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Abstract 

Background/purpose: In axial spondyloarthritis (axSpA) inflammation of the sacroiliac joints and spine is associated 
with local extracellular matrix (ECM) remodeling of affected tissues. We aimed to investigate the association of ECM 
metabolites with treatment response in axSpA patients treated with TNF‑α inhibitory therapy for 46 weeks.

Methods: In a prospective clinical study of axSpA patients (n=55) initiating a TNF inhibitor (infliximab, etanercept, or 
adalimumab), serum concentrations of formation of type I (PRO‑C1), type III (PRO‑C3), and type VI (PRO‑C6) collagen; 
turnover of type IV collagen (PRO‑C4), and matrix‑metalloproteinase (MMP)‑degraded type III (C3M) collagen, MMP‑
degraded type IV (C4M), type VI (C6M), and type VII (C7M) collagen, and cathepsin‑degraded type X collagen (C10C), 
MMP‑mediated metabolite of C‑reactive protein (CRPM), citrullinated vimentin (VICM), and neutrophil elastase‑
degraded elastin (EL‑NE) were measured at baseline, week 2, week 22, and week 46.

Results: Patients were mostly males (82%), HLA‑B27 positive (84%), with a median age of 40 years (IQR: 32–48), dis‑
ease duration of 5.5 years (IQR: 2–10), and a baseline Ankylosing Spondylitis Disease Activity Score (ASDAS) of 3.9 (IQR: 
3.0–4.5).

Compared to baseline, PRO‑C1 levels were significantly increased after two weeks of treatment, C6M levels were sig‑
nificantly decreased after two and 22 weeks (repeated measures ANOVA, p=0.0014 and p=0.0015, respectively), EL‑NE 
levels were significantly decreased after 2 weeks (p=0.0008), VICM levels were significantly decreased after two and 
22 weeks (p=0.0163 and p=0.0374, respectively), and CRP were significantly decreased after two and 22 weeks (both 
p=0.0001). Baseline levels of PRO‑C1, PRO‑C3, C6M, VICM, and CRP were all associated with ASDAS clinically impor‑
tant and major improvement after 22 weeks (ΔASDAS ≥1.1) (Mann–Whitney test, p=0.006, p=0.008, p<0.001, <0.001, 
<0.001, respectively), while C6M, VICM and CRP levels were associated with ASDAS clinically important and major 
improvement after 46 weeks (ΔASDAS ≥2.0) (p=0.002, p=0.044, and p<0.001, respectively). PRO‑C1 and C6M levels 
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were associated with a Bath AS Disease Activity Score (BASDAI) response to TNF‑inhibitory therapy after 22 weeks 
(Mann–Whitney test, p=0.020 and p=0.049, respectively). Baseline levels of PRO‑C4 and C6M were correlated with 
the total SPARCC MRI Spine and Sacroiliac Joint Inflammation score (Spearman’s Rho ρ=0.279, p=0.043 and ρ=0.496, 
p=0.0002, respectively).

Conclusions: Extracellular matrix metabolites were associated with ASDAS response, MRI inflammation, and clinical 
treatment response during TNF‑inhibitory treatment in patients with axSpA.

Background
Axial spondyloarthritis (axSpA) is a chronic inflamma-
tory disease that is characterized by inflammation in the 
sacroiliac joints and spine, and over time some patients 
progress from non-radiographic axSpA to radiographic 
axSpA (ankylosing spondylitis (AS)) [1, 2]. There is an 
unmet need to identify biomarkers that reflect disease 
activity in patients with axSpA [3]. To monitor disease 
activity in axSpA patients, the AS Disease Activity Score 
(ASDAS) was developed and is now widely used [4]. It 
combines a questionnaire with items regarding back pain, 
peripheral pain, and duration of morning stiffness with 
blood C-reactive protein (CRP) levels. However, there are 
some drawbacks of ASDAS, as it mainly reflects patients’ 
perspectives, and CRP is highly weighted in the score 
[5]. Magnetic resonance imaging (MRI) has emerged 
as a reliable imaging modality in axSpA to detect bone 
marrow edema (BME) and structural lesions. However, 
whether patients are scanned by MRI is highly depend-
ent on the availability of MRI devices [6], and repeated 
MRIs in routine care are often not feasible. There is a lack 
of commonly available and objective measures to moni-
tor changes in disease activity in patients diagnosed with 
axSpA. We hypothesized that biomarkers of extracellular 
matrix (ECM) remodeling might assist in the evaluation 
of disease activity and response to treatment in axSpA.

