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Abstract 

Background:  Rheumatoid arthritis (RA) patients present with abnormal methylation patterns in their fibroblast-like 
synoviocytes (FLS). Given that DNA demethylation is critical for producing DNA methylation patterns, we hypoth‑
esized that DNA demethylation may facilitate RA progression. Therefore, we designed this study to examine the role 
of DNA dioxygenase family, Ten-Eleven translocation (TET1/2/3), in the pathological process of RA.

Methods:  Synovial tissues and FLS were obtained from patients with RA and Osteoarthritis. K/BxN serum-induced 
arthritis was induced in Wild-type (WT) and TET3 heterozygous-deficient (TET3+/−) C57BL/6 mice.

Results:  We found that both TET3 and 5-hydroxymethylcytosine (5hmC) were upregulated in synovitis tissues from 
RA patients and confirmed this upregulation in the cultured FLS derived from synovitis tissues. Tumor necrosis factor 
α (TNFα) upregulated TET3 and 5hmC levels in cultured FLS, and the stimulated FLS exhibited high cell mobility with 
increased transcription of cellular migration-related factors such as C-X-C motif chemokine ligand 8 (CXCL8) and C-C 
motif chemokine ligand 2 (CCL2) in a TET3-dependent manner. In addition, TET3 haploinsufficiency lowered RA pro‑
gression in a mouse model of serum-induced arthritis.

Conclusions:  Based on these findings, we can assume that TET3-mediated DNA demethylation acts as an epigenetic 
regulator of RA progression.
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Background
In rheumatoid arthritis (RA), treatment with anti-rheu-
matic drugs targeting some molecules responsible for 
immunity and inflammation is often effective in improv-
ing symptoms depending on their pathological con-
text. However, remission only occurs in around half of 
the patients receiving these treatments [1]. These facts 

suggest that persistent inflammation aggravates RA pro-
gression forcing the transition to the irreversible state 
and sending patients beyond the point of no return [2–4].

Fibroblast-like synoviocytes (FLS) are key cells in pan-
nus formation. FLS in RA synovial tissues appear to 
transition into partially transformed cells with a hyper-
sensitive phenotype [5]. The chromatin state defines the 
phenotype and is regulated via DNA methylation and 
histone modification [6, 7]. DNA methylation is regu-
lated via DNA demethylation and re-methylation [7]. In 
DNA re-methylation, DNA methyltransferases (DNMTs) 
are responsible for de novo methylation and methyla-
tion maintenance. DNA demethylation includes passive 
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demethylation and active demethylation [7]. Ten-eleven 
translocation (TET) proteins, active demethylation 
enzymes, first oxidize methylated cytosine (5-methyl-
cytosine (5mC)) to 5-hydroxymethylcytosine (5hmC), 
5-formylcytosine (5fC), and 5-carboxylcytosine (5caC).

Genome-wide unbiased studies have revealed that 
activated FLS from RA patients present with abnormal 
patterns of DNA methylation [8–13], and it has been 
suggested that these abnormalities may be associated 
with more aggressive phenotypes [12]. Furthermore, we 
have shown that the expression levels of DNMT1 and 
DNMT3a were downregulated in FLS in the presence of 
tumor necrosis factor α (TNFα) and interleukin-1β (IL-
1β), which may lead to the abnormal patterns of DNA 
methylation in these cells [12]. However, little informa-
tion is available on the link between DNA demethyla-
tion and the onset and progression of RA. Therefore, this 
study was designed to determine whether DNA demeth-
ylation is associated with the chronicity of RA and we 
focused on the role of the TET enzymes as active facilita-
tors of DNA demethylation.

Materials and methods
Detailed materials and methods are described in supple-
ment information (Supplementary Data S1).

Results
TET3 expression in synovial membranes and FLS 
of patients with RA
To understand the role of TET family proteins in RA 
progression, we first analyzed the expression profiles of 
the TET1/2/3 proteins, 5mC, and 5hmC in the synovial 
membranes of RA patients, and compared these with 
those of osteoarthritis (OA) patients. Immunohisto-
chemical analysis confirmed the expression of TET2, 
TET3, and 5hmC in both the RA and OA synovial mem-
branes. Among the TET proteins, TET3 exhibited the 
highest expression in the RA patients (Fig. 1A). In addi-
tion, quantitative analysis revealed that both TET3 and 
5hmC expression were higher in the RA patients when 
compared with the OA patients, while the expression lev-
els of TET2 were similar between the two patient groups 
(Fig. 1B).

