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Abstract 

Objectives:  The objective of this study was to develop and validate a prediction model for renal urate underexcre-
tion (RUE) in male gout patients.

Methods:  Men with gout enrolled from multicenter cohorts in China were analyzed as the development and valida-
tion data sets. The RUE phenotype was defined as fractional excretion of uric acid (FEUA) <5.5%. Candidate genetic and 
clinical features were screened by the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-val-
idation. Machine learning algorithms (stochastic gradient descent (SGD), logistic regression, support vector machine) 
were performed to construct a predictive classifier of RUE. Models were assessed by the area under the receiver 
operating characteristic curve (AUC) and the precision-recall curve (PRC).

Results:  One thousand two hundred thirty-eight and two thousand twenty-three patients were enrolled as 
the development and validation cohorts, with 1220 and 754 randomly chosen patients genotyped, respectively. 
Rs3775948.GG of SLC2A9/GLUT9, rs504915.AA of NRXN2/URAT1, and 7 clinical features (age, hypertension, nephrolithi-
asis, blood glucose, serum urate, urea nitrogen, and creatinine) were generated by LASSO. Two additional SNP variants 
(rs2231142.GG of ABCG2 and rs11231463.GG of SLC22A9/OAT7) were selected based on their contributions to gout in 
the development cohort and their reported effects on renal urate handling. The optimized classifiers yielded AUCs of 
~0.914 and PRCs of ~0.980 using these 11 variables. The SGD model was conducted in the validation cohort with an 
AUC of 0.899 and the PRC of 0.957.

Conclusions:  A prediction model for RUE composed of four SNPs and readily accessible clinical features was estab-
lished with acceptable accuracy for men with gout.
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Introduction
Gout is the most common inflammatory arthritis with 
multi-organ involvement, affecting <1% to 6.8% of the 
general population around the world, and is becoming 
more prevalent with younger age-at-onset [1–4]. Hyper-
uricemia is the biochemical basis of gout, with long-term 
urate-lowering therapy (ULT) a key element of gout man-
agement. The pathogenic causes of primary hyperurice-
mia include urate overproduction in the liver and renal 
or extra-renal urate underexcretion, depending on the 
enzymes or urate transporters involved [5, 6].

Fractional excretion of uric acid (FEUA) is currently 
acknowledged as a precise measurement of renal urate 
clearance, with the normal FEUA range of 5.5–11.1% [7, 
8]. Those with FEUA less than 5.5% are classified as with 
RUE [9]. Accurate assessment of RUE requires assess-
ment of FEUA, with 24-h urine sample under a 2-week 
washout period and 5-day purine-restricted diet consid-
ered the standard measurement [10], although there are 
studies exploring spot or a few hour urine samples as the 
substitutions [7–9, 11]. Given the fact that many drugs 
may interfere with renal urate excretion, all patients were 
required to withdraw all drugs during the washout time. 
However, withdrawal of medications during the washout 
period can be problematic. In addition, the inconven-
ience of 24-h urine collection and strict life control lim-
its its application in daily practice. A simple and reliable 
method to identify patients with RUE is needed, both 
for research purposes and also in clinical practice, par-
ticularly when assessing younger patients with gout and 
those with a strong family history of gout.

Genetic and clinical research based on big data has set 
the stage for the development of prediction models with 
genetic and/or clinical variables in recent years. Genome-
wide association studies (GWAS) have revealed urate-
associated genetic variants, some of which are within 
genes of urate transporters or their regulators [12, 13]. 
Other studies have also reported genotypes associated 
with urate export parameters or even renal urate handling 
profiles [14, 15]. Many of the candidate loci and variants 
are causally associated with serum urate concentration, 
for example, those in SLC2A9/GLUT9, ABCG2, and 
SLC22A12/URAT1, and some are rather marker SNPs 
which are in linkage disequilibrium with a candidate 
causal SNP, like rs1797052T of PDZK1 [12, 16]. In a large 
participating general population-based pedigree study, 
183 index SNPs identified in a trans-ancestry GWAS for 
serum urate levels explained 17% of heritability [5]. Addi-
tionally, a number of clinical variables including body 

mass index (BMI), age, and renal function are associ-
ated with renal urate handling [15]. These data provide 
the possibility to investigate prediction models for gout 
pathogenic phenotypes using genetic or readily accessible 
clinical data.