During the disease progression of axSpA, inflamed tis-
sue is infiltrated by immune cells, which creates a dis-
turbance in tissue homeostasis, where ECM proteins 
are formed but also degraded by the overexpression 
and activation of proteases, such as metalloproteinases 
(MMPs) and cathepsins [7]. Both the formation and deg-
radation of the ECM are reflected in changes in circulat-
ing biochemical markers of ECM fragments, so-called 
neo-epitopes [8]. The 28 types of collagen are the major 
proteins in the body and are expressed in various tissues, 
including joint tissues [9]. In particular, type I, III, IV, VI, 
VII, and X collagen are expressed in joint tissues, includ-
ing tendons, bone, and connective tissue. Type I collagen 
is the most abundant protein, as it is the major struc-
tural protein in bone. PRO-C1, measuring type I collagen 
formation (N-terminal pro-peptide of type I procolla-
gen [PINP]), has been shown to be a biomarker of bone 

formation [10]. Type I and III collagen are the major 
ECM proteins in soft tissue, while type IV collagen is the 
major constituent of the basement membrane located 
below the epithelial/endothelial cells. The biomarker 
PRO-C3, which measures type III collagen formation and 
is a marker of fibrogenesis, has previously been shown 
to be associated with progressive systemic sclerosis [11]. 
Turnover of type IV collagen, quantified by PRO-C4, and 
the two MMP-mediated fragments of type III and IV col-
lagen, C3M and C4M, respectively, are associated with 
response to TNF-a inhibitor therapy in inflammatory 
bowel disease [12]. Type VI collagen formation, quanti-
fied by PRO-C6, is elevated in patients with rheumatoid 
arthritis and predicts response to an anti-IL-6 receptor 
antibody in combination with methotrexate (MTX) after 
16 weeks [13]. The MMP-mediated degradation fragment 
of type VI collagen, C6M, has previously been shown to 
be upregulated in AS [14]. Type VII collagen is a minor 
collagen anchoring the fibrils that connect the basement 
membrane to the underlying interstitial matrix. Degrada-
tion of type VII collagen can be quantified by the MMP-
mediated fragment of type VII collagen, C7M, which has 
been found to be upregulated in systemic sclerosis [15]. 
Type X collagen is primarily expressed by hypertrophic 
chondrocytes [16], and the biomarker C10C, reflect-
ing cathepsin-degraded type X collagen, is elevated in 
patients with osteoarthritis [17]. Neutrophil elastase-
degraded elastin (EL-NE) is a potential biomarker for 
differentiating inflammatory bowel disease from irrita-
ble bowel syndrome [18]. It has been suggested that the 
MMP-mediated metabolite of CRP (CRPM) reflects local 
tissue inflammation [19, 20], and it has been associated 
with changes in disease activity in patients with AS [19]. 
Finally, vimentin (VICM), an MMP-derived metabolite of 
citrullinated vimentin, has been associated with disease 
activity and radiographic progression in AS [21].

The aim of this study was to investigate a panel of ECM 
biomarkers to link ECM turnover with disease activ-
ity measures to identify candidate serum markers of 
tissue homeostasis and disturbance associated with dis-
ease activity. Such markers could potentially enable bet-
ter monitoring of disease development in patients with 
axSpA. Therefore, we investigated the association of the 
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ECM metabolite biomarkers PRO-C1, PRO-C3, PRO-C4, 
PRO-C6, C3M, C4M, C6M, C7M, C10C, CRPM, EL-NE, 
and VICM with disease activity in patients with axSpA, 
as measured clinically and by MRI, and their relationship 
with the treatment response to TNF inhibitory therapy 
for 46 weeks.

