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Abstract 

Osteoarthritis (OA) is one of the most common musculoskeletal degenerative diseases and contributes to heavy 
socioeconomic burden. Current pharmacological and conventional non-pharmacological therapies aim at relieving 
the symptoms like pain and disability rather than modifying the underlying disease. Surgical treatment and ultimately 
joint replacement arthroplasty are indicated in advanced stages of OA. Since the underlying mechanisms of OA onset 
and progression have not been fully elucidated yet, the development of novel therapeutics to prevent, halt, or reverse 
the disease is laborious. Recently, small molecules of herbal origin have been reported to show potent anti-inflamma-
tory, anti-catabolic, and anabolic effects, implying their potential for treatment of OA. Herein, the molecular mecha-
nisms of these small molecules, their effect on physiological or pathological signaling pathways, the advancement of 
the extraction methods, and their potential clinical translation based on in vitro and in vivo evidence are comprehen-
sively reviewed.
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Background
Globally, osteoarthritis (OA) is one of the most com-
monly occurring disorders of articular joints [1–3], 
which typically affects the knees, spine, hands, hips, and 
feet [4]. The incidence and prevalence reported in epi-
demiological studies fluctuate widely, as the data may 
be based on different diagnostic criteria (clinical, radio-
graphic, or pathological OA), various joint locations, and 
diverse patient populations [5]. The reported prevalence 
of OA thus ranges from 12.3 to 21.6% [6, 7]. Women are 

at a higher risk for developing OA as compared to men 
[2, 7]. The risk further escalates with age, with OA usu-
ally occurring in the fourth or fifth decade of life [8, 9]. 
Furthermore, OA prevalence varies widely in different 
regions (e.g., developing or developed countries, rural or 
urban areas) [10–12].

Joint pain, joint swelling, locomotion restriction, and 
joint stiffness are the principal symptoms of OA, while 
other symptoms like crepitus and joint deformation are 
also encountered. Recurrent and progressive joint pain, 
being relieved by rest and worsened with joint exercise, 
is the most problematic symptom. Although the origin 
of pain in OA is not fully understood, it may arise from 
mechanoreceptors and nociceptive fibers in the syn-
ovium, capsule, subchondral bone, tendons, periosteum, 
or ligaments [13].
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Recent studies report that the disease burden of OA 
is comparable to that of rheumatoid arthritis [14, 15]. 
Globally, a 75% rise was observed in OA-related years 
lived with disabilities (YLDs) from 1990 to 2013, with 
OA accounting for 2.4% of all YLDs [16]. Hence, OA 
represents the third fastest increasing condition related 
to disability, following dementia and diabetes [16, 17]. 
In the USA (2010), approximately 10% of all ambulatory 
care visits were to diagnose arthritis and other rheumatic 
diseases, 58% of which were estimated to be related to 
symptomatic OA [18]. The economic burden due to OA 
comprises three parts: indirect costs such as loss of pro-
ductivity and disability payments; direct costs like hospi-
tal resources, conservative treatment, and research; and 
intangible costs caused by mental illness and reduced life 
quality.

Pathophysiology and treatment of osteoarthritis
Multiple pathological processes jointly contribute to 
the development of OA, and various phenotypes are 
thus formed [19]. The risk factors for OA development 
include age, trauma, obesity, innate immunity, metabolic 
diseases, systemic inflammatory conditions, and genetic 
predisposition [12, 20]. Currently, low-grade inflamma-
tion is the primary focus of OA pathophysiology because 
the reported risk factors may lead to chronic inflamma-
tory conditions [21]. Another pathological process that 
might lead to OA is the metabolically triggered inflam-
mation [22]. Metabolic disturbance of nutrients and 
metabolites leads to oxidative stress and chronic inflam-
mation by inducing adipocytes to release adipokines, 
C-reactive protein (CRP), complement components, 
cytokines, and other pro-inflammatory mediators, which 
may result in cartilage and surrounding tissue destruc-
tion. Pro-catabolic and pro-inflammatory mediators, 
along with mechanical and oxidative stressors, dete-
riorate the performance and life cycle of chondrocytes, 
induce hypertrophy, and ultimately make them prone to 
degenerative responses [19].