So far, no such models are available. This study was 
designed to investigate a prediction model for RUE in 
men with gout. First, RUE, defined as FEUA <5.5%, was 
measured in a gout cohort from a single center in China, 
and gout and/or hyperuricemia-associated SNPs iden-
tified to be East Asian-specific as previously reported 
were genotyped [12, 13, 16]. Then we developed machine 
learning (ML) prediction models for clustering the RUE 
phenotype using genetic and clinical variables. The mod-
els were validated in a multicenter cohort from three 
Chinese hospitals.

Methods
Study population
Male patients with gout that met the 2015 American Col-
lege of Rheumatology/European League against Rheuma-
tism classification criteria were enrolled [17]. Exclusion 
criteria included blood pressure ≥180/110 mmHg, blood 
glucose ≥11.1 mmol/L, eGFR <45 ml/min/1.73m2, taking 
regular anticoagulant and with severe heart, kidney, or 
brain disease; cancer; or mental or metabolism disorders. 
For each subject enrolled, 24-h urine sample was col-
lected after a 14-day washout period of any drug and low 
purine diet (purine intake <200 mg/day) for 5 days [10].

Men who attended the Shandong Provincial Gout 
Clinical Medical Center, the Affiliated Hospital of Qing-
dao University (Qingdao, China) between July 2016 and 
March 2019 comprised the development data set. Men 
from gout clinics of Shanghai Jiaotong University Affili-
ated 6th People’s Hospital (Shanghai, China), Tongji 
University Affiliated 10th People’s Hospital (Shanghai, 
China), and the Affiliated Hospital of Qingdao Univer-
sity (Qingdao, China) between May 2015 and June 2020 
served as the validation data set. The overall study design 
is shown in Fig. 1.

This study was approved by the Ethics Committee of 
the Affiliated Hospital of Qingdao University (Qingdao, 
China). All participants gave their written informed 
consents.

Clinical variables, detection of RUE subtype, and statistical 
analysis
Clinical data were obtained from each hospital’s elec-
tronic health record system, including demographic 
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and medical information, height, weight, waistline, 
systolic blood pressure (SBP), diastolic blood pres-
sure (DBP), tophi, and biochemical parameters. Serum 
urate (SU), blood glucose (Glu), triglyceride (TG), total 
cholesterol (TC), low-density lipoprotein (LDL), high-
density lipoprotein (HDL), blood urea nitrogen (BUN), 
serum creatinine (sCr), urinary uric acid (uUA), and 
urinary creatinine (uCr) were detected using an auto-
matic biochemical analyzer (TBA-40FR; TOSHIBA, 
Japan).

Parameters for renal urate handling were measured 
by FEUA, which was the percentage of renal urate clear-
ance over creatinine clearance (FEUA = uUA/uCr × 
sCr/SU). Participants with FEUA<5.5% were defined as 
with RUE [9].

The characteristics of the overall study patients 
are described in Table  1. For continuous covariates, 
summary statistics are reported as mean (standard 
deviation) or median (interquartile range), where 
appropriate. Proportions were compared using the 
Chi-square test and continuous variables were com-
pared using ANOVA or Kruskal-Wallis tests, as 
appropriate. Univariate and multiple linear regression 
analyses were performed to investigate the effect of 
clinical features on FEUA in the pooled gout patients 

[18, 19]. SPSS 25.0 software was used for all analyses. 
A two-sided p < 0.05 was designated as statistically 
significant for all analyses.

Genotyping and statistical analysis
The target genetic variations were 20 single nucleo-
tide polymorphisms (SNPs) identified as gout-risk loci 
or associated with SU concentrations and FEUA in the 
East Asian population as previously reported [12, 13]. 
Genomic DNA was extracted from peripheral blood 
mononuclear cells. Genotyping of the selected SNPs 
were performed with a SpectroCHIP®II-G384 array 
(Agena Bioscience, San Diego, USA). In the develop-
ment data set, all 20 target SNPs were tested. 2638 con-
trols were from the Chinese healthy male sample set of 
our previous gout GWAS to identify candidate SNPs 
associated with gout for the purposes of modeling 
[20]. Only SNPs included in the prediction model were 
tested in the validation data set. Association analyses 
of SNPs with the FEUA were done using PLINK (http://​
www.​bwh.​harva​rd.​edu/​plink/) and association analy-
ses of these loci with clinical variables were done using 
an additive genetic model implemented in SNPTEST 
(http://​mathg​en.​stats.​ox.​ac.​uk/​genet​ics_​softw​are/​snpte​
st/​snpte​st.​html) (A two-sided p<0.0025 was assumed to 