Methods
Subjects
The BIOSPA study has been described previously [22, 23]. 
Briefly, 60 TNFα inhibitor-naïve patients with axSpA ini-
tiating TNF-α inhibitor therapy were recruited from nine 
Danish rheumatology departments. Clinical and biochem-
ical assessments were performed at baseline, and patients 
were followed for 46 weeks. Seven patients discontinued 
before week 22, and another six patients discontinued 
before week 46 due to side effects or lack of efficacy. Clini-
cal response was defined as a reduction in the Bath AS 
Disease Activity Score (BASDAI) of 50% or 20 mm (on a 
VAS scale of 0–100 mm) at week 22 [24]. Since the study 
was performed before ASDAS was introduced, this was 
calculated post hoc. ASDAS responses were defined as fol-
lows: no clinically important improvement (ΔASDAS<1.1), 
clinically important improvement (1.1≤ΔASDAS<2.0), 
and major improvement in ASDAS (ΔASDAS≥2.0) [25]. 
The Spondyloarthritis Research Consortium of Canada 
(SPARCC) MRI Spine and Sacroiliac Joint Inflammation 
score, which quantitatively assesses bone marrow edema 
of the spine and sacroiliac joint, was evaluated by an expe-
rienced reader (UW )[22]. Serum was taken according to 
standard operating procedures and stored at −80°C prior 
to biomarker measurement [26].

Biomarker analysis
Biomarkers were assessed in 55 patients with available 
blood samples. Twelve different ECM metabolite bio-
markers were assessed by competitive ELISAs devel-
oped by Nordic Bioscience. The assays measure type I 
collagen (PRO-C1), type III collagen (PRO-C3), type IV 
collagen (PRO-C4), and type VI collagen (PRO-C6) for-
mation; MMP-generated type III collagen (C3M), type 
IV collagen (C4M), type VI collagen (C6M), and type 
VII collagen (C7M) degradation; along with Cathepsin 
K-generated type X collagen, MMP-mediated metabo-
lite of C-reactive protein (CRPM), neutrophil elastase-
degraded elastin (EL-NE), and citrullinated vimentin 
(VICM). All nine biomarkers were measured in serum 
or EDTA plasma at baseline (n=55), week 2, week 22, 
and week 46 after treatment with TNF-inhibitory ther-
apy (infliximab, etanercept, or adalimumab). The assays 
were previously developed and technically validated 
[15, 17, 27–34]. The inter- and intra-assay coefficients 
of variation were <15% and <10%, respectively. Samples 

below the lower limit of quantification (LLOQ) were 
assigned the value of LLOQ.

Statistical analysis
Baseline characteristics were presented as numbers (fre-
quency) and percentages for categorical variables and as 
medians (interquartile range) for continuous variables. 
Differences between the biomarker levels at the four 
timepoints were calculated using a repeated measures 
analysis of variance (ANOVA). Comparison of base-
line variables was performed with the Mann–Whitney 
test, while correlations were performed with Spearman’s 
rank correlation coefficient. Before the analyses, a total 
SPARCC MRI Spine and Sacroiliac Joint Inflammation 
score was calculated as the sum of the SPARCC MRI 
Spine Inflammation score and the SPARCC MRI Sacro-
iliac Joint Inflammation score. Analysis was performed 
in MedCalc (version 14.8.1) and GraphPad Prism (ver-
sion 8) software. A p-value below 0.05 was considered 
significant.

Results
Baseline demographics
Clinical and demographic characteristics at baseline are 
shown in Table 1. The patients in the study were mostly 
(82%) male. Furthermore, 84% of the patients were 
HLA-B27 positive, and the median age was 40 years 
(inter quartile range (IQR): 32–48). The patients had a 
median disease duration of 5.5 years (IQR: 2–10) and a 
median baseline ASDAS of 3.9 (IQR: 3.0–4.5). At base-
line, weak correlations were observed between PRO-
C1, PRO-C4, VICM, and ASDAS (ρ=−0.286, p=0.038; 
ρ=0.315, p=0.022; and ρ=0.327, p=0.017, respectively), 
while moderate correlations were observed for C6M ver-
sus ASDAS (ρ=0.538, p<0.001) and CRP versus ASDAS 
(ρ=0.654, p<0.0001). At baseline, no biomarkers were 
correlated with BASDAI or swollen joint count.

