11) were based on the mouse models
while 36% of the studies (4/11) were based on the rat
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model. Researchers utilized diverse methodologies to cor-
rect the aberrant macrophage polarization (Fig. 3 and
Table 2), including interventions regulating and targeting
specific signaling pathways [31, 37, 52, 54] and compre-
hensive interventions such as extracts from traditional
Chinese herbs [30, 46, 47], anti-inflammation drugs [42],
mesenchymal stem cell (MSC)-related therapies [45, 55],
and others [36].
For animal OA models, various traditional Chinese

herb extracts such as kinsenoside, quercetin, and squid
type II collagen were identified to be able to repolarize
the synovial macrophages and attenuate cartilage degen-
eration in OA [30, 46, 47].
Moreover, to further elucidate the endogenous im-

munological mechanism of OA, endogenous molecules
and the relevant signaling pathways were identified.
Mammalian target of rapamycin complex 1 (mTORC1)
signaling pathway was reported to be aberrantly acti-
vated in synovial macrophages during OA and subse-
quently contributed to macrophage M1 polarization.
These polarized macrophages (M1) produced excessive
R-spondin-2 (Rspo2) and then exacerbated experimental
OA [37]. By intra-articular injection of Rspo2 neutraliz-
ing antibody, the cartilage degeneration incurred by M1
macrophage polarization was effectively ameliorated
[37]. In addition, activating silent information regulator

2 ortholog 1 (Sirt1) signaling pathway with a selective
Sirt1 activator SRT210 relieved DMM-induced OA, par-
tially through normalizing the synovial macrophage
polarization (increased the CD206+ M2 macrophages
and decreased the iNOS+ M1 macrophages) [52]. With
the development of nanotechnology, a modified nano-
particle (NP) termed zeolitic imidazolate framework-8
nanoparticle (ZIF-8 NP) was designed to target synovial
macrophages and transform macrophage polarization
from M1 to M2 phenotype, thus attenuating OA [54].
These interventions and signaling pathways are inte-
grated in Table 3.
Stem cell-based therapies were also found to relieve

OA via modulating macrophage activation [66]. The ap-
plication of stem cells for cartilage repair relied on their
ability to differentiate into chondrocytes and then substi-
tute for the degenerative or dead chondrocytes [67]. Re-
cent studies revealed that the reparative potential of
MSCs for OA was also based on its immunological
modification on the macrophages [39, 68]. The adminis-
tration of human embryonic stem cell-derived exosomes
in the osteochondral defect model could increase the
CD163+ macrophages (M2) and decrease the CD86+

macrophages (M1) in the joint, and lowered the levels of
inflammatory cytokines inside the joint (cartilage and
synovium) [68, 69]. Inversely, as a feedback, the

Fig. 3 Interventional subcategories. The interventions against OA included traditional Chinese herb extracts, anti-inflammation drugs, MSC-related
therapy, targeting molecular modifications, and others
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inflammatory microenvironment also impacted chondro-
genic differentiation of mesenchymal stem cells via
macrophage polarization [43].

Discussion
Recently, the crucial role of synovium resident macro-
phages in the pathogenesis of RA has been well recog-
nized. Depletion of macrophages or normalizing
macrophage phenotype could protect against RA [70–72],
and the exact role of M1 and M2 macrophages in RA has
also been well reviewed [73]. However, little has been sys-
tematically reviewed on the role of macrophages and their
polarization in OA. In this study, we systematically

reviewed the properties of M1 and M2 macrophages in
the periphery, synovial tissue, and synovial fluids of OA
patients. We presented important findings from both hu-
man and animal OA models and summarized the relevant
targeting interventions or comprehensive interventions in
these studies, which gave rise to normalizing the pheno-
type of macrophage (M1 or M2) and alleviating the OA
progression.
However, some experimental results were relatively

contradictory, which suggest that macrophages have
multifaceted and complicated roles in OA. In a DMM-
induced OA model in obese mice (high-fat diet for 10
weeks and 20 weeks), Wu et al. eliminated macrophages
globally with a small molecule named AP20187 in
MaFIA mice. The macrophage-deleted mice immediately
exhibited less osteophyte formation following DMM, but
these obese mice failed to relieve cartilage deterioration
at week 9 and synovial inflammation was also activated
in macrophage-depleted mice compared to that in non-
depletion mice at week 9 [13]. These observations were
inconsistent with previous studies conducted by Blom
et al. that deletion of macrophages via intra-articular