Fig. 1  Flow chart of the study. 
RUE, renal urate underexcretion; FEUA, fractional excretion of uric acid; SNP, single nucleotide polymorphism; LASSO, least absolute shrinkage and 
selection operator; AUC, area under the receiver operating curve; PRC, precision-recall curve

http://www.bwh.harvard.edu/plink/
http://www.bwh.harvard.edu/plink/
http://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
http://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
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be significant for the SNP association analyses). Asso-
ciation of the z-score of the residuals with SNP allele 
dose was tested by linear regression.

Prediction model analysis
Men with gout in the development data set with com-
plete clinical and genetic data of interest were included 
for variable selection and classifier construction. 
Patients were classified with or without the RUE phe-
notype according to FEUA <5.5% versus FEUA ≥5.5%, 

respectively. Samples of the development data set were 
randomly divided into training and test sets (5:1). As 
described herein, 31 clinical and biochemical variables, 
as well as candidate SNP information were screened 
by Least Absolute Shrinkage and Selection Opera-
tor (LASSO) regression [21], augmented with 10-fold 
cross-validation in the training set for internal valida-
tion. Imputation for missing variables was performed 
if missing values were no more than 20%. The most 
predictive covariates to RUE phenotype were selected 
by the minimum criteria (lambda.min). The R pack-
age “glmnet” statistical software (R Foundation) was 
used to perform the LASSO regression. Subsequently, 
variables identified by LASSO regression analysis were 
entered into ML models to construct a classifier to 
identify RUE phenotype. We used three ML algorithms 
to perform modeling by a Python script, which were 
stochastic gradient descent (SGD) [22], logistic regres-
sion (LG), and linear support vector classifier (SVC). 
An external multicenter validation set of gout cases 
with complete data was employed to validate the classi-
fier performance. The area under the receiver operating 
curve (AUC) and the precision-recall curve (PRC) were 
used to evaluate the prediction efficacy of the mod-
els. R software (http://​www.R-​proje​ct.​org) and Python 
were used for all modeling analyses.

Another filter, the classical extreme gradient boosting 
(XGBoost) method, and other classifiers, random forests 
and neural networks, were also performed for compari-
sons to LASSO and the modeling algorisms described 
above.

Results
Clinical characteristics of the two data sets
A total of 1238 and 2023 male patients with gout 
from three hospitals were included and analyzed as 
the development and validation cohorts, respectively 
(Table  1). We also explored the effect of clinical vari-
ables on FEUA in the pooled group of the two cohorts 
by linear regression analyses (Table  2). Overall, FEUA 
was comparable between the two sets (4.21% vs 4.26%, 
p>0.05), after adjusting for age, BMI, other biochemi-
cal parameters, and the presence of nephrolithiasis, 
cardiovascular disease, hypertension, and tophi that 
were associated with FEUA in the univariate regression 
analysis. The proportion of patients with RUE was also 
comparable between the two data sets (83.4% vs 83.0%, 
p>0.05). Multiple linear regression models for FEUA 
showed that age, Glu, BUN, sCr, and the presence of 
hypertension or nephrolithiasis were independent posi-
tive predictors (p<0.05), while SU was a negative pre-
dictor for FEUA (p<0.05).

Table 1  Comparison of clinical features among development 
and validation data sets

Parameters are displayed with mean (standard deviation) or median 
(interquartile range)

BMI Body mass index, SBP Systemic blood pressure, DBP Diastolic blood 
pressure, SU Serum urate, Glu Fasting blood glucose, TG Triglyceride, TC Total 
cholesterol, LDL-C Low-density lipoprotein-cholesterol, HDL-C High-density 
lipoprotein-cholesterol, BUN Blood urea nitrogen, sCr Serum creatinine, eGFR 
Estimated glomerular filtration rate, FEUA Fractional excretion of urinary urate, 
UUE 24-h urinary urate amount
* Compared with the development data set, p<0.05; **compared with the 
development data set, p<0.001
a Family history of gout, hyperuricemia, diabetes mellitus, hypertension or 
cardiovascular disease
b Adjusted for age, BMI, SU, Glu, TG, BUN, sCr, nephrolithiasis, hypertension, 
cardiovascular disease, and tophi; -, data missing

