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Abstract 

Background:  Fibroblasts are important structural cells in synovium and play key roles in maintaining the synovial 
homeostasis. By single-cell RNA sequencing (scRNA-seq), subpopulation of synovium-resident cells has been reported 
to protect intra-articular structures from chronic inflammation and promote tissue repair. However, a significant num-
ber of researchers have concentrated on the role of fibroblasts in the progress of rheumatoid arthritis (RA) while few 
reports had described the contribution of distinct fibroblast subsets in the RA remission. It is helpful to understand 
the role of fibroblast subpopulations in the RA process to provide predictive biomarkers and address RA remission 
mechanisms. Here, we found HBEGF+ fibroblasts that contributed to RA remission by integrating scRNA-seq datasets 
and bulk RNA sequencing (bulk RNA-seq) datasets.

Method:  Three single-cell RNA datasets of cells harvested from RA patients were processed and integrated by Seurat 
and Harmony R packages. After identifying cell types by classic marker genes, the integrated dataset was used to run 
CellChat for analysis of cell-cell communication. Specially, EGF signaling pathway was found and HBEGF+ fibroblasts 
were identified based on HBEGF expression. Differential expressed genes of HBEGF+ were shown in heatmap and 
volcano plot and used to run gene ontology (GO) enrichment analysis. Next, bulk RNA-seq datasets of synovium 
under different conditions (health, osteoarthritis (OA), rheumatoid arthritis, before and after classical treatment) were 
compared to show expression change of HBEGF and gene markers that are mainly expressed by HBEGF+ fibroblasts 
such as CLIC5, PDGFD, BDH2, and ENPP1. Finally, two single-cell RNA sequencing datasets of synovial cells from mice 
were integrated to identify Hbegf+ fibroblasts and calculate the population of Hbegf+ fibroblasts under different 
joint conditions (health, K/BxN serum transfer arthritis (STA), and remission of STA).

Result:  After integrating three single-cell RNA sequencing datasets, we identified 11 clusters of synovial cells, such as 
fibroblasts, mural cells, endothelial cells, CD4+ T cells, CD8+ T cells, natural killer cells, synovium macrophage, periph-
eral blood macrophages, plasma cells, B cells, and STMN1+ cells. We found fibroblasts had an extensive communica-
tion network with other clusters and interacted with synovial macrophages through EGF signaling pathway via analy-
sis of cell-cell communication between synovial cells. HBEGF, ligand to EGF signaling pathway, was highly expressed 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

†Nachun Chen and Baoying Fan contributed equally to this work and should 
be considered co-first authors.

*Correspondence:  cnc2961@126.com; 18948895833@189.cn

First Department of Orthopaedics, Zhongshan City People’s Hospital Affiliated 
to Sun Yat-sen University, Zhongshan, Guangdong Province, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13075-022-02902-x&domain=pdf


Page 2 of 13Chen et al. Arthritis Research & Therapy          (2022) 24:215 

Introduction
Rheumatoid arthritis (RA) is a chronic and systemic 
autoimmune disease. It is characterized by chronic syno-
vitis and progressive articular damage [1–3]. Accurate 
assessment of RA process has potential to provide opti-
mal treatment strategies as current clinical biomarkers 
are unable to monitory the disease activity and a part of 
patients with negative inflammatory tests still have active 
disease [4–6]. Moreover, classification of RA synovium is 
possible to offer sensitive predictors of RA progress [7]. A 
series of studies have demonstrated that increasing num-
bers of mononuclear phagocytes, synovial fibroblasts, 
B cells, and T cells participated in RA progression and 
caused destruction of articular cartilage and bone [8–14]. 
However, few researchers paid attention to the roles of 
synovial cells in RA remission. Recently, with the help of 
single-cell transcriptome sequencing technology, tissue 
resident macrophages that contributed to the remission 
of RA were found in synovium. In human, the population 
of MerTKposCD206pos synovial tissue macrophages was 
higher in RA remission synovium compared to active RA 
synovium. Moreover, MerTKposCD206pos synovial tissue 
macrophages showed the biofunction including media-
tor profile resolution and repair responses [15]. In mice, 
locally renewing Cx3cr1+ tissue-resident macrophages 
form a tight-junction barrier to protect intra-articular 
structures from inflammatory reaction [16]. These two 
studies strongly indicated that there possibly may be sub-
populations of synovium-resident cells with similar func-
tion in synovium and reinstating synovial homeostasis.