While autophagy is reported to preserve chondro-
cytes, and its loss may contribute to OA development 
[23], apoptosis also takes place amidst OA development 
and endochondral ossification [24]. Cartilage degrada-
tion products, mainly cartilage wear particles [25], may 
lead to hyperplasia and hypertrophy of synovial fibro-
blasts/fibrocytes, which can induce the activation of 
B and T cells to amplify the inflammation [26, 27]. The 
inflammatory responses also lead to the activation of 
macrophages, which release several pro-inflamma-
tory mediators, matrix metalloproteinases, bioactive 
lipids, neuropeptides, and growth factors. A feedback 
of cartilage breakdown and synovial inflammation is 

subsequently induced. However, chondrocytes and syn-
ovial tissues also release anti-inflammatory mediators, 
such as IL-4, IL-10, and IL-13 to modulate the inflam-
matory responses. Besides, the inflamed synovium can 
induce angiogenesis and osteophyte formation (Fig. 1).

Currently, there is no licensed drug with valid disease-
modifying activity against OA. Hence, the management 
of OA is targeted at improving disability, pain, and life 
quality with pharmacologic and non-pharmacologic 
therapies. The most effective and safest treatment for 
knee/hip OA is physical exercise/activity coupled with 
self-management approaches [18, 28]. All OA manage-
ment guidelines [29–31] advocate the promotion of 
healthy weight and self-management, along with a com-
bination of aerobic and strengthening exercises [32] as 
core management approaches. Furthermore, systemic or 
local non-steroidal anti-inflammatory drugs (NSAIDs), 
intra-articular hyaluronan injection, or intra-articular 
corticosteroids are frequently administered [28], though 
with poor long-term outcomes.

Joint replacement is recommended when non-surgical 
methods cannot control OA symptoms. Nonetheless, 
joint replacement is not a cure for OA; around 20~30% 
of knee and hip replacement patients report no or lit-
tle improvement and are not satisfied with the results 
of their surgery 1 year post-joint replacement [33, 34]. 
Worldwide, while scientists continue to work towards 
a better understanding of the predisposing factors for 
poor results following knee/hip joint replacement, there 
remains an urgent need to recognize effective and safe 
non-surgical modalities to prevent and treat OA.

The use of herbal medicine for analgesic and anti-
inflammatory therapy of joint diseases has been prac-
ticed for a long time in the form of phytotherapeutic 
drugs in both the eastern and western worlds. Herbal 
compounds extracted from traditional Chinese medi-
cine (TCM) plants have been applied for the treatment 
of multiple diseases, with artemisinin used for the treat-
ment of malaria as the most well-known example (2015 
Nobel prize by Youyou Tu). More recently, the chondro-
protective and inflammation modulatory effects of herbal 
extracts or their individual small molecule compounds 
have been evaluated in preclinical in  vitro and in  vivo 
studies [35]. Several herbal compounds with potential 
disease-modifying activities have been identified. Never-
theless, only few clinical studies have been documented 
so far. The aim of this literature review is to provide an 
overview of promising small-molecule compounds with 
herbal origin and their mechanism of action, as described 
in preclinical investigations for the prevention or treat-
ment of OA and related pathologies.
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Fig. 1  Overview of the healthy and osteoarthritic joint along with the pathophysiology of OA. A Healthy joint is depicted: intact cartilage with 
no fissures and synovial inflammation signs. Osteoarthritis is characterized by soft tissue swelling, osteophyte formation, meniscus deterioration, 
and degeneration of cartilage. B Cartilage breakdown products are released from the damaged cartilage tissue into the joint space, which are 
phagocytosed by the synovial cells and infiltrated macrophages, intensifying synovial inflammation. In the inflamed synovium, pro-inflammatory 
and catabolic mediators are produced by the activated synovial cells that cause overproduction of the proteolytic enzymes, establishing a 
positive feedback loop. The activated synovial B cells, T cells, and infiltrating macrophages amplify the inflammatory response. To neutralize this 
inflammatory response, anti-inflammatory cytokines are produced by the synoviocytes and chondrocytes. Furthermore, the inflamed macrophages 
contribute to the synovial angiogenesis and osteophyte formation via VEGF and BMPs release, respectively. Panel B is adapted from Sellam et al. 
[27] with permission, copyright 2010, Springer Nature. (The figure was prepared with Biorender). ADAMTS, a disintegrin and metalloproteinase 
with thrombospondin motifs; BMP, bone morphogenetic protein; IL, interleukin; IL-1Ra, IL-1 receptor antagonist; LTB4, leukotriene B4; MMP, matrix 
metalloproteinase; NO, nitric oxide; OA, osteoarthritis; PGE2, prostaglandin E2; TIMP, tissue inhibitor of metalloproteinase; TNF, tumor necrosis factor; 
VEGF, vascular endothelial growth factor
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Extraction of small molecules from medicinal herbs
The discovery of new natural compounds is of great 
significance for drug exploitation and development in 
the treatment of OA. The formulations used in TCM 
are extremely complex and contain a variety of effec-
tive ingredients. To improve drug efficacy, reduce side 
effects, and explore the pharmacological mechanism, it is 
important to extract the components and purify them to 
obtain effective single compounds. In recent years, some 
new technologies and methods have been developed to 
extract and isolate the active ingredients of TCM herbs. 
The application of these technologies not only helps to 
improve the extraction rate and the purity of active ingre-
dients, but also facilitates the study of structure, pharma-
cology, and efficacy.