Parameters Development Validation

Number 1238 2023

Age, years 42 (32–53) 43 (33–57)**

BMI, kg/m2 27.0 (24.8–29.3) 26.0 (24.1–28.4)**

SBP, mmHg 129 (120–140) 130 (120–140)

DBP, mmHg 81 (75–90) 82 (77–90)**

SU, μmol/L 522 (462–585) 522 (455–589)

Glu, mmol/L 5.38 (5.00–5.77) 5.46 (5.13–5.90)**

TG, mmol/L 1.73 (1.22–2.50) 1.99 (1.39–2.88)**

TC, mmol/L 4.80 (4.26–5.44) 4.89 (4.30–5.52)

LDL-C, mmol/L 3.46 (2.88–4.04) 3.06 (2.52–3.61)**

HDL-C, mmol/L 1.05 (0.89–1.22) 1.02 (0.89–1.19)

BUN, mmol/L 4.29 (3.60–5.10) 4.60 (3.90–5.40)**

sCr, μmol/L 81.00 (73.00–90.00) 85.00 (76.00–95.00)**

eGFR, ml/min/1.73 m2 96.3 (84.9–110.1) 90.9 (78.5–105.7)**

Tophi, n (%) 380 (37.1) -

Nephrolithiasis, n (%) 173 (17.9) 715 (35.3)**

Hypertension, n (%) 215 (21.5) 142 (7.0)**

Cardiovascular disease, n (%) 20 (2.0) 36 (1.8)

Diabetes mellitus, n (%) 24 (2.4) 30 (1.5)

Smoking, n (%) 355 (35.6) 705 (35.1)

Drinking, n (%) 749 (74.9) 1022 (50.7)**

Family historya, n (%) 503 (49.2) -

FEUA, % 4.2 (3.4–5.0) 4.0 (3.3–4.9)*

Adjusted FEUA
b, % 4.21 (0.99) 4.26 (1.37)

RUE, n (%) 83.4% 83.0%

http://www.r-project.org
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Association of SNPs with gout, SU levels, and FEUA 
in the development data set
1220 patients in the development set were genotyped 
for the 20 SNPs. Compared to 2638 urate-normal non-
gout controls based on association analysis, 42 variants 

of 14 SNPs were identified as gout-associated and served 
as candidate genetic variables for modeling, which were 
ABCG2, MUC1, PDZK1, GCKR, SLC2A9/GLUT9 (2 loci), 
SLC22A9/OAT7, PLA2G16, FLRT1, NRXN2/URAT1 (2 
loci), AIP, ALDH2, and COMMD4. The other 6 SNPs 
were rs2762353 of SLC17A1, rs17145750 of MLXIPL, 
rs79105258 of CUX2, rs4966024 of IGF1R, rs73575095 of 
MAF, and rs9895661 of BCAS3, which are mostly asso-
ciated with metabolic pathways or inflammation despite 
SLC17A1 and are not biologically immediately linked 
to renal urate handling. Odds ratio and 95% confidence 
intervals of each SNP allele are shown in Supplementary 
Table S1.

We also evaluated the association of the 14 candidate 
SNPs with SU levels and FEUA (Table 3) in the develop-
ment data set. Only rs2231142 of ABCG2 showed nomi-
nal association (β=0.155, p<2.5×10−3) with SU level. 
SNPs at three loci showed nominal association with 
FEUA, which were one at ABCG2 and two at SLC2A9.

Prediction model
By applying the LASSO algorithm to the 42 genetic vari-
ants and 31 clinical variables in the training sample, the 
important variables for identifying RUE were determined, 
with the log (λ) values being summarized in Fig. 2A and 
B. Four SNP variations (rs7679724.TT and rs3775948.
GG of SLC2A9/GLUT9, rs504915.AA of NRXN2/URAT1, 
and rs11227805.TT of AIP) and 7 clinical features (age, 
hypertension, nephrolithiasis, Glu, SU, BUN, and sCr) 
were selected by LASSO as the most important for pre-
dicting RUE phenotype. The ML models (Linear SVC, 

Table 2  Linear regression analyses of clinical variables with FEUA 
(%) in the pooled group of gout patients

s.e. Standard error, FEUA Fractional excretion of urinary urate, BMI Body mass 
index, SU Serum urate, Glu Fasting blood glucose, TG Triglyceride, TC Total 
cholesterol, HDL-C High-density lipoprotein-cholesterol, BUN Blood urea 
nitrogen, sCr Serum creatinine
* p<0.05; **p<0.001

Univariate
β (s.e.)