Fibroblasts are important structural cells in the syn-
ovium and have key roles in maintaining the homeostasis. 
Previous literatures have reported that fibroblasts had an 
important role in RA pathological processes [17]. Recent 
scRNA-seq analyses have also described fibroblast het-
erogeneity in the synovium [18] and identified specific 

cluster associated with RA such as THY1+ fibroblasts, 
which interacted with macrophages and endothelial cells 
and led to severe inflammatory arthritis [19, 20]. How-
ever, most of these researches concentrated on fibroblast 
subclasses in promoting inflammation in arthritis. Fibro-
blast subsets that communicate with MerTKposCD206pos 
synovial tissue macrophages and engage in tissue repair 
have not been reported in detail [15]. Furthermore, 
because of the usefulness of a detailed description of 
fibroblast subclasses in addressing the mechanisms of RA 
remission and monitoring RA activity, we hypothesized 
that there is a distinct population of fibroblasts produc-
ing an active role in RA remission. In this study, we inte-
grated single-cell RNA sequencing datasets and bulk 
RNA-seq datasets and found HBEGF+ fibroblasts had an 
important role in RA remission.

Method
Data collection
The total of 13 datasets, including 7 single-cell transcrip-
tomics datasets and 6 bulk RNA-seq datasets, were col-
lected from public datasets Gene Expression Omnibus 
(GEO) and NIH IMMPOR (Table 1). The single-cell tran-
scriptomics datasets contained 1 dataset of peripheral 
blood mononuclear cells from RA patients, 1 dataset of 
synovial cells from RA patients [20], 1 dataset of CD45− 
synovial cells from RA patients [9], 1 dataset of chondro-
cytes from osteoarthritis (OA) patients [21], 1 dataset 
of meniscus cells from OA patients [22], 1 dataset of 
CD45+ synovial cells mice with different states of arthri-
tis (health and K/BxN serum transfer arthritis (STA)) 
[16], and 1 data of synovial cells from mice with different 
states of arthritis (health, STA, and STA in remission) [9]. 
The bulk RNA-seq datasets contained 1 dataset of fibro-
blasts [19] from human synovial tissue, 1 dataset of mac-
rophages [23] from human synovial tissue, 5 multicenter 

by a subset of fibroblasts and macrophages, and EGFR, receptor to EGF signaling pathway, was highly expressed 
by fibroblasts and meniscus cells. Moreover, HBEGF was downregulated under RA state and it had an increase after 
classical treatment. We then defined fibroblasts with high expression of HBEGF as HBEGF+ fibroblasts. In addition, we 
also found that HBEGF+ fibroblasts highly expressed CRTAC1, ITGB8, SCARA5, THBS4, and ITGBL1, genes relative to 
encoding extracellular matrix proteins and engaged in positive regulation of cell migration and motility, cellular com-
ponent movement, and cell growth by GO enrichment analysis. We eventually identified HBEGF+ fibroblasts specially 
expressed CLIC5, PDGFD, BDH2, and ENPP1, which positively correlated with the expression of HBEGF. Moreover, the 
expression of CLIC5, PDGFD, BDH2, and ENPP1 was downregulated under RA state and elevated by classical therapy. 
On the contrary, the HBEGF+ macrophages specially expressed SLAMF8, GK, L1RN, and JAK2, which negatively cor-
related with the expression of HBEGF. The expression was upregulated in SLAMF8, GK, L1RN, and JAK2 under the RA 
state, whereas it was decreased after classical treatment. In mice, the number of Hbegf+ fibroblasts was reduced in 
the RA synovium but increased in the RA remitting synovium.

Conclusions:  HBEGF+ fibroblasts play a role in the remission of rheumatoid arthritis, and HBEGF has potential to 
become a novel biomarker for prediction of RA progress.
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datasets of synovial tissue from 102 people with different 
states of arthritis (health, RA, OA) [24, 25], and 1 data-
set of synovial tissue from RA patients before and after 
drug treatment [26]. All the datasets were processed in 
R (V.4.0.0), and the results were showed using ggplot2 R 
package (V.3.3.5) except where mentioned.

Human single‑cell RNA sequencing analysis
The human single-cell transcriptomics datasets, com-
posed of 3 datasets from RA patients and 2 datasets 
from OA patients, were analyzed based on the states of 
arthritis.

Integrating scRNA‑seq datasets of cells from RA patients
According to the Seurat single-cell analysis standard 
workflow [27, 28], firstly, each dataset was used to cre-
ate Seurat object. Specifically, cells with <500 meas-
ured genes and >5% mitochondrial contamination were 
defined as low-quality cells and cells with >4500 meas-
ured genes were identified as potential doublets. They 
were filtered out from each dataset. After being filtered, 
total 29,382 cells were selected for following processes. 