Next, we attempted to identify the cell types expressing 
TET proteins within the synovial tissues. The cell type 
markers for FLS (CD55) and monocytes/macrophages 
(CD68) were found to co-localize with TET2 and TET3, 
while TET1 expression levels were low in both of these 
cell types (Fig.  1C). TET3 was highly expressed in the 
superficial layer of the synovial membrane and clearly 
co-stained with CD55, but not with CD68 (Fig.  1C). 
Conversely, co-staining with TET2 and CD68 were co-
stained, but not CD55 and TET2 (Fig.  1C). As TET3 

expression in the synovial membrane was visible in the 
FLS, we went on to evaluate TET3 expression in a pri-
mary culture of FLS from RA patients. Immunohisto-
chemical analysis of the cultured FLS showed higher 
expression levels of TET3 than TET1 and TET2 (data 
not shown). RA FLS presented with increased TET3 
expression when compared to the FLS from OA patients 
(Fig. 1F). Collectively, these findings suggest that RA acti-
vation in FLS is associated with the expression of TET3 
and not the other TET proteins.

Pro‑Inflammatory cytokines induce TET3 expression in FLS 
samples
As TET3 is highly expressed in FLS samples from RA 
patients, we reasoned that the associated pro-inflamma-
tory cytokines are likely to function as TET3 inducers. 
The cultured RA FLS were treated with pro-inflammatory 
cytokines, and then TET1/2/3 expression was assessed at 
the mRNA level. Among the TET members, only TET3 
exhibited significant induction in responses to TNFα, 
IL-1, and IL-17 (Fig.  2A). In contrast, no increase in 
TET1 or TET2 expression was recorded for any of the 
nine cytokines used in this assay.

TNFα induces TET3 expression and the hydroxylation 
of methylated DNA
We then tested whether pro-inflammatory cytokines 
potentiate TET3 function in the putative DNA demeth-
ylation process. Given the clinical impact of increased 
TNFα during RA progression, we selected TNFα as 
the most likely to induce a response (Fig.  2A). First, we 
investigated the effect of TNFα on TET3 regulation at 
the protein level. Western blot confirmed that TNFα 
increased TET3 expression at the protein level, which 
was further supported by the quantitative image analysis 
using ImageJ software (Fig. 2B). In addition, the obtained 
results suggest that TNFα induced this response at the 
transcript level as there was no change in TET3 mRNA 
turnover (Supplementary Figure S1). These results were 
consistent with the significant accumulation of nuclear 
TET3 protein in cultured RA FLS at 48 h post-TNFα 
stimulation (Fig.  2C). This increase was also accompa-
nied by an increase in 5hmC (Fig.  2D), suggesting that 
increases in pro-inflammatory cytokines during RA 
progression stimulate TET3 expression, leading to the 
hydroxylation of methylated DNA in RA FLS.

Genes regulated by both TET3 and TNFα are relevant to RA
Persistent exposure to pro-inflammatory cytokines has 
been reported to transform FLS into cells that produce a 
variety of arthritogenic molecules [14]. We then went on 
to use a gene microarray analysis (21,448 genes) to pro-
file the global gene regulation in cultured RA FLS (n = 
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3) treated with TNFα in the presence or absence of anti-
TET3 small interfering RNA (siRNA) [i.e., TET3- knock-
down (KD)] in an effort to determine whether TET3 
mediates this TNFα induced transformation. The KD 
efficiency of TET3 by siRNA was confirmed using qPCR 
and Western blotting (Supplementary Figure S2A and B). 
The gene expression array analysis was conducted using 
four groups [control siRNA (siCTL)/TNFα(–), siCTL/

TNFα(+), TET3-KD (siTET3)/TNFα(–), or siTET3/
TNFα(+)], and the genes with significant expression dif-
ferences (ANOVA F-test, P < 0.05) were used in the hier-
archical analysis (Supplementary Figure S3). When we 
compared the siCTL/TNFα(+) and the siCTL/TNFα(–) 
groups, the number of genes regulated by TNFα stimu-
lation at the cutoff point [|log fold change (FC)| >0.58, 
false discovery rate (FDR)-corrected F-test, P < 0.3)] is 