Multivarite
β (s.e.)

Age, per 10 years 0.359 (0.021)** 0.119 (0.039)*

BMI, kg/m2 − 0.032 (0.009)** 0.007 (0.009)

SU, per 60 μmol/L − 0.471 (0.015)** − 0.321 (0.023)**

Glu, mmol/L 0.324 (0.031)** 0.267 (0.040)**

TG, mmol/L − 0.040 (0.017)* − 0.003 (0.022)

TC, mmol/L 0.004 (0.033)

BUN, mmol/L 0.286 (0.022)** 0.203 (0.029)**

sCr, per 10 μmol/L 0.170 (0.020)** 0.320 (0.078)**

Tophi 0.246 (0.080)* 0.145 (0.071) *

Nephrolithiasis 0.153 (0.069)* 0.279 (0.084)*

Hypertension 0.374 (0.095)** 0.222 (0.075)*

Cardiovascular disease 0.547 (0.251)* − 0.026 (0.218)

History of smoking 0.053 (0.065)

History of drinking 0.030 (0.063)

Family history 0.016 (0.079)

Table 3  Association analyses between 14 candidate SNPs and serum urate and FEUA in the development cohort

A1 Allele 1, effect allele, s.e. Standard error, FEUA Fractional excretion of uric acid
* p<0.0025 as significant

Gene SNP A1 A2 Serum urate (μmol/L) FEUA (%)

Effect s.e. p value Effect s.e. p value

PDZK1 rs1797052 T C − 0.082 0.048 0.090 0.017 0.048 0.720

MUC1 rs4072037 C T − 0.049 0.073 0.501 0.129 0.073 0.076

GCKR rs1260326 C T 0.089 0.041 0.031 − 0.114 0.041 0.006

SLC2A9 rs7679724 G T 0.063 0.044 0.155 − 0.206 0.044 3.05E−6*

SLC2A9 rs3775948 G C − 0.020 0.065 0.758 0.208 0.065 0.001*

ABCG2 rs2231142 T G 0.155 0.040 1.03E−4* 0.154 0.040 1.07E−4*

SLC22A9 rs11231463 G A − 0.061 0.063 0.332 − 0.114 0.063 0.068

PLA2G16 rs7928514 A G − 0.101 0.058 0.080 − 0.055 0.058 0.341

FLRT1 rs641811 A G 0.020 0.047 0.662 0.001 0.047 0.991

NRXN2 rs57633992 A C − 0.061 0.079 0.444 − 0.050 0.079 0.528

NRXN2 rs504915 A T − 0.032 0.049 0.516 0.015 0.049 0.756

AIP rs11227805 T C − 0.017 0.066 0.798 0.040 0.066 0.542

ALDH2 rs671 A G − 0.017 0.063 0.788 − 0.005 0.063 0.932

COMMD4 rs73436803 T C 0.339 0.179 0.057 − 0.193 0.178 0.279
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Fig. 2  Prediction modeling of gout patients with urate renal underexcretion (RUE). A The area under the receiver-operator characteristic 
curve (AUC) of different numbers of 73 variables (42 SNP variations and 31 clinical parameters) revealed by the LASSO model in the derivation 
set. The red dots represent the AUC score, the gray lines represent the standard error, and the vertical dotted lines represent optimal values by 
minimum criteria. The upper abscissa is the number of non-zero coefficients in the model at this time, the lower abscissa is log λ, which is the 
tuning parameter used for 10-fold cross-validation in the LASSO model. A dotted vertical line is drawn at the optimal values by minimum criteria, 
which is 11. B LASSO coefficient profiles of the 73 variables. A vertical line is drawn at the optimal value by 1−SE criteria and results in 11 non-zero 
coefficients. C The receiver-operator characteristic analyses for predicting RUE in the internal test set with stochastic gradient descent. D The 
precision-recall curve of predicting RUE in the internal test set. E The receiver-operator characteristic analyses for predicting RUE in the validation set 
with stochastic gradient descent. F The precision-recall curve of predicting RUE in the validation set
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SGD, and LG) predicted the RUE with AUCs of ~0.622 
using the 4 SNP variables, and ~0.899 using the combo 
of the 11 genetic and clinical variables in the internal test 
set (Supplementary Table S2).