All RA Seurat objects were merged into a different RA 
state object. The merged object was normalized (function 
NormalizeData, method = “LogNormalize,” scale. fac-
tor = 10,000), the 3000 most variable genes were identi-
fied, and the expression levels of these genes were scaled 
before performing PCA in variable gene space. Next, 
batch effect was corrected and merged object was inte-
grated by running Harmony (version 1.0) [29]. The top 
25 harmony dimensions were provided as an input for 
UMAP and visualized the first two UMAP dimensions at 
a clustering resolution of 0.2. All steps were performed 
using functions implemented in the Harmony package 
and Seurat package (NormalizeData, FindVariableFea-
tures, ScaleData, RunPCA, FindNeighbours, FindClus-
ters, RunUMAP) with default parameters, except where 
mentioned.

Next, distinct cell types were labeled by canonical 
marker genes such as PRG4, PDPN (fibroblasts), THY1, 
MCAM (mural cells), CD34, VWF (endothelial cells), 
CD2, CD4 (CD4+ T cells), CD8A, GNLY, GZMB (CD8+ 
T cells), LTB, CD3D (natural killer cells), VSIG4, CD163 
(synovium macrophages), CD68, LYZ (periperal blood 

Table 1  Induction of datasets

Accession Tissue RNA library Organism Source Platforms

GSM4819747 PBMC from RA patient Single-cell RNA sequencing Homo sapiens GEO BGISEQ-500

SDY998 Synovial cells from RA patient Single-cell RNA sequencing Homo sapiens NIH IMMPORT Illumina HiSeq 2500

SDY1599 CD45− synovial cells from RA 
patient

Single-cell RNA sequencing Homo sapiens NIH IMMPORT Illumina NextSeq 500

GSE104782 Chondrocytes from OA patient Single-cell RNA sequencing Homo sapiens GEO Illumina HiSeq 4000

GSE133449 Meniscus cells from OA patient Single-cell RNA sequencing Homo sapiens GEO HiSeq X Ten

GSE134420 CD45+CD11b+Ly6G− synovial 
cells from mice with different 
states of arthritis (health and K/BxN 
serum transfer arthritis).

Single-cell RNA sequencing Mus musculus GEO Illumina HiSeq 2500

GSE145286 Synovial cells from mice with differ-
ent states of arthritis (health, K/BxN 
serum transfer arthritis, and arthritis 
after treatment).

Single-cell RNA sequencing Mus musculus GEO Illumina NextSeq 500

GSE77298 Synovial cells from healthy and RA 
patients

Bulk RNA sequencing Homo sapiens GEO Affymetrix Human Genome U133 
Plus 2.0 Array

GSE55584 Synovial cells from OA and RA 
patients

Bulk RNA sequencing Homo sapiens GEO Affymetrix Human Genome U133A 
Array

GSE55457 Synovial cells from healthy, OA, and 
RA patients

Bulk RNA sequencing Homo sapiens GEO Affymetrix Human Genome U133A 
Array

GSE55235 Synovial cells from healthy, OA, and 
RA patients

Bulk RNA sequencing Homo sapiens GEO Affymetrix Human Genome U133A 
Array

GSE39340 Synovial cells from healthy, OA, and 
RA patients

Bulk RNA sequencing Homo sapiens GEO Illumina HumanHT-12 V4.0 expres-
sion beadchip

GSE97165 Synovial tissue from RA patients 
before and after triple DMARD 
treatment

Bulk RNA sequencing Homo sapiens GEO Illumina HiSeq 2000

GSE109448 Fibroblast from synovium Bulk RNA sequencing Homo sapiens GEO Illumina NextSeq 500

GSE123492 Macrophages from synovium Bulk RNA sequencing Homo sapiens GEO Illumina NextSeq 500
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macrophages), XBP1, CD27 (plasma cells), CD79A, 
CD37 (B cells), and STMN1 (STMN1+ cells). Gene 
expression of each cluster was visualized using Dotplot.

Integrating scRNA‑seq datasets of cells from OA patients
The OA scRNA-seq datasets were integrated following 
the steps mentioned above with the same parameters. 
Total 6708 cells were involved for analysis after filter-
ing and classified into distinct cell types referring to the 
source of cells. Expression of EGFR was showed using 
function FeaturePlot.

Cell‑cell communication in RA synovium
After identifying cell types in RA synovium, cell-cell com-
munication was analyzed by implementing the CellChat 
(V.1.1.3) pipeline [30]. A new CellChat object was created 
from the merged Seurat object. The paracrine/autocrine 
signaling interaction dataset of CellChatDB was set as 
referencing database. Next, the communication probabil-
ity was computed using a truncated mean of 20% (func-
tion computeCommunProb, type = "truncatedMean", 
trim = 0.2). After that, the cell-cell communication was 
inferred and the cell-cell communication network was 
aggregated with default parameters. The number of inter-
actions was visualized to show the aggregated cell-cell 
communication network and signaling sent from each 
cell cluster. EGF signaling pathway network was showed 
in heatmap and ligand such as HBEGF, AREG, BTC, EGF, 
EREG, TGFA, and receptor EGFR, which involved in 
EGF signaling pathway were showed using function Fea-
tureplot based on the merged RA Seurat object.