Table 2 Details of the interventions in the included studies

Author Category Intervention Detected marker Interventional
site

Jablonski
et al. [31]

Endogenous
molecule

Cartilage regeneration model;
Cartilage regeneration model in
CCR2−/−CCL2−/− mouse

Cartilage regeneration model: M1: CD38+↑;
Cartilage regeneration model in CCR2−/−CCL2−/− mouse:
M2:CD206+F4/80+↑

Joint

Zhang et al.
[37]

Mouse OA model;
Rheb1 Knockout (KO) in myeloid cells

Mouse OA model: M0: F4/80↑; M1: iNOS↑;
Mouse OA model in Rheb1 KO mouse: M0: (F4/80↑)↓;
M1: (iNOS↑)↓; M2: CD206↑

Joint

Zhou et al.
[54]

Mouse OA model;
Modified ZIF-8 Nanoparticles

Mouse OA model: CD16/32↑;
Nanoparticles on OA model: (CD16/32↑) ↓, CD163↑

Joint

Nobuaki
et al. [52]

Mouse OA model;
SRT2104 (SIRT1 activator)

SRT2104 on OA model: M1: iNOS↓; M2: CD206↑ Joint

Siebelt et al.
[42]

Anti-
inflammation

Triamcinolone acetonide (TA) TA: M2: CD163↑ Joint

Zhang et al.
[45]

MSC-related
option

Exosomes Rat OA model: M1: CD86↑; M2: CD163↓;
Exosome + Rat OA model: (M1: CD86↑) ↓; (M2: CD163↓)
↑

Joint

Shu et al.
[55]

Mouse OA model;
Bone marrow stem cell (BMSC)

Hyaluronan:M2c (F4/80+CD206+CD301+)↑ Joint

Zhou et al.
[30]

Traditional
Chinese herb

Kinsenoside (Kin) Mouse OA model: M1: CD16/32 + ↑;
Kin+ Mouse OA model: (M1: CD16/32 + ↑) ↓; M2: CD206↑

Joint

Hu et al. [46] Quercetin Quercetin: M2: Arg1↑, MR↑, Ym1↑;
Rat OA model: M0: CD68↑; M2: MR↑;
Quercetin+ Rat OA model: (M0: CD68↑) ↓; (M2: MR↑) ↑

Joint

Dai et al.
[47]

Squid type II collagen (SCII) SCII: M2: Arg1↑, Ym1↑, MR↑, Fizz1↑;
Rat OA model: M0: CD68↑; M2: MR↑;
SCII+ Rat OA model: M0:(CD68↑) ↓; M2: (MR↑)↑

Joint

Wang et al.
[35]

Others Mouse OA model
Bortezomib (BTZ)

Mouse OA model: M1: F4/80+CD86+CD63−↑; M2: F4/
80+CD86−CD63+↓;
BTZ+ Mouse OA model: M1: (F4/80+CD86+CD63−↑) ↓;
M2: (F4/80+CD86−CD63+↓) ↑

Joint

Noted:
↑ increase, ↓ decrease, Arg1 Arginase 1, CCL2 chemokine (C–C motif) ligand 2, CCR2 chemokine C–C motif receptor 2, Rheb1 Ras homolog enriched in brain 1

Table 3 Underlying therapeutic signaling pathway

Signaling pathway Interventional site

mTORC1-Rheb1/TSC1 [37] Cartilage

Sirt1 [52] Cartilage

CCL2-CCR2 [31] Cartilage

Oxygen and hydrogen peroxide [54] Synovium
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injection of clodronate liposomes could relieve the in-
flammatory response and cartilage catabolic enzymes in
a collagenase-induced OA model in C57Bl/6 mice [12,
74]. Further, Wu et al. also found that CD3+ T cells and
neutrophils massively infiltrated into the DMM-operated
knee joint and caused severe joint synovitis [13]. The
above study emphasized the potential roles of macro-
phage in maintaining joint homeostasis after injury apart
from pro-inflammation and implied that macrophage
would participate in limiting the adaptive immune re-
sponse that developed after the initial innate response.
Thus, it was arbitrary to treat OA by merely deleting
whole macrophages in the joint, without discriminating
the different subtypes of macrophages. Further attention
should be paid to identifying and mobilizing the poten-
tial positive roles of macrophages on cartilage repair in
OA.
Coincidently, Zhang et al. furthered the research on