After 22 weeks of treatment, 10 patients were classified 
as showing clinically important improvement in ASDAS, 
while 23 patients were classified as showing major 
improvement in ASDAS. After 46 weeks of treatment, 
13 and 17 patients, respectively were classified as having 
achieved a clinically important and a major improvement 
in ASDAS, respectively.

Changes in PRO‑C1, C6M, EL‑NE, VICM, and CRP 
during TNF‑α inhibitory therapy
Compared to baseline, circulating levels of PRO-C1 sig-
nificantly increased after 2 and 22 weeks of treatment 
(p<0.0001 and p=0.037, respectively; Fig.  1A), whereas 
C6M levels significantly decreased after 2 and 22 weeks of 
treatment (p=0.001 and p=0.002, respectively; Fig. 1G). 
Compared to baseline, EL-NE levels were significantly 
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decreased after 2 weeks of treatment (p=0.0008; Fig. 1K). 
VICM levels decreased after 2 and 22 weeks of treat-
ment compared to baseline (p=0.0163 and p=0.0374, 
respectively; Fig.  1L). CRP levels decreased after 2 and 
22 weeks of treatment compared to baseline (both 
p=0.0001; Fig. 1M). In the other biomarkers, no signifi-
cant changes were observed from baseline to weeks 2, 22, 
and 46. In comparison, there was a significant decrease 
in the ASDAS and BASDAI scores from baseline to 2, 
22, and 46 weeks (both p<0.0001) as well as a decrease in 
SPARCC scores from baseline to 22 weeks (p=0.005) and 
46 weeks (p=0.0005).

Association of PRO‑C1, PRO‑C3, C6M, VICM, and CRP 
with improvement in ASDAS
After 22 weeks, 17 individuals did not achieve a clinically 
important or major improvement in ASDAS (ΔASDAS 
<1.1), while 10 patients achieved a clinical important 
improvement in ASDAS (ΔASDAS ≥1.1) and 23 indi-
viduals achieved a major improvement (ΔASDAS ≥2.0). 
After 46 weeks of treatment, 11 patients did not achieve 
a clinically important or major improvement in ASDAS, 

while 13 and 17 patients achieved clinically important 
and major improvement in ASDAS, respectively. Levels 
of PRO-C1, PRO-C3, C6M, VICM and CRP were all asso-
ciated with clinically and major improvement after 22 
weeks (p=0.006, p=0.008, p<0.001, <0.001, and p<0.001, 
respectively; Table 2), while C6M, VICM, and CRP were 
the only three biomarkers associated with a change in 
ASDAS score after 46 weeks (p=0.002, p=0.044, and 
p<0.001, respectively; Table  2). There was no associa-
tion between the other biomarkers and improvement in 
ASDAS scores at weeks 22 and 46.

Association of PRO‑C1 and C6M with BASDAI response
Compared to non-responders, responders had signifi-
cantly higher levels of PRO-C1 after 22 weeks, while C6M 
levels were significantly lower at baseline for patients who 
were responding to TNF-a inhibitory therapy compared 
to non-responders (p=0.020 and p=0.049, respectively; 
Table 3). No association was found for responders after 
46 weeks. There was no association between the other 
biomarkers and BASDAI response at weeks 22 and 46.

Association of PRO‑C1, PRO‑C4, C6M, and C7M 
with SPARCC MRI sacroiliac joint and spine inflammation 
scores
Baseline and week 22 levels of PRO-C4 and C6M were 
mildly to moderately correlated with the total SPARCC 
MRI Spine and Sacroiliac Joint Inflammation score 
(PRO-C4: ρ=0.279, p=0.043 and ρ=0.317, p=0.021, 
respectively, and C6M: ρ =0.496, p=0.0002 and ρ 
=0.297, p=0.031, respectively; Table  4). Week 22 and 
week 46 levels of PRO-C1 and C7M were mildly corre-
lated with the total SPARCC Spine and Sacroiliac Joint 
Inflammation score (PRO-C1: ρ=− 0.318, p=0.021 and 
p=-0.285, p=0.05, respectively; C7M: ρ=0.379, p=0.005 
and ρ=0.319, p=0.029, respectively; Table 4). No correla-
tions were found between CRP and SPARCC at baseline 
(ρ=− 0.205, p=0.153), week 22 (ρ=0.263, p=0.057), or 
week 46 (ρ=− 0.127, p=0.430) or the other ECM bio-
markers investigated in the study.