Bioinformatics analysis of HEBGF+ fibroblasts
When changing clustering resolution from 0.2 to 0.5 
for visualizing the first two UMAP dimensions, fibro-
blasts that highly expressed HBEGF were divided into 
one group. Therefore, this group of cells was defined 
as HBEGF+ fibroblasts (average expression of HBEGF 
higher than 1.5) while fibroblasts lowly expressed 
HBEGF were defined as HBEGF− fibroblasts. Mac-
rophages that highly expressed HBEGF were also 
defined as HBEGF+ macrophages and macrophages 
that lowly expressed HBEGF were defined as HBEGF− 
macrophages. Differential gene expression that 
HBEGF+ fibroblasts compared to HBEGF− fibroblasts 
was calculated by the function FindMarkers (Seurat R 
package) and showed in volcano plot. Gene expression 
of each cell type was computed using function FindAll-
Markers (Seurat R package) and top 10 of which were 
showed in heatmap using function Doheatmap (Seu-
rat R package). Expression of CLIC5, PDGFD, BDH2, 
ENPP1, SLAMF8, GK, L1RN, and JAK2 were displayed 
using function Vlnplot (Seurat R package). Differential 

expression gene markers of HBEGF+ fibroblasts and 
HBEGF− fibroblasts with the log2 fold change >1 were 
selected to generate a gene list for GO enrichment 
analysis using the clusterProfiler R package (V.4.2.2) 
[31, 32].

Human bulk RNA sequencing analysis
The bulk RNA-seq datasets were consisted of 1 dataset 
of fibroblasts from human synovial tissue, 1 dataset of 
macrophages from human synovial tissue, 5 multicenter 
datasets of synovial tissue from 53 RA joints, 33 OA 
joints and 26 healthy joints, and 1 dataset of synovial tis-
sue derived from 12 RA patients before and after classi-
cal treatment of combination of triple disease-modifying 
anti-rheumatic drugs (triple DMARD treatment, metho-
trexate, sulfasalazine, and hydroxychloroquine). Datasets 
from cells and synovial tissue were integrated for analysis 
separately. Dataset from RA joint before and after drug 
treatment was analyzed individually.

Datasets of fibroblasts and macrophages were merged 
and normalized before correcting batch effect. Sva R 
package (V. 3.42.0) was used to correct batch effect by 
running function ComBat. Then point plot was used 
to show the HBEGF expression in fibroblasts and mac-
rophages. The HBEGF expression between fibroblasts 
and macrophages was tested by Student’s t test with 
a significance threshold of P < 0.05. Next, samples of 
fibroblasts were divided into three groups, high HBEGF 
group (fibroblasts with count of HBEGF higher than 
1000), middle HBEGF group (fibroblasts with count of 
HBEGF between 100 and 1000), and low HBEGF group 
(fibroblasts with count of HBEGF between lower than 
100). Differential gene expression analysis was performed 
using DESeq2 R package (V 1.36.0) between high and 
low HBEGF expression group and differential expression 
genes (log2 fold change >1 and p < 0.05) were showed in 
volcano plot.

Five multicenter bulk RNA-seq datasets were merged, 
normalized, and corrected following the steps mentioned 
above. Then the expression of HBEGF, AREG, BTC, EGF, 
EREG, and TGFA was showed in box plot. HBEGF and 
gene markers such as CLIC5, PDGFD, BDH2, ENPP1, 
GK, IL1B, L1RN, and SLAMF8 were tested by the Pear-
son correlation test and displayed in dot plot separately. 
Expression of HBEGF, CLIC5, PDGFD, BDH2, ENPP1, 
GK, IL1B, L1RN, and SLAMF8 between healthy joints 
and RA joints was tested by Student’s t test with a sig-
nificance threshold of P < 0.05. Expression of HBEGF, 
CLIC5, PDGFD, BDH2, ENPP1, GK, IL1B, L1RN, and 
SLAMF8 before and after treatment was tested by paired 
Student’s t test and showed in box plot with a significance 
threshold of P < 0.05.
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Fig. 1  Cross-talk analysis in RA synovium. a UMAP of single-cell RNA-seq data of 29,382 cells from three human datasets. Eleven clusters at UMAP of 
integrated dataset. b Dot plot showing the average expression level of canonical marker genes of each cluster. c Cross-talk analysis between each 
cluster in RA synovium
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Mouse single‑cell RNA sequencing analysis
The mouse single-cell transcriptomics datasets were 
composed of 1 dataset of CD45+CD11b+Ly6G- synovial 
cells from mice with healthy joints and STA and 1 dataset 
of synovial cells from mice with healthy joints, STA, and 
STA in remission.