Supercritical fluid extraction is a technology that uses 
the supercritical fluid as an extractant to isolate and sepa-
rate the medicinal components in TCM. This method has 
the advantages of high extraction efficiency, high puri-
fication, easy operation, and absence of residual solvent 
contamination [36, 37]. Supercritical fluid extraction has 
widely been used in a variety of TCM herbs. Using this 
method, Huang et  al. extracted and separated psoralen 
and isopsoralen from Psoralea corylifolia [38]. Further-
more, ginkgolic acids from the epicarp of Ginkgo biloba, 
tautomeric 7-epimeric spiro oxindole alkaloids from 
Uncaria macrophylla, coumarin from radix Angelicae 
dahuricae, and chrysophanol from Rheum palmatum 
were extracted by supercritical fluid extraction [36, 37, 
39, 40].

Ultrasound-assisted extraction is an extraction method 
with the assistance of ultrasonic energy. It mainly uses 
the cavitation of ultrasonic waves to accelerate the 
extraction of active ingredients from plants. In addition, 
secondary effects of ultrasonic waves, including mechan-
ical vibration, emulsification, diffusion, crushing, and 
chemical effects, can also accelerate the diffusion-based 
release of the ingredients to be fully mixed with the sol-
vent, which helps to improve the yield of the effective 
ingredients. Moreover, the ultrasonic crushing process is 
a physical process without chemical reaction during the 
extraction, maintaining the bioactivity of components. 
Ultrasound-assisted extraction is mainly used for the iso-
lation of plant alkaloids, glycosides, and phenolic com-
pounds [41–51].

The high-speed countercurrent chromatography 
(HSCCC) technique was developed from countercur-
rent chromatography and is characterized by high purity, 
good reproducibility, high separation efficiency, and low 
solvent usage in the extraction of medicinal herbs [52, 
53]. It is particularly suitable for the separation of polar 
compounds. Fang et al. isolated and purified three ecdys-
teroids with anti-inflammatory effects from the stems of 

Diploclisia glaucescens by the HSCCC technique [54]. 
Nine compounds with over 95% purity were obtained 
by the HSCCC technique from the root of Adenophora 
tetraphlla [53]. HSCCC was reported as a powerful tool 
to separate the main compounds from the rhizome of 
Smilax glabra and was valuable for the preparative sepa-
ration of compounds with broad K-values and similar 
structures [55].

Many other extraction methods were also used to 
extract the small molecules from medicinal herbs due 
to the extreme complexity of their chemical composi-
tions. As a conventional technique, solvent extraction 
faces some limitations such as using too much organic 
solvents, losing some volatile compounds, the possibility 
of leaving toxic solvent residues in the extract, and low 
extraction efficiency [56]. Microwave-assisted extrac-
tion which heats the solvent in contact with the sam-
ple by means of microwave energy is an alternative way 
of increasing the efficiency of conventional extraction 
methods to extract target compounds from various raw 
materials [57]. Ultimately, if the effective constituent in 
the herbs is identified, successful biochemical synthesis is 
also a valid option due to its high efficiency.