Discussion
We evaluated changes in ECM metabolites (PRO-C1, 
PRO-C3, PRO-C4, PRO-C6, C3M, C4M, C6M, C7M, 
C10C, CRPM, EL-NE, and VICM) as potential biomark-
ers of disease activity and treatment response in patients 
with axSpA initiating treatment with TNF-α inhibitor 
and followed for 46 weeks. The main findings were as fol-
lows: (i) PRO-C1 was increased at weeks 2 and 22 after 
the initiation of TNF-inhibitory therapy, while C6M, 
EL-NE, and VICM were decreased at week 2, and both 
C6M and VICM remained decreased after week 22; (ii) 

Table 1 Demographics and baseline clinical characteristics

Values are given as numbers (frequency) and percentages for categorical 
variables and as medians (interquartile range (IQR)) for continuous variables

Information on the number (%) of patients with a SpA feature and the number 
(%) of a particular SpA feature were based on patient history and clinical 
examination at study inclusion

HLA-B27 human leucocyte antigen B27, CRP C-reactive protein, ASDAS 
Ankylosing Spondylitis Disease Activity Score, BASDAI Bath ankylosing 
spondylitis disease activity index, NSAID nonsteroidal anti-inflammatory drugs, 
SpA spondyloarthritis

Patients (n=55)

HLA‑B27 positive (%) 53 (96%)

Gender (male/female) (%) 45 (82%)/10 (18%)

Age, years (IQR) 40 (32–48)

Disease duration (IQR) 5.5 (2.0–10.0)

Baseline NSAID use (%) 47 (85%)

Infliximab/etanercept/adali‑
mumab

37 (67%)/12 (22%)/6 (11%)

ASDAS 3.9 (3.0–4.5)

BASDAI (0–100) 55.0 (44.0–72.8)

Swollen joint count (0–28) 0 (0‑8)

Serum CRP (mg/L) 27.6 (1.2–162.0)

Patients with a SpA feature, n (%) 24 (44%) patients with 1 SpA feature
4 (7%) patients with 2 SpA features
2 (4%) patients with 3 SpA features

Peripheral arthritis (%) 12 (22%)

Psoriasis (%) 12 (22%)

History of anterior uveitis (%) 11 (20%)

History of inflammatory bowel 
disease (%)

3 (5%)
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PRO-C1, PRO-C3, C6M, and VICM were associated with 
a clinical improvement in the ASDAS score; (iii) PRO-C1 
and C6M were associated with a BASDAI response to 
TNF-inhibitory therapy; and (iv) PRO-C4 and C6M were 
associated with total SPARCC MRI Spine and Sacroiliac 
Joint scores at baseline.

In the past decade, progress has been made on the 
development of biologics for treating axSpA. However, 
reliable and commonly available tools to guide treatment 
decisions are still needed. Candidate biomarkers reflect-
ing disease activity, response to treatment, and structural 
progression may help close this gap [3, 35–37]. An essen-
tial property for an ECM metabolite biomarker in axSpA 
is a relationship with MRI inflammation and treatment 
response scores, thus potentially reflecting the impact 
of disease activity on the tissue level. In this study, we 
demonstrated a correlation between ECM metabolites 
and the total SPARCC MRI Spine and Sacroiliac Joint 
Inflammation score at baseline as well as associations 
with measures of clinical improvement and response to 
treatment, indicating that these metabolites may repre-
sent valuable biomarkers of disease activity in axSpA. In 
this study, C6M was reduced by TNF-inhibitory therapy, 
associated with clinically important and major improve-
ment in ASDAS disease activity at weeks 22 and 46, and 
it moderately correlated with the total SPARCC MRI 
Spine and Sacroiliac Joint Inflammation score, and differ-
entiated responders from non-responders after 22 weeks. 
Type VI collagen (COL6) is an ECM protein located in 
the interface between the basement membrane and 
interstitial matrix, where it binds to other ECM proteins 
and supports cell-to-cell interactions [38–41]. C6M is a 
metabolite of COL6 that is released from the inflamed 
tissue and can be measured in serum as a biomarker of 
connective tissue remodeling [27]. Previously, C6M has 
been associated with AS in a cross-sectional setting, 
where it was used to distinguish between healthy controls 
and AS patients, and it has been suggested as a candidate 
marker for monitoring disease activity in interventional 
studies [14, 42]. C6M separated AS patients from healthy 
individuals with an area under curve (AUC) of 0.78, but 