Two mouse scRNA-seq datasets were integrated fol-
lowing the steps of integrating scRNA-seq datasets of 
cells from RA patients with the same parameters. After 
filtering, total 28983 cells were involved for analysis. 
Next, distinct cell types were identified by marker genes 
such as Prg4, Pdpn, Hbegf (Hbegf+ fibroblasts and 
Hbegf− fibroblasts), Thy1, Mcam (mural cells), Cd34, 
Vwf (endothelial cells), Cd2, Cd4 (T cells), Vsig4, Cd163 
(synovium macrophages), Cd79A, Cd37 (B cells), and 
Stmn1 (Stmn1 + cells). Expression of Hbegf was showed 
using the function FeaturePlot. Differential gene expres-
sion was calculated for each cell type using the func-
tion FindAllMarkers. Next, differential expression gene 
markers of Hbegf+ fibroblasts were ordered by the log2 
fold change to generate a gene list, which was then used 
as an input for GSEA analysis. The top 200 differential 
expression gene markers of each cell type from human 
were used as the gene sets when running fgsea (V.1.2.0). 
Finally, the percentage of Hbegf+ fibroblasts was calcu-
lated under different arthritis conditions.

Result
Expression of HBEGF was downregulated in RA synovium 
but upregulated in RA remission synovium
A total of 29,382 cells were included in the downstream 
analysis after three scRNA-seq datasets had been inte-
grated and corrected for batch effects by Harmony. 
Eleven clusters in RA synovium were identified and 
showed in uniform manifold approximation and projec-
tion (UAMP) (Fig.  1a) and defined as fibroblasts (PRG4 
and PDPN), mural cells (THY1 and MCAM), endothelial 
cells (CD34 and VWF), CD4+ T cells (CD2 and CD4), 
CD8+ T cells (CD8A, GNLY, and GZMB), natural killer 
cells (LTB and CD3D), synovium macrophages (CD68 
and LYZ), periperal blood macrophages (CD68 and LYZ), 
plasma cells, B cells (CD79A and CD37), and STMN1+ 
cells (STMN1) referring to the canonical marker genes 
(Fig. 1b).

Next, CellChat was employed to analyze the cell-cell 
communication between each cell type in the RA syno-
vial microenvironment (Fig.  1c). We found that fibro-
blasts had an extensive communication network with 
other clusters and participated in various kinds of parac-
rine or autocrine signaling interactions.

Among all the signaling pathways that fibroblasts 
were involved, we discovered the EGF signaling path-
way that was the ligand-receptor interaction between 
fibroblasts and synovium macrophages (Fig. 2a). HBEGF, 
one of the ligands in EGF signaling pathway, was mainly 
expressed in a part of fibroblasts and synovial mac-
rophages (Fig. 2b). Other ligands interacting with EGFR, 
such as AREG, BTC, EGF, EREG, and TGFA, were lowly 
expressed by all clusters (Fig. 2d). EGFR, corresponding 
receptor to HBEGF, was only expressed by fibroblasts 
(Fig. 2c) in synovium. Then we noticed other tissues such 
as cartilage and meniscus in the joint cavity and found 
meniscal cells highly expressed EGFR, whereas chondro-
cytes did not (Fig. 2e, f ). Next, we compared bulk RNA-
seq data harvested from synovial cells under heathy, OA, 
and RA condition. HBEGF expression was significantly 
decreased in the RA state compared to the healthy and 
OA states (P = 0.0003, Fig.  2g). Moreover, comparing 
to the expression of HBEGF, expression of other EGFR 
ligands such as AREG, BTC, EGF, EREG, and TGFA were 
extremely low in all cases compared to the expression 
of HBEGF. After a 6-month triple DMARD treatment, 
the expression of HBEGF increased in RA synovium  
(P =0.05433, Fig. 2h).

HBEGF+ fibroblast was a subset with distinct biofunction 
in synovium
As can be seen from Fig. 2b, the fibroblasts which highly 
expressed HBEGF (average expression of HBEGF higher 
than 1.5) were distributed into a small group. Then we 
defined them as HBEGF+ fibroblasts and fibroblasts 
with low expression of HBEGF were defined as HBEGF− 
fibroblasts. Referring to the previous studies, mac-
rophages with high or low expression of HBEGF were 
defined as HBEGF+ macrophages and HBEGF− mac-
rophages separately (Fig. 3a).