Fig. 1  TET3 expression in the RA synovial tissues. A Representative patterns of staining for 5mC, 5hmC, TET1/2/3 (brown). RA (n = 3), OA (n = 
3). Scale bar, 50 μm. B The percentage of area with positive staining for TET1/2/3. RA (n = 3), OA (n = 3). C Representative patterns of staining for 
TET1/2/3 (blue) and CD55/CD68 (brown). Synovial tissues (n = 2). Scale bar, 20 μm. D Relative mRNA expression levels of TET1/2/3. RA FLS (n = 6), 
OA FLS (n = 6). Data are mean ± standard error of the mean (B) and the box-and-whisker plots (D). Two-tailed P values by the t-test (B). One-tailed P 
values by the Mann-Whitney U-test (D)
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Fig. 2  Stimulation with TNFα increased TET3 expression levels in RA FLS. A Relative mRNA expression levels of TET1/2/3. RA FLS (n = 4). 
B Immunoblotting analysis of TET3 expression in RA FLS unstimulated or stimulated with TNFα for 0, 48, and 96 h. RA FLS (n = 3). C (Left) 
Representative patterns in immunohistochemical staining of TET3 expression in RA FLS stimulated with TNFα for 0, 24, and 48 h. (Right) The 
nucleus/cytoplasm (N/C) intensity ratio of TET3 expression (20 cells each). RA FLS (n = 3). D (Left) Immunoblotting with 5hmC in gDNA from FLS 
unstimulated for 0 h and 96 h or stimulated with TNFα for 96 h. (Right) Relative expression levels of 5hmC. FLS (n = 3). Data are mean ± standard 
error of the mean (A and D) and the box-and-whisker plots (C). Two-tailed P values by the Mann-Whitney U-test (vs. no-stimulation control), *P < 
0.05 (A) and the Tukey’s honestly significant difference test (C). One-tailed P values by the Mann-Whitney U-test (D)

(See figure on next page.)
Fig. 3  Identification of TNFα-TET3-dependent genes, pathways, and RA-like phenotypes in RA FLS. A The Venn diagram of induced and 
downregulated genes. B Representative enriched KEGG pathways. C Heat map of chemokine genes expression. Red corresponds to gene 
upregulation and blue to gene down-regulation. D Relative mRNA expression levels in RA FLS with or without TNFα stimulation and 
TET3-knockdown. CXCL8 (n = 3), CCL2 (n = 3), RANKL (n = 3), OPG (n = 3), MMP1 (n = 3), MMP13 (n = 3). E Concentrations in the supernatant of FLS 
with or without TNFα stimulation and TET3-knockdown. RA FLS (n = 4). F (Left) Representative images of scratch assays of RA FLS with or without 
TNFα stimulation and TET3-knockdown. (Right) Count of cells per field filling the original scratch area. RA FLS (n = 3). Data are mean ± standard 
error of the mean (D, E, and F). One-tailed P values by the Mann-Whitney U-test (D, E, and F)
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Fig. 3  (See legend on previous page.)
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shown in Fig.  3A, with 280 upregulated genes and 185 
downregulated genes, respectively. When we compared 
the siTET3/ TNFα(+) and the siCTL/TNFα(+) group, 
the number of genes affected by TET3-KD under TNFα 
treatment was 180, with 93 genes upregulated and 87 
downregulated, respectively. There were an estimated 95 
genes that are likely to be regulated by both TNFα and 
TET3, with 52 of these being upregulated and 43 down-
regulated, respectively (Fig. 3A, Supplementary Table S1 
and S2). The 52 upregulated genes encode several factors 
associated with RA progression, including those associ-
ated with neutrophil migration [such as C-X-C motif 
chemokine ligand 8 (CXCL8) and CXCL5], cell migra-
tion [such as Myocardin (MYOCD), Calponin 1 (CNN1), 
and Integrin Subunit Beta 3 (ITGB3)], amplifying inflam-
mation [such as Leukemia Inhibitory Factor (LIF) and 
Interleukin 1 Beta (IL1B)], proto-oncogenes [KIT Proto-
Oncogene, Receptor Tyrosine Kinase (KIT), RELB Proto-
Oncogene, nuclear factor-kappa B (NF-κB) Subunit 
(RELB)], Interferon (IFN)-inducible genes [Interferon 
Induced Protein 44 Like (IFI44L), 2′-5′-Oligoadenylate 
Synthetase 1 (OAS1), and Radical S-Adenosyl Methio-
nine Domain Containing 2 (RSAD2)]. Those genes with 
variations known to increase RA risk are also listed in 
this figure [TNF alpha-induced protein 3 (TNFAIP3) and 
fatty acid desaturase 2 (FADS2)].