Therapeutic effects of small molecules: 
anti‑inflammatory, anti‑catabolic, and anabolic 
activity
Inflammatory responses and cartilage matrix degrada-
tion play a critical role in the progression of OA. Thus, 
many scholars have studied and explored small molecules 
extracted from TCM for interfering with inflamma-
tion and degeneration or have modified their structure 
to make them more effective against OA (Table 1). Cur-
cumin, a polyphenol separated from thye rhizomes of 
Turmeric and Curcuma longa, was shown to reduce 
inflammation in knee OA in rats through blocking the 
TLR4/MyD88/NF-κB signaling pathway [60]. Paeonol, 
one of the active compounds found in Paeonia lactiflora 
pallas, Cynanchum paniculatum, and Paeonia suffruti-
cosa, had anti-inflammatory efficacy on IL-1β-stimulated 
human primary chondrocytes by downregulating the 
expression of IL-6 and tumor necrosis factor (TNF)-α, 
thereby inhibiting phosphorylation of IκBα and activa-
tion of nuclear factor-κB (NF-κB). It also prevented car-
tilage matrix degradation by reducing the expression of 
matrix metalloproteinase (MMP)-3 and MMP-13 and 
preserving the expression of type II collagen [83]. In 
human osteoarthritic chondrocytes, vanillic acid showed 
significant anti-inflammatory properties, which were 
attributed to an inhibition of phosphorylation in the 
NF-κB signaling pathway [84].

Anabolic activity is of equal significance since the 
destruction of the articular cartilage is mainly caused by 
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an imbalance of synthesis and degradation of the extra-
cellular matrix (ECM). Hence, the development of drugs 
that promote the proliferation of chondrocytes and 
the formation of ECM, resulting in cartilage regenera-
tion, is another research direction. The small-molecule 
halofuginone [80] isolated from the plant Dichroa feb-
rifuga lowered proteoglycan loss and calcification of 
articular cartilage in rodents subjected to anterior cruci-
ate ligament transection (ACLT) compared with vehicle-
treated ACLT controls. Besides, halofuginone reduced 
the expression of collagen X, MMP-13, and ADAMTS-5, 
while increasing lubricin, collagen II, and aggrecan. 
Wogonin [85] derived from the root extract of Scutellaria 
baicalensis exerted chondroprotective effects through 
suppression of inflammation/oxidative stress (reducing 
the expression of IL-6, COX-2, PGE2, iNOS, and NO), 
matrix degradation (lowered the expression of MMP-
13, MMP-3, MMP-9, and ADAMTS-4), and stimulation 
of collagen II and aggrecan expression in OA chondro-
cytes and cartilage explants. Ligustrazine [65] protected 
chondrocytes against IL-1β-induced injury presumably 
by downregulating the expression of IL-1, IL-6, TNF-α, 
and MMP-13 and by upregulating the expression of col-
lagen II and aggrecan associated with regulation of SOX9 
and inactivation of NF-κB. In human osteoarthritic chon-
drocytes, epimedin C demonstrated significant anabolic 
effects by increasing the expression of collagenous and 
non-collagenous matrix proteins, such as cartilage oli-
gomeric matrix protein, and growth factors, including 
growth differentiation factor 5 and connective tissue 
growth factor; both vanillic acid and epimedin C also 
suppressed the MMP activity in the chondrocyte inflam-
mation model [84].

Signaling pathways as therapeutic targets
Generally, with the imbalance between anabolism and 
catabolism of the articular cartilage, excessive destruc-
tion of the ECM results in progressive degeneration. 
The pathophysiological process of articular cartilage 
degeneration involves a series of cell signal transduction 
pathways. Therefore, molecular therapy targeting these 
signaling pathways is a major research direction (Fig. 2).

NF‑κB signaling pathway
NF-κB is a widely expressed transcription factor family 
existing ubiquitously in eukaryotic cells, which is associ-
ated with the pathogenesis of a number of inflammatory 
diseases and plays a complex role in different cell types 
and disease states [86]. The NF-κB family consists of the 
following five members: RelA (p65), RelB, c-Rel, NF-κB1 
(p50 and p105), and NF-κB2 (p52 and p100) [87]. It has 
been demonstrated that the NF-κB signaling pathway 
plays a significant role in the course of OA [88]. NF-κB is 

usually present in the cytoplasm in the form of p56/p50/
IκB trimer complexes. Both IκBa and IκBb of the inhibi-
tory IκB protein family are the major regulators of NF-κB 
activity [89, 90]. Once the cell is stimulated by activating 
agents, such as cytokines, bacteria/viruses, and stress, 
IκBα is phosphorylated and degraded rapidly, resulting in 
the release and nuclear translocation of NF-κB followed 
by the activation of gene transcription [91].