By calculating the differential gene expression between 
HBEGF+ fibroblasts and HBEGF− fibroblasts, we 

Fig. 2  EGF signaling pathway in RA synovium. a Heatmap showing the EGF signaling interaction scores between each cluster in RA synovium. 
b Ligand (HBEGF) and receptor (EGFR) of EGF signaling pathway are shown in dot plots. c Other ligands (AREG, BTC, EGF, EREG, and TGFA) of EGF 
signaling pathway shown in dot plots. d 6708 cells from OA meniscus and cartilage at UMAP and receptor (EGFR) of EGF signaling pathway are 
shown in dot plot (e). f Boxplot showing expression of ligands (HBEGF, AREG, BTC, EGF, EREG, and TGFA) using bulk RNA-seq profiles of healthy joint 
synovium (n = 26), RA joint synovium (n = 53), and OA joint synovium (n = 33). Significance determined by Student’s t test (P = 0.0003). e Boxplot 
showing HBEGF expression of bulk RNA-seq profiles from RA synovium before and after triple DMARD treatment (n=19). Significance determined 
by Student’s paired t test (P = 0.05433)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Bioinformation of HBEGF+ fibroblasts. a HBEGF+ fibroblasts of RA synovium are displayed at UMAP. b Differential gene expression of 
HBEGF+ fibroblasts and HBEGF− fibroblasts are shown in a volcano plot. c Heatmap shows top 10 expressed gene markers of each cluster. d 
HBEGF expression in synovial fibroblasts (n = 25) and macrophages (n = 12) by bulk RNA sequencing (P = 0.7911) are plotted as log2 count + 
1. e Differential expression genes between high HBEGF group and low HBEGF group are highlighted on the HBEGF+ fibroblast versus HBEGF− 
fibroblast plot from b. f, g GO enrichment analysis of HBEGF+ fibroblasts (f) and HBEGF− fibroblasts (g)
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detected 162 genes with distinct expression patterns 
between HBEGF+ fibroblasts and HBEGF− fibroblasts. 
Forty-four gene markers were highly expressed by 
HBEGF+ fibroblasts and 118 gene markers by HBEGF− 
fibroblasts. The main differential expressed gene of 
HBEGF+ fibroblasts was HBEGF whereas the differen-
tially expressed gene in HBEGF− fibroblasts is MDK, 
which is related to the pathogenesis of RA (Fig.  3b). 
Next, we figured out genes mainly expressing by each 
cluster and found HEBGF+ fibroblasts were heterogene-
ous from other subpopulations with high expression of 
CRTAC1, ITGB8, SCARA5, THBS4, and ITGBL1 while 
HBEGF− fibroblasts highly expressed CXCL12 and 
MMP2 (Fig. 3c). In bulk RNA sequencing datasets of syn-
ovial fibroblasts and macrophages, we also found subsets 
of fibroblasts and macrophages highly expressing HBEGF 
in synovium (Fig. 3d). Comparing to low HBEGF group 
(fibroblasts with count of HBEGF lower than 100), we 
noted that the differential expression genes (DEG) of high 
HBEGF group (fibroblast with count of HBEGF higher 
than 1000) were more abundant in HBEGF+ fibroblasts.

Finally, we used GO enrichment analysis to figure out 
the difference between HBEGF+ fibroblasts and HBEGF− 
fibroblasts in biofunction. We found that HBEGF+ fibro-
blasts involved in positive regulation of cell migration and 
motility, cellular component movement and cell growth 
whereas HBEGF− fibroblasts engaged in collagen meta-
bolic and catabolic process and angiogenesis (Fig. 3f, g).

Population of HBEGF+ fibroblasts was decreased in RA 
synovium but increased in RA remission synovium
To evaluate the population changes of HBEGF+ fibroblasts 
in different states of synovium, we investigated gene mark-
ers that are specially expressed by HBEGF+ fibroblasts and 
HBEGF+ macrophages. We found that CLIC5, PDGFD, 
BDH2, and ENPP1 were mainly expressed by HBEGF+ 
fibroblasts, and SLAMF8, GK, L1RN, and JAK2 were 
mainly expressed by HBEGF+ macrophages (Fig. 4a).

Then, we selected these gene markers for the Pearson 
correlation test in the integrated bulk RNA sequencing 

dataset and found that the expression of CLIC5, PDGFD, 
BDH2, and ENPP1 was positively correlated with expres-
sion of HBEGF while the expression of SLAMF8, GK, 
L1RN, and JAK2 was negatively correlated with expression 
of HBEGF (Fig. 4b). Expression of CLIC5, PDGFD, BDH2, 
and ENPP1 was decreased, while expression of SLAMF8, 
GK, L1RN, and JAK2 was increased compared to synovial 
membranes in healthy and OA states (Fig. 4c). Moreover, 
after triple DMARD treatment, the expression of CLIC5, 
PDGFD, BDH2, and ENPP1 had an increase in most of 
patients. Conversely, the expression of SLAMF8, GK, 
L1RN, and JAK2 had a decrease after treatment in most of 
patients (Fig. 4d).