identifying the roles of different phenotypes of macro-
phages in OA [37]. They demonstrated that M1 but not
M2 macrophages accumulated in synovial tissues from
human OA and murine collagenase-induced OA. Acti-
vating synovial macrophage M2 polarization by ablating
an upstream activator of mTORC1 pathway (i.e., Ras
homolog enriched in brain 1/Rheb1) in myeloid lineage
cells prevented OA development. Conversely, deleting
an upstream inhibitor of mTORC1 pathway (i.e., tuber-
ous sclerosis complex 1/TSC1) in myeloid lineage cells
enhanced M1 polarization and exacerbated cartilage
damage in both surgically induced OA and collagenase-
induced OA [37]. Furthermore, they identified R-
spondin-2 (Rspo2) as an M1 macrophage-produced pro-
tein involved in the subsequent OA progression. Thus,
clinical attention could be paid to the mTORC1 signal-
ing pathways in synovial macrophages, and the adminis-
tration of Rspo2 inhibitor or neutralizing antibody in the
knee joints. Based on Zhang’s study, the previous con-
flicting results (Blom’s and Wu’s studies) that global de-
pletion of macrophages failed to prevent OA might be
partially explained. We made the speculation that it was
the phenotypic shift (e.g., from M0 to M1 by downregu-
lating TSC1; from M0 to M2 by downregulating Rheb1),
other than the number of macrophages that accounted
for the conflicting results.
Understanding phenotypic changes of macrophage

polarization and the function of each subtype would
shed light on the potential clinical implication of the in-
terventions. For instance, regenerative therapies such as
human embryonic stem cell-derived exosomes showed
potential to prevent cartilage deterioration via activating
the pro-survival Akt signaling pathway, and reprogram-
ming joint macrophage by increasing M2 transition and
decreasing M1 macrophage infiltration [45]. Intriguingly,
a recently developed nanoparticle (modified ZIF-8 NP)

showed the similar therapeutic effects on cartilage pro-
tection and macrophage repolarization (described in
3.2.2) [54]. Thus, although the macrophage repolariza-
tion in OA is still under pre-clinical investigation, it is of
great value to attach more importance to regulating
macrophage polarization with the respect to the poten-
tial clinical application and successful application cases
in other skeletal disease such as RA [72, 75].
Emerging improvements regarding the correlation of

OA and macrophages have been made these years, but a
number of unanswered questions were remained. Firstly,
the classical M1/M2 classification was insufficient for re-
searchers to describe and explain the delicate mecha-
nisms, and the subtypes of macrophages were required
to be delineated strictly. Although several subtypes of
M2 macrophages (e.g., M2a, M2b, M2c, M2d) [76] were
categorized based on the in vitro inducing cytokine com-
binations (i.e., M2a: IL-4 and IL-13; M2b: LPS and im-
mune complex; M2c: IL-10 and glucocorticoids; M2d:
IL-6) [77–79]. Researchers still unintentionally over-
looked the sub-classification of macrophages in vivo.
Only one study focused on the M2c macrophage in OA
and concluded that hyaluronan could significantly in-
crease the number of anti-fibrotic M2c macrophages
(F4/80+CD206+CD301+) 12 weeks post DMM [55]. Fur-
ther investigations are thus needed.
The materials and methods in included studies cov-

ered the most commonly used molecular biological tech-
nologies (shown in Table 2). The phenotypic alterations
of macrophage in OA were effectively identified with
these technologies, both transcriptionally and transla-
tionally. However, the detective methodologies and cel-
lular markers of M0, M1, and M2 macrophages varied
and had limitations, and impacted the data interpret-
ation among studies and research models. For instance,
the F4/80 was widely adopted as a cellular marker for
macrophage in many included studies, but the specify
and sensitivity is not that satisfying [80]. The expression
of F4/80 varied among mouse mononuclear populations,
being very low in the bone marrow Ly6c+ monocyte-
emanated macrophage, but high in various tissue-
resident macrophage derived from fetal yolk sac, such as
microglia (brain) and Kuffer cells (liver) [80]. We sum-
marized the cellular markers employed in the included
studies in Table 4. In the future, the booming develop-
ment of single-cell methodologies will help to identify
the individual cell types at a single-cell level, which
could be used to target distinct macrophage populations
precisely.
Although standardization of M1/M2 phenotype gave

researchers a uniform framework to study macrophages
in vitro and made results from different studies compar-
able, several drawbacks were still concerned. The rigid
subdivision of macrophage as M1 and M2 hindered the