Next, we went on to complete functional ontology and 
KEGG pathway analyses on these genes (Fig. 3B, Supple-
mentary Table S3 and S4), and confirmed the expected 
enrichment of the “TNF signaling” pathway [16.1-fold 
(P = 2.79E−06, FDR = 0.003)]. Significant enrichments 
were detected in the known signaling pathways associ-
ated with RA progression, including “NOD-like receptor 
signaling,” “NF-kappa B signaling,” “Cytokine-cytokine 
receptor interaction” and “Chemokine signaling” path-
ways (Fig.  3B). As the CXC-chemokines are well-rec-
ognized facilitators of RA progression, we went on to 
perform a cluster analysis and showed that several C-C 
motif chemokines are likely regulated by both TET3 and 
TNFα (Fig. 3C).

TET3 facilitates the mobility of activated FLS
To verify gene regulation of the candidate chemokines by 
these factors, real-time qPCR was performed using cul-
tured RA FLS to assess the mRNA expression levels of 
CXCL8, CCL2, receptor activator of nuclear factor kappa-
B ligand (RANKL), osteoprotegerin (OPG), matrix metal-
loproteinase 1 (MMP1), and MMP13 (Fig. 3D). Although 
the expression of RANKL, MMP1, and MMP13 (up-reg-
ulated) as well as OPG (down-regulated) were shown to 
be TNFα-dependent, they appeared to be TET3 inde-
pendent (Fig. 3D). As TNFα is well known to induce the 

production of inflammatory mediators [5], the produc-
tion of the other mediators during RA FLS culture were 
also evaluated for TET3 dependence (Fig. 3E). Although 
IL-1, IL-17A, and TNFα were below the detection level 
in this study, presumably due to the detection limits of 
the culture media, induction of CXCL8 and CCL2 by 
TNFα were both confirmed to be linked to TET3 expres-
sion (Fig. 3E). Increases in IL-6 and VEGF in response to 
TNFα were observed, but were shown to be TET3 inde-
pendent (Fig. 3E). One of the most distinct features of RA 
progression is cell migration and invasion of activated 
FLS under persistent stimulation by pro-inflammatory 
cytokines [5]. Given this, we then investigated whether 
TET3 is indeed involved in increasing the cellular mobil-
ity of FLS following TNFα stimulation using cultured RA 
FLS. The scratch assay was used to assess cell migration 
and invasion [15], and TET3-KD abrogated the effect of 
TNFα stimulation on FLS cell mobility (Fig.  3F). Thus, 
TET3 seems to mediate the action of a subset of TNFα 
target genes responsible for pannus formation in pro-
gressed RA joints.

Haploinsufficiency of TET3 (TET3+/−) attenuates RA 
progression in an RA mouse model induced by K/BxN serum
Given the findings in both the clinical samples and cul-
tured FLS, we hypothesize that TET3 expression in FLS 
facilitates RA progression in the joints. To further address 
this point, we attempted to illustrate TET3 function in 
the intact joints of an RA mouse model. The development 
of a typical RA-like phenotype was achieved following 
murine treatment with K/BxN serum [16] (Fig.4), and a 
TET3 gene-depleted CL57BL/6 line was used as no overt 
abnormality with normal reproductive ability has been 
observed in mice with TET3 haploinsufficiency [17, 18]. 
TET2/3 and methylated DNAs were clearly stained in the 
synovial tissues of the joints in wild-type (WT) mice. K/
BxN serum transfer was found to upregulate the expres-
sion levels of TET2, TET3, and 5hmC (Fig. 4A), consist-
ent with the findings from the human RA clinical samples 
(Fig.  1). In TET3+/− mice, K/BxN serum transfer was 
unable to induce significant expression of TET3 and did 
not affect TET2 expression levels (Fig. 4A). Acute arthri-
tis was induced following K/BxN serum transfer in WT 
and TET3+/− mice (Fig. 4B, C). However, the progression 
of arthritis was clearly aborted in TET3+/−-K/BxN mice 
(Fig. 4B). Histological analysis suggested that TET3 hap-
loinsufficiency attenuates the hallmarks of arthritis pro-
gression, including reducing synovial inflammation and 
FLS proliferation following bone destruction (Fig.  4C). 
Marked bone erosion was obvious in the arthritic WT-K/
BxN mice, but not in the TET3+/−-K/BxN mice when 
evaluated using micro-computed tomography (Fig.  4D). 
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Fig. 4  Arthritis attenuated by TET3+/− in an RA mouse model. A Representative patterns of staining for 5mC, 5hmC, TET1/2/3 (brown) in the ankle 
synovial tissue. B Serial changes in the arthritis score. WT-K/BxN (n = 8), TET3+/−-K/BxN (n = 9). C (Left) Representative sections of synovial tissues 
stained with hematoxylin (HE) and eosin and Safranin O (S-O). (Right) histological scores of inflammation/hyperplasia, bone erosion, and cartilage 
damage. WT-K/BxN (n = 4), TET3+/−-K/BxN (n = 5). D Images of micro-computed tomography. Red arrows correspond to bone erosion. WT-K/BxN 
(n = 1), TET3+/−-K/BxN (n = 1). E Sections of mouse synovial tissues stained with tartrate-resistant acidic phosphatase. WT-K/BxN (n = 2), TET3+/−-K/
BxN (n = 2). Scale bar, 300 μm (A), 100 μm (left D), 50 μm (middle D), 200 μm (right D). Data are mean ± standard error of the mean (B and C). 
Two-tailed P values by the t-test. *P < 0.05, **P < 0.01, vs. WT-K/BxN (B and C)
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Furthermore, K/BxN serum transfer potently induced the 
spread of tartrate-resistant acid phosphatase (TRAP)-
positive mature osteoclasts in the border area between 
the inflamed synovial membrane and bone, but this effect 
was much less obvious in the TET3+/−-K/BxN mice 
(Fig.  4E). In contrast, TET3 silencing by transfection of 
FLS with siRNAs significantly suppressed the cell prolif-
eration of FLS than those transfected with control siRNA 
(Supplementary Fig S4). These findings support the 
in  vivo  significance of TET3 function in facilitating the 
progression of arthritis and pannus formation.