To enhance the prediction efficacy of genetic predic-
tors, we selected two additional variations, rs2231142.
GG of ABCG2 and rs11231463.GG of SLC22A9/OAT7, 
based on their contributions to gout in the development 
cohort (Supplementary Table  S1) and their effects on 
renal urate handling as reported [7–9, 11]. We optimized 
the models by performing with different combinations of 
these 13 variables following the principle of prediction 
efficacy and economy. Combining the two additional var-
iations with rs3775948.GG and rs504915.AA, the mod-
els yielded higher AUCs of ~0.667, and AUCs of ~0.914 
using the combination of the 4 artificially selected genetic 
variations and the 7 clinical variables (Supplementary 
Table  S2). The SGD model for classifying RUE showed 
an AUC of 0.912 (95% CI 0.894 to 0.920) and a PRC of 
0.956 in the internal test sets (Fig. 2C, D). The prediction 
performance of the SGD model in the external validation 
cohort (n=754) yielded an AUC of 0.899 (95% CI 0.887 to 
0.904) and a PRC of 0.956 (Fig. 2E, F).

The RUE phenotype risk score was constructed based 
on the coefficients from the SGD model. The probability 
was calculated as following: f(x) = 1/[1 + e ( − x)], which 
was the mean after tenfold cross-validations. A calcula-
tor of the ML SGD model was developed to allow local 
clinicians to enter the values of the 4 SNP variations and 
7 clinical variables required for the risk score with auto-
matic calculation of the likelihood that a gout patient is a 
renal underexcretor.

The XGBoost obtained 18 features, which were SU, 
GLU, eGFR, Ccr, BUN, BMI, rs3775948.GG, LDL, DBP, 
sCr, age, nephrolithiasis, rs7679724.TT, history of smok-
ing, SBP, hypertension, rs57633992.AC, and rs2762353.
GG. The models developed using XGBoost selected vari-
ables, random forests or neural networks achieved the 
AUCs of 0.864~0.904. The results were presented in Sup-
plementary Tables S2 and S3.

Discussion
Prediction models for individual disease diagnosis, inci-
dence, or outcome are growing rapidly in recent years, 
with the development of new learning algorithms and 
the ongoing explosion of data. Good prediction mod-
els provide useful tools in disease management and 
greatly ease the clinical practice [23]. Here we developed 
for the first time a ML prediction model for the risk of 
RUE phenotype in gout patients. Eleven variables were 
selected by the LASSO algorithm or artificial selection 
based on their importance in modeling or impacts on SU 
and FEUA, respectively. We established 3 ML prediction 

models for RUE using reliable genetic variants and eas-
ily accessible clinical features with stable and acceptable 
efficacy (AUC=0.91) and validated the model in a mul-
ticenter gout cohort. By comparing with XGBoost fil-
ter and other classifiers, the neural network Multi-layer 
Perceptron Classifier, and Random Forest, we confirmed 
that the models displayed here are the optimal ones with 
the highest predicting accuracy. A calculator based on 
the ML SGD model using these predictors was generated 
and readily available in the clinic, enabling clinicians to 
estimate the probability of a patient with RUE.

Four SNPs were selected by LASSO as the most 
important contributors for grouping RUE. However, the 
prediction accuracy was only about 0.62 in the ML mod-
els using these 4 genetic variables. We tried an artificial 
selection of the SNP variants to improve the prediction 
efficacy of the model. The rs2231142.T allele causes dys-
function of ABCG2, a urate transporter mainly located in 
the intestinal tract, and was previously demonstrated to 
be associated with extra-renal underexcretion [9]. It was 
the only locus with nominal association with SU level 
in our development data set and was significantly asso-
ciated with FEUA. The rs11231463.G allele of SLC22A9 
increased the risk of gout by 2.2 times compared with 
urate-normal controls in this study. SLC22A9 encodes 
OAT7, which is expressed in the liver and exhibits mod-
est uricosuric-sensitive urate uptake activity [12, 13]. 
These two variants were also selected according to their 
effectiveness on SU and FEUA. Two SNPs selected by 
LASSO, rs3775838.GG of SLC2A9 and rs504915.AA of 
NRXN2/SLC22A12, were adopted in the model. SLC2A9 
encodes GLUT9, and NRXN2/SLC22A12 encodes 
URAT1, both of which were the major urate exporters 
located in renal tubules. These two variants were both 
associated with gout in the development cohort. By 
combining these two LASSO selected genetic variants 
with the two additionally selected variants, and also with 
the clinical variables, the prediction capacity of the ML 
models was optimized (Supplementary Table S2).