Fig. 1 Time course of biomarkers in response to TNF‑α inhibitor 
therapy. A Type I collagen formation, PRO‑C1; B type III collagen 
formation, PRO‑C3; C type IV collagen turnover, PRO‑C4; D type 
VI collagen formation, PRO‑C6; E type III collagen degradation, 
C3M; F type IV collagen degradation, C4M; G type VI collagen 
degradation, C6M; H type VII collagen degradation, C7M; I type X 
collagen degradation, C10C; J C‑reactive metabolite, CRPM; K elastin 
degradation, EL‑NE; L citrullination and degradation of vimentin, 
VICM; and M C‑reactive protein, CRP. Time course is shown as median 
± 95% CI. *p<0.05 **p<0.01, ***p<0.001, ****p<0.0001
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it was not correlated with radiographic progression in 
the spine (mSASSS). In another radiographic axSpA 
(r-axSpA) clinical study, C6M was shown to be highly 
correlated with CRP but not mSASSS [43]. However, the 
associations between C6M and the composite measure 
of disease activity for patients with axSpA (ASDAS) have 
not been studied previously. While chronic inflamma-
tion is a hallmark of axSpA, the nature of inflammation 
is not fully elucidated. Inflammation typically accelerates 
the turnover of collagens [44], and thus it was expected 
that C6M would be associated with MRI inflammation 
and CRP at baseline, which was demonstrated in this 
study. In addition, C6M is a marker of connective tissue 
breakdown, whereas CRP is a non-specific acute phase 
reactant, which are increased in many conditions. The 
potential of C6M as a biomarker of treatment response 
has also recently been shown in patients with psoriatic 
arthritis (PsA) [45].

Another interesting biomarker in this study is PRO-C1, 
which increased 2 and 22 weeks following TNF-inhibitory 

therapy and showed associations with disease activity and 
response to treatment. Type I collagen is the major col-
lagen in the human body and the major constituent of 
bone. PRO-C1, also known as PINP, can be used to meas-
ure bone formation. The bone phenotype in axSpA is a 
mix of processes involving bone loss and bone formation. 
Bone loss (osteoporosis and bone erosion) is caused by 
increased osteoclast activity, although the link between 
TNF-inhibitory therapy and osteoclast activity has been 
debated; however, most findings indicate that TNF-inhib-
itory therapy leads to the inhibition of osteoblast differ-
entiation [46–48]. An observational study of AS patients 
treated with TNF inhibitor reported that structural pro-
gression continued after the initiation of therapy, and 
retardation of structural damage was reported only after 
4 years of treatment [49]. This may support the increase of 
PRO-C1 after 2 and 22 weeks. A third biomarker, VICM, 
was decreased after 2 and 22 weeks of TNF-inhibitor ther-
apy and was also associated with clinically important and 
major improvements after 22 and 46 weeks. Vimentin is 

Table 3 Response to TNF‑α treatment. Percent changes of biomarkers from baseline to weeks 22 and 46 in patients with and without 
a BASDAI response, respectively

PRO-C1 type I collagen formation, PRO-C3 type III collagen formation, PRO-C4 type IV collagen turnover, PRO-C6 type VI collagen formation, C3M degradation of type 
III collagen, C4M degradation of type IV collagen, C6M degradation of type VI collagen, C7M degradation of type VII collagen, C10C degradation of type X collagen, 
CRPM degradation of C-reactive protein, EL-NE degradation of elastin, VICM degraded and citrullinated vimentin; IQR inter quartile range