The NF-κB protein family exists in various cells and 
is highly expressed in the synovial tissue, cartilage, sub-
chondral bone, joint fluid, and surrounding muscle [92]. 
NF-κB is involved in almost all pathological processes of 
OA. Many small molecules of herbal origin can interfere 
with the development of OA by regulating the NF-κB 
signaling pathway. Haseeb et al. found that a polyphenol-
rich pomegranate fruit extract inhibited the increase in 
the phosphorylation level of NF-κB p65 in IL-1β induced 
osteoarthritic chondrocytes [93]. Egb761 extracted 
from Ginkgo biloba reduced p-NF-κB p65 protein level 
and prevented the activation of the NF-κB pathway in 
TNF-α induced human chondrocytes [94]. Polyoxypreg-
nane glycoside from Dregea volubilis extract inhibited 
the IL-1β-induced expression of MMPs via the suppres-
sion of NF-κB in human chondrocytes [95]. Anemonin 
showed anti-inflammatory, anti-catabolic, and anabolic 
effects on IL-1β-induced human chondrocytes in  vitro, 
human cartilage explants ex  vivo, and in a destabiliza-
tion of the medial meniscus (DMM)-induced mouse OA 
model through the suppression of the IL-1β/NF-κB path-
way activation [58]. Similarly, RNA sequencing analy-
sis revealed the interference of vanillic acid with NF-κB 
signaling in human chondrocytes under inflammatory 
conditions [84].

Wnt/β‑catenin signaling pathway
Elevated expression of Wnt/β-catenin has also been 
observed in OA [96, 97]. Activation of the Wnt/β-catenin 
signaling pathway can increase the expression of MMPs 
and aggrecanases (ADAMTS-4 and ADAMTS-5) [98, 
99], leading to the degradation of the ECM, which in turn 
results in the development of OA [100]. However, inhi-
bition of the β-catenin signaling may also cause defects 
in postnatal cartilage development or even cartilage 
destruction [101, 102], suggesting that the Wnt/β-catenin 
signaling pathway may play a dual role in the pathogen-
esis of OA. To develop effective small molecules for the 
treatment of OA, the precise regulation of the Wnt/β-
catenin signaling pathway should be considered critically.

Hinokitiol is a natural tropolone-related compound 
found in the heartwood of Cupressaceae plants that has 
a wide range of biochemical and pharmacological activi-
ties, including anti-bacterial [103], anti-tumor [103], and 
antioxidant capacities [104]. In addition, Li et  al. found 



Page 13 of 19Zhang et al. Arthritis Research & Therapy          (2022) 24:105 	

that hinokitiol also reduced MMP expression by inhib-
iting Wnt/β-catenin signaling in  vitro and in  vivo [73]. 
Tetrandrine purified from the root of Stephania tetran-
drine of the Menispermaceae family was also found to 
alleviate OA pathways in vitro and in vivo via inhibiting 
Wnt/β-catenin signaling [74].

MAPK signaling pathways
Three MAPK families have been comprehensively char-
acterized, namely extracellular signal-regulated kinase 

(ERK), C-Jun N-terminal kinase (JNK/SAPK), and p38 
Kinase, which is closely related to the pathogenesis of OA 
[105]. The anti-inflammatory and anti-catabolic effects of 
oxymatrine and polygalacic acid were mediated via the 
inhibition of the phosphorylation of ERK, JNK, and p38 
related to the MAPK pathways [72, 75]. Zingerone sup-
pressed cartilage degradation by involving the p38 and 
JNK MAPK signaling pathways [77]. Icariin showed an 
anti-catabolic effect via inhibiting the phosphorylation of 
p38 in IL-1β-induced human SW 1353 chondrosarcoma 
cells and a rat OA model [76].