Discussion
Here, we assessed the role of the TET proteins, as the 
primary enzymes facilitating DNA demethylation, in RA 
progression in both human RA tissues and an RA mouse 
model, with a view to evaluating how epigenetic regula-
tion might facilitate RA progression. The expression of all 
three TET proteins and hyper-hydroxylation of methyl-
ated DNA (5hmc), was evaluated in these assays and our 
results show that there was a significant increase in TET3 
and 5hmc in the synovial tissues of RA patients (Fig. 1A). 
A combination of immunohistochemical analysis and cell 
culture of FLS from the RA synovial membranes clearly 
demonstrated the increased expression of TET3 in these 
FLS (Fig.1C, D). These findings are consistent with previ-
ous reports of altered epigenetic markers, such as meth-
ylated DNA [12] and histone modifications [19, 20] in the 
FLS of RA patients. In addition, evaluation of the clini-
cal samples revealed that increases in pro-inflammatory 
cytokines (TNFα, IL-1, and IL-17) produced during RA 
progression clearly induced the upregulation of TET3 
expression, but not the other TETs, in the cultured FLS 
(Fig.  2A). TET1 expression levels were lower than that 
of TET3 in the RA synovial tissues (Fig. 1A), and when 
semi-quantitatively compared in RA and OA patients 
(Fig. 1B). Moreover, given the lack of overlapping stain-
ing between TET1 and CD55/CD68 (Fig.  1C), we can 
assume that TET1 is likely to engage in chondrogenesis 
in the joint [21]. TET2 is strongly expressed in mono-
cytes/macrophages (CD68), but not in FLS (CD55), from 
RA tissues (Fig. 1C) or cultured FLS (Fig. 1D). However, 
the difference in its expression between RA and OA 
patients was negligible (Fig.1B). Given the global role and 
cellular distribution of macrophages in pro-inflammatory 
responses, TET2 may modify epigenetic events in the 
residential macrophages of RA synovial tissues [22]. To 
verify the role of TET3 in RA progression in intact ani-
mals, we used a mouse model of RA induced by K/BxN 
serum transfer [16], in which the expected progression 
of RA-like arthritis was observed (Fig.  4A). The onset 
of arthritis was initiated, but its progression was clearly 

aborted by TET3 haploinsufficiency [17, 18] under these 
conditions (Fig. 4B, C). Moreover, less bone destruction 
was observed in the TET3+/−-K/BxN mice (Fig.  4D). 
Given the pivotal role of FLS in RA progression, we pre-
sume that TET3 facilitates inflammatory responses in 
FLS and adjacent cells during RA progression, presum-
ably through epigenetic modification by initiating DNA 
demethylation. Notably, TET3 could be useful as an 
inflammatory indicator during RA progression, since 
there are no other suitable inflammatory FLS markers in 
the literature.