Biomarker Week 22 response Week 46 response

Non‑responders
n=19

Responders
n=36

p‑value Non‑responders
n=12

Responders
n=37

p‑value

PRO‑C1
Median (IQR)

− 3.1
(− 33.2, 13.9)

14.2
(5.1, 36.1)

0.020 6.2
(− 15.4, 24.1)

12.8
(1.5, 36.1)

0.432

PRO‑C3
Median (IQR)

− 6.0
(− 27.6, 8.4)

4.0
(− 11.0, 28.6)

0.186 − 1.4
(− 17.0, 25.5)

6.5
(− 11.0, 28.6)

0.552

PRO‑C4
Median (IQR)

− 12.7
(− 28.1, 28.9)

− 8.1
(− 25.3, 17.8)

0.832 − 11.9
(− 29.2, 10.1)

− 8.4
(− 25.7, 22.4)

0.710

PRO‑C6
Median (IQR)

− 2.5
(− 13.8, 8.7)

− 0.4
(− 12.1, 19.1)

0.349 − 0.4
(− 16.0, 19.9)

0.2
(− 12.4, 14.2)

0.868

C3M
Median (IQR)

15.3
(− 7.1, 21.9)

4.5
(− 9.2, 15.0)

0.331 5.7
(− 8.9, 20.4)

6.0
(− 9.5, 16.4)

0.739

C4M
Median (IQR)

2.7
(− 14.2, 15.1)

− 6.8
(− 13.7, 5.5)

0.517 − 11.3
(− 14.8, 2.4)

− 6.4
(− 12.2, 6.7)

0.421

C6M
Median (IQR)

− 3.7
(− 39.0, 32.1)

− 32.0
(− 63.7, 4.5)

0.049 − 9.9
(− 56.3, 48.2)

− 30.6
(− 53.9, 17.1)

0.485

C7M
Median (IQR)

− 29.1
(− 42.5, 34.8)

− 28.9
(− 54.5, 8.4)

0.737 − 22.2
(− 56.1, 39.6)

− 30.0
(− 51.5, 0.0)

0.642

C10C
Median (IQR)

9.2
(− 9.2, 21.0)

2.4
(− 5.5, 15.0)

0.873 13.4
(− 4.3, 22.4)

2.1
(− 8.7, 14.5)

0.403

CRPM
Median (IQR)

− 1.8
(− 11.0, 6.8)

− 3.6
(− 14.7, 16.3)

0.854 1.5
(− 8.2, 10.7)

− 4.2
(− 13.1, 10.6)

0.490

EL‑NE
Median (IQR)

0.0
(0.0, 11.6)

0.0
(− 31.9, 0.9)

0.222 0.2
(0.0, 23.1)

0.0
(− 32.6, 8.0)

0.212

VICM
Median (IQR)

− 17.3
(− 63.6, 49.1)

− 36.3
(− 66.0, 9.4)

0.559 − 16.1
(− 70.3, 27.8)

− 37.9
(− 64.9, 42.3)

0.926

CRP
Median (IQR)

− 56.7
(− 82.66–26.78)

− 83.64
(− 94.10–58.75)

0.086 183.3
(− 33.81–458.11)

− 9.5
(60.34–120.71)

0.456
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a type III intermediate filament protein that is expressed 
by various cells as a constituent of the cytoskeleton. It is 
secreted by macrophages and known to be citrullinated 
intercellularly by PAD enzymes [50]. VICM measures a 
citrullinated and MMP-mediated fragment of vimentin, 
and it has been reported to be prognostic for radiographic 

progression in AS [21], whereas VICM has not been 
shown to be modulated by TNF-inhibitory therapy [21].

Conclusion
In conclusion, the study demonstrates that extracel-
lular matrix metabolites are associated with clinically 
important and major improvement in ASDAS, MRI 
inflammation, and response to TNF-inhibitory treat-
ment in patients with axSpA. Selected biomarkers 
reflecting bone formation (PRO-C1), soft tissue deg-
radation (C6M), and macrophage activity (VICM) are 
candidate soluble tissue turnover biomarkers of dis-
ease activity in axSpA.
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