Zhu et al. Arthritis Research & Therapy          (2021) 23:110 Page 9 of 13



understanding of macrophage plasticity in vivo, since
classical M1 and M2 polarization were two distinct
macrophage subtypes and they were unlikely to occur in
a tissue context. For instance, the classical M1/M2 para-
digm failed to explain the different transcriptomic
changes of human monocyte-derived macrophages and
lung-resident alveolar macrophages after stimulated with
LPS/IFN-γ (M1 inducer) or IL-4/IL-13 (M2 inducer)
[81]. These macrophage responses indicated that there
remained room for macrophages to be further grouped.
Avraham et al. conducted a single-cell RNA-sequencing
to show that peritoneal macrophages in the same micro-
environment respond differently to the stimulus of sal-
monella strains that differed by a single gene termed
PhoP [82].
The classical concept of the M1/M2 paradigm might be

misleading, especially at early stage of inflammation, when
tissue-resident and monocyte-derived macrophages coex-
isted in the local microenvironment. Tissue-resident mac-
rophages expressed relatively higher levels of “M2-like”
markers in comparison with mature monocyte-derived
macrophages [83, 84]. Without lineage tracing markers,
the simultaneous presence of macrophage population in
early inflammation (immature monocyte-derived macro-
phages and few mature tissue-resident macrophages)
would be regarded as an “M1-like” polarization tendency
due to more immature monocyte-derived macrophages in
the mixed population. During weeks-long resolution,
monocyte-derived macrophages gradually matured and
their phenotype resembled the tissue-resident macro-
phages. Therefore, the mixed cellular population (mature
monocyte-derived and mature tissue-resident macro-
phages) would display a “shift” towards an “M2-like”
phenotype [84]. Thus, in the in vitro study conducted by
Menarim et al. [53], we speculated that stimuli (SF or ISF)
might fail to mobilize the monocyte-derived macrophages
from circulation and incur the insufficiency of the M1-like
macrophage.
Recently, Culemann et al. found that in healthy murine

and human knee joint, a thin layer of synovium-resident
macrophage formed a barrier-like structure, covering the
sublining layer of synovium. Disrupting this structure by
genetic depletion or pharmacological inhibition of these
barrier-forming macrophages exacerbated arthritis pro-
gression. Further tracing of these macrophages revealed

that these CX3CR1+ lining macrophages were originated
from a subtype of synovium-resident interstitial macro-
phage, instead of monocytes [65]. Although these results
were discovered in RA model, it also implied that the
critical roles of the synovium-resident macrophage or
subchondral bone-resident macrophage is worthy of in-
vestigation in OA. They were also the potential cellular
targets for further therapeutic design. The recently
emerging applications of single-cell RNA sequence or
mass cytometry could dissect the exact macrophage phe-
notypes more than M1/M2 paradigm [57, 85].

Limitation
The quality of included studies was limited due to the low
number of high-level evidence. As mentioned in the dis-
cussion, the majority of included studies exerted classical
methodologies, thus lacking deep insights into the pheno-
typic alterations of different subtypes of macrophages.
Secondly, the spontaneous OA models were not in-

cluded due to lack of reports. For instance, aging model
in Guinea pig recapitulates the most common cause of
human OA [86]. Researches using this model will en-
hance the translational value in future study.
Thirdly, due to lack of standardized and well-

recognized marker for identifying different subtypes of
macrophages, the results of different studies were not
very comparable.
Lastly, the sample size included in our study was small,

both in the number of articles included and the number
of animal samples used in some included studies. The
small sample size made it at the risk of bias and difficult
to reach general conclusions.

Conclusion
In summary, we reviewed the current studies of pheno-
typic alterations of macrophages in OA and emphasized
the disequilibrium of M1 and M2 macrophage during
OA, and potential therapies that could rebalance be-
tween M1/M2 macrophages. With a more thorough un-
derstanding of macrophages and the improvement in
detecting methodology, the detailed macrophage sub-
types and their individual roles in OA pathogenesis
should be further elucidated.
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Table 4 Summary of the detected cell surface marker of M0,
M1, and M2 macrophage

Cell surface marker

M0 macrophage CD68; F4/80

M1 macrophage CD86; CD40; iNOS/NOS2; CCR7; CD11c; CD16/32

M2 macrophage CD163; MRC; CD206; Arg1; CCL22

Abbreviation: CCR7 CC-chemokine receptor 7, Arg1 Arginase1, CCL22 C–C motif
chemokine ligand 22, iNOS inducible NO synthase, NOS2 NO Synthase2
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