Next, we analyzed single-cell RNA sequencing data-
sets from mouse with different states of arthritis (healthy, 
STA, and STA after treatment). Total 28,983 cells included 
fibroblasts, mural cell, endothelial cells, T cells, synovium 
macrophages, B cells, and STMN1+ cells (Fig. 4e). Hbegf+ 
fibroblasts also existed in mouse synovium (Fig. 4f). How-
ever, few macrophages with high expression of Hbegf could 
be found in mouse synovium. To prove that Hbegf+ fibro-
blasts from mice were similar to HBEGF+ fibroblasts from 
human, we ran GSEA analysis and found the phenotype of 
Hbegf+ fibroblasts from mice aligned closer to HBEGF+ 
fibroblasts than the other clusters from human (Fig.  4g). 
Finally, we found that the population change of Hbegf+ 
fibroblasts had a similar pattern as the expression change 
of HBEGF under different conditions. The proportion of 
Hbegf+ fibroblasts decreased in RA synovium comparing 
to healthy tissue. However, after treatment, the proportion 
of Hbegf+ fibroblasts returned to a healthy level (Fig. 4h).

Discussion
In rheumatoid arthritis (RA), synovial fibroblasts have 
been considered as the key roles in regulation of joint 
homeostasis [10, 12, 14, 17–20]. Corresponding with pre-
vious researches, our study confirmed that fibroblasts had 
an extensive communication network with other clusters 
in RA synovium. Among the cell-cell communications 

Fig. 4  Population change of HBEGF+ fibroblasts. a Expression of CLIC5, PDGFD, BDH2, ENPP1, SLAMF8, IL1RN, GK, and JAK2 are shown in Vin 
plot using single-cell RNA-seq profiles. b The Pearson correlation between HBEGF and gene markers such as CLIC5 (Cor = 0.5917), PDGFD (Cor 
= 0.4276), BDH2 (Cor = 0.4415), ENPP1 (Cor = 0.4097), SLAMF8 (Cor = −0.5497), L1RN (Cor = −0.2266), GK (Cor = −0.3257), and JAK2 (Cor = 
−0.4875) is displayed on a dot plot. c Expression of CLIC5, PDGFD, BDH2, ENPP1, SLAMF8, IL1RN, GK, and JAK2 are displayed in boxplot using 
bulk RNA-seq profiles of healthy joint synovium (n =26), RA joint synovium (n = 53), and OA joint synovium (n = 33). Significance determined by 
Student’s t test (CLIC5, P = 0.0018, PDGFD, P = 0.0238, BDH2, P = 0.0001, ENPP1, P = 0.0399, SLAMF8, P = 0.0001, L1RN, P = 0.0602, GK, P =0.1461, 
JAK2, P = 0.0001). d Expression of CLIC5, PDGFD, BDH2, ENPP1, SLAMF8, IL1RN, GK, and JAK2 displayed in a boxplot using bulk RNA-seq profiles 
from RA synovium before and after triple DMARD treatment (n=19). Significance determined by Student’s paired t test (CLIC5, P = 0.0355, PDGFD, 
P = 0.0022, BDH2, P = 0.0010, ENPP1, P = 0.0124, SLAMF8, P = 0.0038, L1RN, P = 0.4620, GK, P =0.1461, JAK2, P = 0.0048). e UMAP projection of 
single-cell RNA-seq data of 28,983 cells from two mouse datasets. Seven clusters at UMAP of integrated dataset. f Expression of Hbegf shown in 
dot plot. g GSEA using top 200 expressed gene markers of each cell cluster in human synovium as gene sets and ranked gene lists from Hbegf+ 
fibroblasts in mouse synovium. Normalized enrichment scores of HBEGF+ fibroblasts, NES = 1.6723, P.adj = 0.0001. h Percentage of Hbegf+ 
fibroblasts in synovium under different states (health, STA, and STA after treatment)

(See figure on next page.)
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between fibroblasts and other clusters, we found EGF sin-
gling pathway and HBEGF+ fibroblasts.