Given the upregulated expression of TET3 in the RA 
synovium (Fig.  1A, C), we were not surprised to find 
that the expression levels of TET3 were found clearly 
upregulated in response to several pro-inflammatory 
cytokines associated with RA progression in the cul-
tured FLS [2] (Fig.  2A). Moreover, we showed that 
TNFα treatment for 96 h in cultured FLS was also 
effective in upregulating the levels of TET3 protein 
and 5hmC (Fig. 2B, D). The molecular basis underlying 
the upregulation of TET3 by these cytokines remains 
unknown, but may be associated with the cell-autono-
mous responses in FLS associated with these cytokines. 
This suggests that future studies should focus on the 
molecular mechanism facilitating the cytokine-medi-
ated regulation of TET3 expression. This regulatory 
mechanism is supported by the fact that gene expres-
sion analysis under TET3-KD (Fig.3A), demonstrated 
that TET3 facilitates TNFα-mediated induction of the 
other inflammatory factors associated with RA pro-
gression. Therefore, we presume that the actions of the 
inflammatory factors produced during RA progres-
sion, at least in part, facilitate TET3-mediated DNA 
demethylation.

We searched for the downstream target genes of TET3 
that might account for RA progression and successfully 
found that TET3 was required for the TNFα-mediated 
induction of 52 downstream genes including inflamma-
tory factors and CXC-chemokines such as CCL2, CXCL5, 
and CXCL8 (Fig. 3A–C). CXCL5 and CXCL8 are potent 
neutrophil recruiters, while CCL2 activates monocytes 
and peripheral helper T (Tph) cell mobility [23], as well 
as the maturation of monocytes into mature osteoclasts 
[24]. The role of TET3 in activated cell mobility (Fig. 3F) 
and osteoclastgenesis (Fig.  4D, E) by TNFα was experi-
mentally verified. In addition, these chemokines are 
known to potentiate the proliferation and angiogenic 
properties of FLS during RA progression [25]. Like these 
chemokines, the interleukins (IL-1β and LIF) identified 
in this gene screening have already been shown to pro-
mote inflammation during RA progression [26, 27]. IL-1β 
maintains persistent inflammation in the RA synovium 
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and thereby drives bone destruction, and its induction by 
TNFα in the RA synovium is well documented [26]. LIF 
induction by TNFα may lead to IL-6 induction through 
the LIF signaling pathway via the activator of transcrip-
tion 4 (STAT4) and TNFα signaling pathway via NF-κB 
and C/EBPβ in the RA synovium [28, 29]. The upregula-
tion of receptor tyrosine kinase, c-kit (encoded by KIT), 
in FLS may contribute to increased cellular mobility in 
the presence of its ligand stem cell factor (SCF) during 
RA progression.

Both the in  vivo and in  vitro observations clearly 
demonstrate that TET3 facilitates gene induction of 
C-C motif chemokines (CCL2 and CXCL8) by TNFα, as 
well as other pro-inflammatory cytokines. However, the 
detailed molecular mechanism underlying the interac-
tions between gene regulation and DNA demethylation 
remains unknown [30]. However, when taken together 
with our previous findings on the altered DNA meth-
ylation patterns of RA FLS [8], we can assume that the 
changes noted in the DNA array are at least partially 
due to DNA demethylation events in the FLS during 
RA progression. The induction of CCL2 and CXCL8 
by TNFα stimulation appears to be achieved via poten-
tiation of their gene promoters which are activated via 
TET3-mediated DNA demethylation. Given that it is 
generally accepted that passive DNA demethylation 
occurs during DNA duplication, the changes in gene 
expression associated with TNFα and DNA demeth-
ylation may also be partially mediated through the 
increased DNA duplication of RA FLS. This idea is not 
inconsistent with the fact that cell proliferation is pro-
moted by pro-inflammatory cytokines other than TNFα 
during RA progression.

Conclusions
In conclusion, our findings suggest that TET3 serves as 
an epigenetic gatekeeper for the point-of-no-return in 
both the progression and chronicity of RA-mediated 
joint destruction. Early and effective therapeutic inter-
vention to prevent this progression to the point-of-no-
return could be a key to finding a cure for deteriorating 
RA. When this is taken together with our observations, 
it is clear that our data suggests that TET3 may be a 
promising target for therapeutic intervention.
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