Fig. 2  Potential therapeutic targets of small molecules with herbal origin in signaling pathways associated with cartilage degeneration. Name 
of the compounds: (1) polyphenol-rich pomegranate fruit extract, (2) Egb761, (3) polyoxypregnane glycoside, (4) anemonin, (5) hinokitiol, (6) 
tetrandrine, (7) oxymatrine, (8) polygalacic acid, (9) zingerone, and (10) icariin. As shown above, some of the compounds have multiple signaling 
targets. (The figure was prepared with Biorender). TNF-α, tumor necrosis factor-α; TNFR1, tumor necrosis factor receptor 1; TRADD, TNF receptor 
death domain; MAPK, mitogen-activated protein kinase; IL-1β, interleukin-1β; IL-1R, interleukin-1 receptor; IL-1RAcP, interleukin-1 receptor accessory 
protein; TOLLIP, Toll-interacting protein; NIK, NF-κB inducible kinase; IKKα, IκB kinase α; IKKβ, IκB kinase β; IκB, NF-κB inhibitor; NF-κB, nuclear factor κB; 
MMPs, matrix metalloproteinases; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; IL-6, interleukin-6; IL-8, interleukin-8; 
COX-2, cyclooxygenase-2; ROS, reactive oxygen species; TIMPs, tissue inhibitor of metalloproteinases; Col2a1, collagen 2a1
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Other signaling pathways
AMP-activated protein kinase (AMPK), a crucial regu-
lator of energy metabolism, is a heterotrimeric serine/
threonine protein kinase comprising a catalytic α-subunit 
and two regulatory β- and γ-subunits [106, 107]. AMPK 
is activated by a conserved threonine (THr172) phos-
phorylation in the α-subunit as a response to decreased 
cellular AMP/ATP ratio [106, 108]. Activated AMPK is 
constitutively expressed in normal articular cartilage, 
while its level is decreased in OA cartilage due to de-
phosphorylation caused by either biomechanical injury 
or inflammatory cytokines like IL-1β and TNF-α [107, 
109]. Natural small molecules like butein and quercetin 
have shown chondroprotective effects via activation of 
AMPK [110, 111].

Once activated by extracellular molecules, phosphati-
dylinositol 3-kinase (PI3K) generates phospholipids, 
activates downstream protein kinase B (Akt), and further 
phosphorylates mammalian target of rapamycin (mTOR). 
It has been proved that the PI3K/AKT/mTOR signaling 
pathway is involved in cartilage degeneration by affecting 
its extracellular matrix homeostasis, promoting chondro-
cytes’ inflammatory response, and especially by inhibit-
ing chondrocyte autophagy [112]. Active compounds, 
extracted from plants such as icariin and β-ecdysterone, 
have been demonstrated to alleviate OA by activating 
autophagy through the regulating PI3K/AKT/mTOR 
signaling pathway [113, 114]. The PI3K/AKT/mTOR 
and AMPK signaling pathways have interactions via the 
common downstream target mTOR; however, they own 
opposed effects on nutrient and energy homeostasis and 
cell growth [115, 116].

Clinical translation and its challenges
Based on recent search results on studies registered 
with www.​clini​caltr​ials.​gov (02.2021, filter keywords: 
osteoarthritis, drug), only 3 trials (NCT03375814, 
NCT03715140, NCT02905799) on small molecules from 
herbal origin entered clinical research, although there 
have been many TCM formulas or decoction products 
tested in clinical trials. Resveratrol decreased advanced 
glycation end product (AGE)-stimulated expression 
and activity of MMP-13 and prevented AGE-mediated 
destruction of collagen II through inhibiting IKK-IκBα-
NF-κB and JNK/ERK-AP-1 signaling pathways [59]. It is 
currently in a phase III clinical trial (NCT02905799) for 
patients with knee OA.

There are several hurdles to overcome in the translation 
of herbal compounds into clinics. Firstly, the traditional 
treatment for OA including regular oral, topic, and intra-
articular administration confronts the shortfalls of low 
bioavailability and severe side effects due to the low sta-
bility or solubility of small molecules in serum or synovial 

fluid. Novel delivery systems need to be introduced to 
deliver the small molecules to the target site and improve 
their stability under storage conditions and their bioavail-
ability in  vivo. Using exosomes with the target specific-
ity as a delivery vehicle, the anti-inflammatory activity of 
curcumin on inflammatory cells was enhanced with ther-
apeutic, but not toxic, effects [117]. The synergistic effect 
of promotion of chondrocyte autophagy via exposure to 
sinomenium encapsulated by chitosan microspheres and 
photo-crosslinked gelatin methacrylate hydrogel retarded 
the progression of surgically induced OA [118]. A com-
bination of celecoxib-loaded liposomes and hyaluronate 
gel via intra-articular injection was more effective than a 
single drug in pain control and cartilage protection [119].