This study subdivided fibroblasts into 2 clusters based on 
the expression of HBEGF. Fibroblasts that highly expressed 
HBEGF (average expression of HBEGF higher than 1.5) 
were defined as HBEGF+ fibroblasts while the population 
with low expression of HBEGF were regarded as HBEGF− 
fibroblast. HBEGF, heparin-binding EGF-like growth fac-
tor, is one of the ligands for the ErbB family of epidermal 
growth factor receptors (including EGFR) [33]. It stimu-
lates the migration, differentiation, and proliferation of cells 
to fill the damaged area and repair tissue lesion. Recent lit-
eratures have reported the protective function of HBEGF 
in TNF-driven chronic intestinal inflammation [34] and 
cartilage degeneration diseases [35]. And this study dem-
onstrated HBEGF expression was downregulated in RA 
synovium and increased after classic therapeutic strategy—
triple DMARD treatment. A similar pattern could be seen 
in the population of Hbegf+ fibroblasts in mice with dif-
ferent states of arthritis. The amount of Hbegf+ fibroblasts 
decreased in RA joints but increased in RA remission 
joints. And GO enrichment analysis showed that HBEGF+ 
fibroblasts played a role in cell growth and positive regu-
lation of cell migration and motility cellular component 
movement while HBEGF− fibroblasts showed opposite 
biofunction and involved in collagen metabolic process and 
angiogenesis which were proven to promote inflammation 
in arthritis [36–38]. Therefore, we believe that HBEGF+ 
fibroblasts played essential roles in the remission of RA. 
And we also believe that further researches on HBEGF+ 
fibroblasts could help to address the mechanism of RA 
remission and may identify novel biomarkers for the pre-
diction of RA process.

In synovium, a fraction of synovial macrophages also 
highly expressed HBEGF. Previous research defined them 
as HBEGF+ macrophages and described their function in 
RA synovium [9]. HBEGF+ macrophages activated syno-
vial fibroblasts and subsequently induced invasiveness 
in synovium. In order to figure out the primary source of 
HBEGF, we used the Pearson correlation test and found 
that expression of HBEGF was more relative to HBEGF+ 
fibroblasts than HBEGF+ macrophages. In mice, we could 
find Hbegf+ fibroblasts exist in synovium but Hbegf+ 
macrophages did not. Furthermore, the population change 
of Hbegf+ fibroblasts showed the similar pattern as the 
expression change of HBEGF. The population of Hbegf+ 
fibroblasts decreased in RA state synovium and had an 
increase after RA remission. That meant HBEGF+ fibro-
blasts, instead of HBEGF+ macrophages, were the primary 
source of HBEGF in synovium and the population change 
of HBEGF+ fibroblasts was a reason for the expression 
change of HBEGF.

This study has proven that expression of HBEGF was 
downregulated in RA state synovium. However, pervi-
ous literatures had pointed out that the importance of the 
ErbB family pathway in chronic pain and activating EGF 
singling pathway resulted in deterioration of RA. For 
instance, injecting HBEGF into the paw of mice caused 
painful mechanical hypersensitivity and severe pain and 
blocking the ErbB receptor could alleviate RA pain and 
joint inflammation [39, 40]. In  vivo, there are two dif-
ferent structural forms of HBEGF including proHBEGF 
(transmembrane protein) and sHBEGF (soluble protein) 
[41, 42]. proHBEGF is a precursor for sHBEGF and can 
be cleaved at the plasma membrane to yield sHBEGF. 
proHBEGF takes part in juxtacrine activity and sHBEGF 
engages in paracrine activity. From scRNA-seq data, we 
noticed that HBEGF+ fibroblasts accounted for a small 
part comparing to the huge amount of HBEGF− fibro-
blasts. And specially, the ErbB receptor, EGFR, was highly 
expressed by HBEGF− fibroblasts, which also highly 
expressed MDK (Midkine) [43], and CXCL12 (C-X-C 
Motif Chemokine Ligand 12) [44, 45] that engage in the 
pathophysiology of RA. So it is possible that the differ-
ent spatial location between HEBGF+ fibroblasts and 
HEBGF− fibroblasts in some ways prevents proHBEGF 
from contacting with EGFR and activating HBEGF− 
fibroblasts. Moreover, small quantities of HBEGF+ 
fibroblasts limit the production of sHBEGF and in other 
ways inhibit the interaction of sHBEGF with HEBGF− 
fibroblasts. Oppositely, injecting exogenous HBEGF, 
which served as sHBEGF, mediated EGFR expressed by 
HBEGF− fibroblasts directly and subsequently activated 
HBEGF− fibroblasts to secrete increasingly cytokines 
and chemokines.

Conclusions
In summary, population of HBEGF+ fibroblasts and 
expression of HBEGF decreased in RA synovium and 
increased after treatment. To conclude, HBEGF+ fibro-
blasts play a role in the remission of rheumatoid arthritis 
and HBEGF has potential to become a novel biomarker 
for prediction of RA progress.
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