Additional clinical variables were ranked and the top 
7 were selected by LASSO, including 3 medical history 
features (age, presence of hypertension, and nephrolithi-
asis) which are easy to obtain, and 4 biochemical param-
eters (Glu, SU, BUN, and sCr). These predictors included 
by ML algorithm are statistically significant contribu-
tors to FEUA in the pooled gout group and are also bio-
logically meaningful. Aging and elevated sCr indicate 
impaired kidney function. In the early stage of kidney 
dysfunction (in this study, eGFR ≥45 ml/min/1.73m2), 
the tubular reabsorption function is the dominant prob-
lem contributing to renal urate handling, which may 
manifest as increased FEUA. It is consistent with earlier 
research, in which urate reabsorption in the tubular 
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was reduced, accompanied by increased urate excretion 
during the early stage of gouty nephropathy [24]. BUN 
shares a similar renal tubular excretion pattern with 
urate, but may compete with urinary urate during the 
process of tubule reabsorption and secretion. Since there 
is an osmotic diuretic effect of urinary glucose, it is rea-
sonable to predict that FEUA would increase with blood 
glucose. Hypertension may increase the glomerular fil-
tration and induce a hyperfiltration-associated urinary 
urate excretion [25]. A high level of SU is a burden to 
renal tubule secretion rather than glomerular filtration 
[26]. Healthy subjects have increased FEUA correspond-
ing to SU elevation while most gout patients do not, 
implying that intrinsic defects may exist in renal tubule 
urate handling of these patients [7, 10]. At last, the pres-
ence of nephrolithiasis may be an indicator for renal 
urate excretion. Combining these 7 clinical features 
with the SNP variable combination, three ML models 
were performed and produced similar AUCs of approxi-
mately 0.9 in the development and multicenter valida-
tion cohorts.

To ensure the reliability and effectiveness of the model, 
multicenter cohorts of Chinese male adults with gout 
were adopted to serve as the development and the exter-
nal validation data set in this study. The distributions of 
patients with RUE (83.4% versus 83%) are strictly con-
sistent between analyses conducted in the two data sets, 
which also fits the same profile as existing reports [27]. 
Besides, vital clinical characteristics, the SU and FEUA 
levels, are also identical between them. These features of 
the two data sets promised an appropriate data environ-
ment for the prediction model development and the reli-
ability of any model generated.

Furthermore, the RUE phenotype was profiled using a 
standard method. RUE used to be defined solely based 
on the absolute 24-h renal urate excretion with the prem-
ise that a fixed fraction of daily urate production was 
excreted by the kidneys [28]. However, the urinary urate 
amount is a synergistic result of the renal urate load, the 
glomerular filtration function and the excretion capacity 
of renal tubules [7, 29–31]. FEUA is a more precise meas-
urement for the identification of low renal uric acid clear-
ance phenotype, which has been adjusted for the SU level 
and normalized to the individual’s glomerular filtration 
rate [8].

This study has certain limitations. First is that the effi-
cacy of the SNP predictors in this model is not power-
ful enough, mostly because that all index SNPs at 183 
loci identified by trans-ancestry GWAS can explain 
only 7.7% of the SU genetic heritability in the East Asian 
population [5]. The prediction model will be improved 
by the inclusion of more genetic variants from future 
genetic research. The second limitation is that this 

model was established among Chinese gout patients. It 
should be tested carefully before application in diverse 
ethnics. The third one is that this model is tested in men 
alone, and should be validated in female gout cohorts. 
Finally, despite our efforts to make the prediction model 
as stable and robust as possible, some variable biochemi-
cal parameters like glucose, SU, and BUN were still 
included, which may have increased the instability of the 
model. However, these parameters are generally stable 
when obtained under controlled conditions as described 
in this study.

Conclusion
In conclusion, this research developed and validated a reli-
able and practical model to predict the RUE phenotype in 
Chinese men with gout, which were helpful for individual-
ized therapy. Additional testing and independent validation 
would be of benefit, and we provide a calculator to assist 
with determination in other cohorts.
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