Secondly, the quality of raw herbs varies and is dif-
ficult to standardize, resulting in a great variation in 
the content of the main ingredients even with regulated 
extraction procedures. Thirdly, insufficient representa-
tive animal models and preclinical experiments make the 
in vivo evidence deficient. Fourthly, issues related to pes-
ticide and heavy metal residues have been reported [120]. 
Fifthly, although there are thousands of compounds 
identified in medicinal herbs, most of them will be dis-
regarded because of unidentified beneficial effects or 
amount, while few are determined to have definite phar-
maceutical effects. Lastly, certain herbs have potentially 
toxic effects on the liver and kidneys. For instance, ber-
berine and coumarin have potential hepatotoxicity, and 
β-escin and aristolochic acid may cause nephrotoxicity 
[121]. Standardized and comprehensive toxicity studies 
will be necessary to verify the safety of the compounds 
for clinical application.

Discussion
The management of OA is unsatisfactory for a significant 
number of patients who neither respond to the existing 
conservative treatment nor achieve indications of joint 
replacement surgery. These include older patients (> 55 
years of age) with moderate or younger patients with 
moderate to severe signs and symptoms of joint degen-
eration [122]. For these cases, small molecules of herbal 
origin could represent a promising approach to halt, 
delay, or even reverse the degenerative process. Indeed, 
there are several advantages of herbal small-molecule 
compounds [123, 124]. Firstly, many herbal compounds 
have the advantages of little side effects [124] making 
them suitable for long-term treatment [125]; neverthe-
less, the safety profile of each individual drug needs to be 
carefully evaluated. Secondly, there is evidence that sev-
eral compounds have multi-target effects [123], including 
anti-inflammatory, anti-apoptotic, anti-catabolic, anti-
oxidant, anabolic, and proliferative effects (Table  1). It 
is conceivable that a combination of potent compounds 

http://www.clinicaltrials.gov
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will have the broadest effect, which may be attractive as 
an either alternative or complementary treatment to con-
ventional measures [126]. In addition, small molecular 
compounds of herbal origin have plenty of resources and 
are generally cost-effective to produce [127].

Nevertheless, despite the positive outcome of preclini-
cal in vitro and in vivo studies, translation towards clini-
cal application is still in its early stage. There are several 
reasons for this slow-going progress in drug develop-
ment. In preclinical models, the pathogenesis and pro-
gression are standardized and reproducible, while the 
heterogeneity among patients makes their responses 
greatly variable. Therefore, it will be important for future 
clinical studies to classify patients according to their OA 
stages and phenotypes, which is an emerging field in 
clinical research [128]. Factors to consider include pre-
vious joint trauma, comorbidities like metabolic disor-
ders, clinical manifestations, and eventually the genetic 
and epigenetic background. Both the limitation of pre-
clinical models and the failure to clinically diagnose OA 
at the early stage hamper the development of effective 
therapies.

The delivery of the compounds also needs to be care-
fully evaluated. Unlike typical biologics, small molecular 
drugs are in principle suitable for oral application; how-
ever, it needs to be evaluated whether the required activ-
ity at the joint site can be achieved. On the other hand, 
the joint space appears to be suitable for intra-articular 
application [129]. Novel drug delivery systems have 
been developed to facilitate controlled drug release in 
intra-articular applications [130]. In the described ani-
mal studies, the compounds have primarily been applied 
intra-articularly, while intraperitoneal and intragastric 
delivery was also reported (Table  1). This suggests that 
systemic application may be sufficiently effective for 
the respective compounds. Topical application in the 
form of penetrating formulations can also be consid-
ered, although it is more challenging to standardize and 
improve the dosing into the joint. Interestingly, there is 
evidence from clinical trials for topical comfrey extract 
[131] as an analgetic treatment in musculoskeletal pain 
including OA. However, more rigorous, high-quality 
controlled studies need to be performed to confirm the 
therapeutic benefit.

Conclusion
In conclusion, small-molecule compounds of herbal ori-
gin may have significant potential for the treatment of 
OA. Advanced techniques are available for efficient iso-
lation and purification of small molecular compounds 
from herbs. Numerous preclinical studies have eluci-
dated the mechanisms of action and identified the sign-
aling pathways modulated by the individual compounds. 

For future studies, patient stratification will be essential 
because of the heterogeneity among people with OA. 
The therapeutic benefit may be most pronounced if the 
compounds can be applied at the early stage of OA, when 
tissue structures are still intact and functional responsive 
cells are still present in the joint. Controlled clinical trials 
of high quality will be needed to confirm the beneficial 
effects demonstrated in the preclinical studies.
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